bool sft::Octave::train( const cv::Mat& trainData, const cv::Mat& _responses, const cv::Mat& varIdx,
const cv::Mat& sampleIdx, const cv::Mat& varType, const cv::Mat& missingDataMask)
{
+ CvBoostParams _params;
+ {
+ // tree params
+ _params.max_categories = 10;
+ _params.max_depth = 2;
+ _params.cv_folds = 0;
+ _params.truncate_pruned_tree = false;
+ _params.use_surrogates = false;
+ _params.use_1se_rule = false;
+ _params.regression_accuracy = 0.0;
+
+ // boost params
+ _params.boost_type = CvBoost::GENTLE;
+ _params.split_criteria = CvBoost::SQERR;
+ _params.weight_trim_rate = 0.95;
+
+
+ /// ToDo: move to params
+ _params.min_sample_count = 2;
+ _params.weak_count = 1;
+ }
+
bool update = false;
- return cv::Boost::train(trainData, CV_COL_SAMPLE, _responses, varIdx, sampleIdx, varType, missingDataMask, params,
+ return cv::Boost::train(trainData, CV_COL_SAMPLE, _responses, varIdx, sampleIdx, varType, missingDataMask, _params,
update);
}
processPositives(dataset, pool);
generateNegatives(dataset);
- return false;
+ // 2. only sumple case (all features used)
+ int nfeatures = pool.size();
+ cv::Mat varIdx(1, nfeatures, CV_32SC1);
+ int* ptr = varIdx.ptr<int>(0);
+
+ for (int x = 0; x < nfeatures; ++x)
+ ptr[x] = x;
+
+ // 3. only sumple case (all samples used)
+ int nsamples = npositives + nnegatives;
+ cv::Mat sampleIdx(1, nsamples, CV_32SC1);
+ ptr = varIdx.ptr<int>(0);
+
+ for (int x = 0; x < nsamples; ++x)
+ ptr[x] = x;
+
+ // 4. ICF has an orderable responce.
+ cv::Mat varType(1, nfeatures + 1, CV_8UC1);
+ uchar* uptr = varType.ptr<uchar>(0);
+ for (int x = 0; x < nfeatures; ++x)
+ uptr[x] = CV_VAR_ORDERED;
+ uptr[nfeatures] = CV_VAR_CATEGORICAL;
+
+ cv::Mat trainData(nfeatures, nsamples, CV_32FC1);
+ for (int fi = 0; fi < nfeatures; ++fi)
+ {
+ float* dptr = trainData.ptr<float>(fi);
+ for (int si = 0; si < nsamples; ++si)
+ {
+ dptr[si] = pool.apply(fi, si, integrals);
+ }
+ }
+
+ cv::Mat missingMask;
+
+ return train(trainData, responses, varIdx, sampleIdx, varType, missingMask);
}
sft::FeaturePool::~FeaturePool(){}
+float sft::FeaturePool::apply(int fi, int si, const Mat& integrals) const
+{
+ return 0.f;
+}
+
void sft::FeaturePool::fill(int desired)
{