class CV_EXPORTS_W_MAP Params
{
public:
- Params(int algorithmType_=BRUTE_FORCE, int defaultK=10, bool isclassifier_=true, int Emax_=INT_MAX);
+ Params(int defaultK=10, bool isclassifier_=true, int Emax_=INT_MAX, int algorithmType_=BRUTE_FORCE);
- CV_PROP_RW int algorithmType;
CV_PROP_RW int defaultK;
CV_PROP_RW bool isclassifier;
CV_PROP_RW int Emax; // for implementation with KDTree
+ CV_PROP_RW int algorithmType;
};
virtual void setParams(const Params& p) = 0;
virtual Params getParams() const = 0;
namespace cv {
namespace ml {
-KNearest::Params::Params(int algorithmType_, int k, bool isclassifier_, int Emax_) :
- algorithmType(algorithmType_),
+KNearest::Params::Params(int k, bool isclassifier_, int Emax_, int algorithmType_) :
defaultK(k),
isclassifier(isclassifier_),
- Emax(Emax_)
+ Emax(Emax_),
+ algorithmType(algorithmType_)
{
}
}
// KNearest KDTree implementation
- Ptr<KNearest> knearestKdt = KNearest::create(ml::KNearest::Params(ml::KNearest::KDTREE));
+ Ptr<KNearest> knearestKdt = KNearest::create(ml::KNearest::Params(10, true, INT_MAX, ml::KNearest::KDTREE));
knearestKdt->train(trainData, ml::ROW_SAMPLE, trainLabels);
knearestKdt->findNearest(testData, 4, bestLabels);
if( !calcErr( bestLabels, testLabels, sizes, err, true ) )