#define SK_FloatInfinity (*SkTCast<const float*>(&gIEEEInfinity))
#define SK_FloatNegativeInfinity (*SkTCast<const float*>(&gIEEENegativeInfinity))
-// We forward declare this to break an #include cycle.
-// (SkScalar -> SkFloatingPoint -> SkOpts.h -> SkXfermode -> SkColor -> SkScalar)
-namespace SkOpts { extern float (*rsqrt)(float); }
+static inline float sk_float_rsqrt_portable(float x) {
+ // Get initial estimate.
+ int i = *SkTCast<int*>(&x);
+ i = 0x5F1FFFF9 - (i>>1);
+ float estimate = *SkTCast<float*>(&i);
+
+ // One step of Newton's method to refine.
+ const float estimate_sq = estimate*estimate;
+ estimate *= 0.703952253f*(2.38924456f-x*estimate_sq);
+ return estimate;
+}
// Fast, approximate inverse square root.
// Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON.
-static inline float sk_float_rsqrt(const float x) {
+static inline float sk_float_rsqrt(float x) {
// We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got
// it at compile time. This is going to be too fast to productively hide behind a function pointer.
//
-// We do one step of Newton's method to refine the estimates in the NEON and null paths. No
+// We do one step of Newton's method to refine the estimates in the NEON and portable paths. No
// refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt.
//
-// Optimized constants in the null path courtesy of http://rrrola.wz.cz/inv_sqrt.html
+// Optimized constants in the portable path courtesy of http://rrrola.wz.cz/inv_sqrt.html
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(x)));
#elif defined(SK_ARM_HAS_NEON)
estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq));
return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places.
#else
- // Perhaps runtime-detected NEON, or a portable fallback.
- return SkOpts::rsqrt(x);
+ return sk_float_rsqrt_portable(x);
#endif
}
#include "SkBlitRow_opts.h"
#include "SkBlurImageFilter_opts.h"
#include "SkColorCubeFilter_opts.h"
-#include "SkFloatingPoint_opts.h"
#include "SkMatrix_opts.h"
#include "SkMorphologyImageFilter_opts.h"
#include "SkSwizzler_opts.h"
// If our global compile options are set high enough, these defaults might even be
// CPU-specialized, e.g. a typical x86-64 machine might start with SSE2 defaults.
// They'll still get a chance to be replaced with even better ones, e.g. using SSE4.1.
- decltype(rsqrt) rsqrt = sk_default::rsqrt;
decltype(memset16) memset16 = sk_default::memset16;
decltype(memset32) memset32 = sk_default::memset32;
decltype(create_xfermode) create_xfermode = sk_default::create_xfermode;
// Declare function pointers here...
- // Returns a fast approximation of 1.0f/sqrtf(x).
- extern float (*rsqrt)(float);
-
// See SkUtils.h
extern void (*memset16)(uint16_t[], uint16_t, int);
extern void (*memset32)(uint32_t[], uint32_t, int);
+++ /dev/null
-/*
- * Copyright 2015 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#ifndef SkFloatingPoint_opts_DEFINED
-#define SkFloatingPoint_opts_DEFINED
-
-#include "SkFloatingPoint.h"
-
-namespace SK_OPTS_NS {
-
-#if defined(SK_ARM_HAS_NEON)
- static float rsqrt(float x) {
- return sk_float_rsqrt(x); // This sk_float_rsqrt copy will take the NEON compile-time path.
- }
-#else
- static float rsqrt(float x) {
- // Get initial estimate.
- int i = *SkTCast<int*>(&x);
- i = 0x5F1FFFF9 - (i>>1);
- float estimate = *SkTCast<float*>(&i);
-
- // One step of Newton's method to refine.
- const float estimate_sq = estimate*estimate;
- estimate *= 0.703952253f*(2.38924456f-x*estimate_sq);
- return estimate;
- }
-#endif
-
-} // namespace SK_OPTS_NS
-
-#endif//SkFloatingPoint_opts_DEFINED
#include "SkBlitRow_opts.h"
#include "SkBlurImageFilter_opts.h"
#include "SkColorCubeFilter_opts.h"
-#include "SkFloatingPoint_opts.h"
#include "SkMatrix_opts.h"
#include "SkMorphologyImageFilter_opts.h"
#include "SkSwizzler_opts.h"
namespace SkOpts {
void Init_neon() {
- rsqrt = sk_neon::rsqrt;
memset16 = sk_neon::memset16;
memset32 = sk_neon::memset32;
create_xfermode = sk_neon::create_xfermode;
}
-static void test_rsqrt(skiatest::Reporter* reporter) {
+template <typename RSqrtFn>
+static void test_rsqrt(skiatest::Reporter* reporter, RSqrtFn rsqrt) {
const float maxRelativeError = 6.50196699e-4f;
// test close to 0 up to 1
float input = 0.000001f;
for (int i = 0; i < 1000; ++i) {
float exact = 1.0f/sk_float_sqrt(input);
- float estimate = sk_float_rsqrt(input);
+ float estimate = rsqrt(input);
float relativeError = sk_float_abs(exact - estimate)/exact;
REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
input += 0.001f;
input = 1.0f;
for (int i = 0; i < 1000; ++i) {
float exact = 1.0f/sk_float_sqrt(input);
- float estimate = sk_float_rsqrt(input);
+ float estimate = rsqrt(input);
float relativeError = sk_float_abs(exact - estimate)/exact;
REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
input += 0.01f;
input = 1000000.0f;
for (int i = 0; i < 100; ++i) {
float exact = 1.0f/sk_float_sqrt(input);
- float estimate = sk_float_rsqrt(input);
+ float estimate = rsqrt(input);
float relativeError = sk_float_abs(exact - estimate)/exact;
REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
input += 754326.f;
unittest_fastfloat(reporter);
unittest_isfinite(reporter);
unittest_half(reporter);
- test_rsqrt(reporter);
+ test_rsqrt(reporter, sk_float_rsqrt);
+ test_rsqrt(reporter, sk_float_rsqrt_portable);
for (i = 0; i < 10000; i++) {
SkFixed numer = rand.nextS();