return rewriter.notifyMatchFailure(op,
"tosa.conv ops require static shapes");
+ if (inputETy.isUnsignedInteger())
+ return rewriter.notifyMatchFailure(
+ op, "tosa.conv ops does not support unsigned integer input");
+
auto weightShape = weightTy.getShape();
// Apply padding as necessary.
Attribute zeroAttr = rewriter.getZeroAttr(inputETy);
+ if (isQuantized) {
+ auto quantizationInfo =
+ op->getAttr("quantization_info").cast<tosa::ConvOpQuantizationAttr>();
+ auto iZp = quantizationInfo.input_zp().getValue().getSExtValue();
+
+ int64_t intMin =
+ APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
+ .getSExtValue();
+ int64_t intMax =
+ APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth())
+ .getSExtValue();
+
+ if (iZp < intMin || iZp > intMax)
+ return rewriter.notifyMatchFailure(
+ op, "tosa.conv op quantization has zp outside of input range");
+
+ zeroAttr = rewriter.getIntegerAttr(inputETy, iZp);
+ }
+
llvm::SmallVector<int64_t> pad;
pad.resize(2, 0);
getValuesFromIntArrayAttribute(padAttr, pad);
// Apply padding as necessary.
Attribute zeroAttr = rewriter.getZeroAttr(inputETy);
+ if (isQuantized) {
+ auto quantizationInfo =
+ op->getAttr("quantization_info").cast<tosa::ConvOpQuantizationAttr>();
+ auto iZp = quantizationInfo.input_zp().getValue().getSExtValue();
+
+ int64_t intMin =
+ APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
+ .getSExtValue();
+ int64_t intMax =
+ APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth())
+ .getSExtValue();
+
+ if (iZp < intMin || iZp > intMax)
+ return rewriter.notifyMatchFailure(
+ op, "tosa.depthwise_conv op quantization has zp outside of input "
+ "range");
+
+ zeroAttr = rewriter.getIntegerAttr(inputETy, iZp);
+ }
+
llvm::SmallVector<int64_t> pad;
pad.resize(2, 0);
getValuesFromIntArrayAttribute(padAttr, pad);
// CHECK-LABEL: @conv2d_padded_f32
func @conv2d_padded_f32(%input: tensor<1x47x40x28xf32>, %weights: tensor<28x3x3x28xf32>, %bias: tensor<28xf32>) -> () {
+ // CHECK: %[[C0:.+]] = constant 0
// CHECK: linalg.pad_tensor %arg0 low[0, 1, 1, 0] high[0, 1, 1, 0]
+ // CHECK: linalg.yield %[[C0]]
// CHECK: linalg.conv_2d_nhwc_hwcf
%0 = "tosa.conv2d"(%input, %weights, %bias) {pad = [1, 1, 1, 1], stride = [1, 1], dilation = [2, 1]} : (tensor<1x47x40x28xf32>, tensor<28x3x3x28xf32>, tensor<28xf32>) -> (tensor<1x45x40x28xf32>)
return
// CHECK-LABEL: @conv2d_quant
func @conv2d_quant(%arg0 : tensor<1x12x12x1xi8>, %arg1 : tensor<1024x3x3x1xi8>, %arg2 : tensor<1024xi32>) -> () {
+ // CHECK: %[[C22:.+]] = constant -22
+ // CHECK: linalg.pad_tensor %arg0 low[0, 1, 1, 0] high[0, 1, 1, 0]
+ // CHECK: linalg.yield %[[C22]]
// CHECK: linalg.conv_2d_nhwc_hwcf_q
- %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {dilation = [1, 1], pad = [0, 0, 0, 0], quantization_info = {input_zp = -128 : i32, weight_zp = 42 : i32}, stride = [1, 1]} : (tensor<1x12x12x1xi8>, tensor<1024x3x3x1xi8>, tensor<1024xi32>) -> tensor<1x10x10x1024xi32>
+ %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {dilation = [1, 1], pad = [1, 1, 1, 1], quantization_info = {input_zp = -22 : i32, weight_zp = 42 : i32}, stride = [1, 1]} : (tensor<1x12x12x1xi8>, tensor<1024x3x3x1xi8>, tensor<1024xi32>) -> tensor<1x12x12x1024xi32>
return
}
// CHECK: } -> tensor<1x5x5x33xf32>
// CHECK: [[DBIAS:%.+]] = linalg.tensor_expand_shape [[BIAS]] {{\[}}[0], [1], [2], [3, 4]]
// CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv2D_nhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x11x9x3xf32>, tensor<3x1x3x11xf32>) outs([[DBIAS]] : tensor<1x5x5x3x11xf32>)
- // CHECK: linalg.tensor_collapse_shape %3 {{\[}}[0], [1], [2], [3, 4]]
+ // CHECK: linalg.tensor_collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]]
%2 = "tosa.depthwise_conv2d"(%arg0, %arg1, %arg2) { pad = [0, 0, 0, 0], stride = [2, 2], dilation = [1, 1] } : (tensor<1x11x9x3xf32>, tensor<3x1x3x11xf32>, tensor<33xf32>) -> (tensor<1x5x5x33xf32>)
return
}
// CHECK-LABEL: @depthwise_conv_quant
func @depthwise_conv_quant(%arg0 : tensor<1x12x12x4xi8>, %arg1 : tensor<3x3x4x128xi8>, %arg2 : tensor<512xi32>) -> () {
- // CHECK: [[INIT:%.+]] = linalg.init_tensor [1, 10, 10, 512]
- // CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<512xi32>) outs([[INIT]] : tensor<1x10x10x512xi32>) {
+ // CHECK: %[[PADV:.+]] = constant -128
+ // CHECK: %[[PAD:.+]] = linalg.pad_tensor %arg0 low[0, 1, 1, 0] high[0, 1, 1, 0]
+ // CHECK: linalg.yield %[[PADV]]
+
+ // CHECK: [[INIT:%.+]] = linalg.init_tensor [1, 12, 12, 512]
+ // CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<512xi32>) outs([[INIT]] : tensor<1x12x12x512xi32>) {
// CHECK: ^bb0(%arg3: i32, %arg4: i32): // no predecessors
// CHECK: linalg.yield %arg3 : i32
- // CHECK: } -> tensor<1x10x10x512xi32>
- // CHECK: [[DBIAS:%.+]] = linalg.tensor_expand_shape [[BIAS]] {{\[}}[0], [1], [2], [3, 4]]
+ // CHECK: } -> tensor<1x12x12x512xi32>
+ // CHECK: %[[DBIAS:.+]] = linalg.tensor_expand_shape [[BIAS]] {{\[}}[0], [1], [2], [3, 4]]
// CHECK: %[[C128:.+]] = constant -128
// CHECK: %[[C42:.+]] = constant 42
- // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv2D_nhwc_q {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1, %[[C128]], %[[C42]] : tensor<1x12x12x4xi8>, tensor<3x3x4x128xi8>, i32, i32) outs([[DBIAS]] : tensor<1x10x10x4x128xi32>)
- // CHECK: linalg.tensor_collapse_shape %3 {{\[}}[0], [1], [2], [3, 4]]
- %0 = "tosa.depthwise_conv2d"(%arg0, %arg1, %arg2) {pad = [0, 0, 0, 0], quantization_info = {input_zp = -128 : i32, weight_zp = 42 : i32}, stride = [1, 1], dilation = [1, 1] } : (tensor<1x12x12x4xi8>, tensor<3x3x4x128xi8>, tensor<512xi32>) -> tensor<1x10x10x512xi32>
+ // CHECK: %[[DEPTH:.+]] = linalg.depthwise_conv2D_nhwc_q {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%[[PAD]], %arg1, %[[C128]], %[[C42]] : tensor<1x14x14x4xi8>, tensor<3x3x4x128xi8>, i32, i32) outs(%[[DBIAS]] : tensor<1x12x12x4x128xi32>)
+ // CHECK: linalg.tensor_collapse_shape %[[DEPTH]] {{\[}}[0], [1], [2], [3, 4]]
+ %0 = "tosa.depthwise_conv2d"(%arg0, %arg1, %arg2) {pad = [1, 1, 1, 1], quantization_info = {input_zp = -128 : i32, weight_zp = 42 : i32}, stride = [1, 1], dilation = [1, 1] } : (tensor<1x12x12x4xi8>, tensor<3x3x4x128xi8>, tensor<512xi32>) -> tensor<1x12x12x512xi32>
return
}