#define WORK_MEGAPIX 0.6
typedef TestBaseWithParam<string> stitch;
+typedef TestBaseWithParam<int> stitchExposureCompensation;
typedef TestBaseWithParam<tuple<string, string> > stitchDatasets;
#ifdef HAVE_OPENCV_XFEATURES2D
#else
#define TEST_DETECTORS testing::Values("orb", "akaze")
#endif
+#define TEST_EXP_COMP_BS testing::Values(32, 16, 12, 10, 8)
#define AFFINE_DATASETS testing::Values("s", "budapest", "newspaper", "prague")
PERF_TEST_P(stitch, a123, TEST_DETECTORS)
SANITY_CHECK_NOTHING();
}
+PERF_TEST_P(stitchExposureCompensation, a123, TEST_EXP_COMP_BS)
+{
+ Mat pano;
+
+ vector<Mat> imgs;
+ imgs.push_back( imread( getDataPath("stitching/a1.png") ) );
+ imgs.push_back( imread( getDataPath("stitching/a2.png") ) );
+ imgs.push_back( imread( getDataPath("stitching/a3.png") ) );
+
+ int bs = GetParam();
+
+ declare.time(30 * 10).iterations(10);
+
+ while(next())
+ {
+ Ptr<Stitcher> stitcher = Stitcher::create();
+ stitcher->setWarper(makePtr<SphericalWarper>());
+ stitcher->setRegistrationResol(WORK_MEGAPIX);
+ stitcher->setExposureCompensator(
+ makePtr<detail::BlocksGainCompensator>(bs, bs));
+
+ startTimer();
+ stitcher->stitch(imgs, pano);
+ stopTimer();
+ }
+
+ EXPECT_NEAR(pano.size().width, 1182, 50);
+ EXPECT_NEAR(pano.size().height, 682, 30);
+
+ SANITY_CHECK_NOTHING();
+}
+
PERF_TEST_P(stitch, b12, TEST_DETECTORS)
{
Mat pano;
//M*/
#include "precomp.hpp"
+#ifdef HAVE_EIGEN
+#include <Eigen/Core>
+#include <Eigen/Dense>
+#endif
namespace cv {
namespace detail {
const int num_images = static_cast<int>(images.size());
Mat_<int> N(num_images, num_images); N.setTo(0);
Mat_<double> I(num_images, num_images); I.setTo(0);
+ Mat_<bool> skip(num_images, 1); skip.setTo(true);
//Rect dst_roi = resultRoi(corners, images);
Mat subimg1, subimg2;
submask2 = masks[j].first(Rect(roi.tl() - corners[j], roi.br() - corners[j])).getMat(ACCESS_READ);
intersect = (submask1 == masks[i].second) & (submask2 == masks[j].second);
- N(i, j) = N(j, i) = std::max(1, countNonZero(intersect));
+ int intersect_count = countNonZero(intersect);
+ N(i, j) = N(j, i) = std::max(1, intersect_count);
+
+ // Don't compute Isums if subimages do not intersect anyway
+ if (intersect_count == 0)
+ continue;
+
+ // Don't skip images that intersect with at least one other image
+ if (i != j)
+ {
+ skip(i, 0) = false;
+ skip(j, 0) = false;
+ }
double Isum1 = 0, Isum2 = 0;
for (int y = 0; y < roi.height; ++y)
double alpha = 0.01;
double beta = 100;
+ int num_eq = num_images - countNonZero(skip);
- Mat_<double> A(num_images, num_images); A.setTo(0);
- Mat_<double> b(num_images, 1); b.setTo(0);
- for (int i = 0; i < num_images; ++i)
+ Mat_<double> A(num_eq, num_eq); A.setTo(0);
+ Mat_<double> b(num_eq, 1); b.setTo(0);
+ for (int i = 0, ki = 0; i < num_images; ++i)
{
- for (int j = 0; j < num_images; ++j)
+ if (skip(i, 0))
+ continue;
+
+ for (int j = 0, kj = 0; j < num_images; ++j)
{
- b(i, 0) += beta * N(i, j);
- A(i, i) += beta * N(i, j);
- if (j == i) continue;
- A(i, i) += 2 * alpha * I(i, j) * I(i, j) * N(i, j);
- A(i, j) -= 2 * alpha * I(i, j) * I(j, i) * N(i, j);
+ if (skip(j, 0))
+ continue;
+
+ b(ki, 0) += beta * N(i, j);
+ A(ki, ki) += beta * N(i, j);
+ if (j != i)
+ {
+ A(ki, ki) += 2 * alpha * I(i, j) * I(i, j) * N(i, j);
+ A(ki, kj) -= 2 * alpha * I(i, j) * I(j, i) * N(i, j);
+ }
+ ++kj;
}
+ ++ki;
}
- solve(A, b, gains_);
+ Mat_<double> l_gains;
+
+#ifdef HAVE_EIGEN
+ Eigen::MatrixXf eigen_A, eigen_b, eigen_x;
+ cv2eigen(A, eigen_A);
+ cv2eigen(b, eigen_b);
+
+ Eigen::LLT<Eigen::MatrixXf> solver(eigen_A);
+#if ENABLE_LOG
+ if (solver.info() != Eigen::ComputationInfo::Success)
+ LOGLN("Failed to solve exposure compensation system");
+#endif
+ eigen_x = solver.solve(eigen_b);
+
+ eigen2cv(eigen_x, l_gains);
+#else
+ solve(A, b, l_gains);
+#endif
+
+ gains_.create(num_images, 1);
+ for (int i = 0, j = 0; i < num_images; ++i)
+ {
+ if (skip(i, 0))
+ gains_.at<double>(i, 0) = 1;
+ else
+ gains_.at<double>(i, 0) = l_gains(j++, 0);
+ }
LOGLN("Exposure compensation, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
}