[G-API]: Add four kernels to parse NN outputs & provide information in Streaming scenarios
* Kernels from GL "blue" branch, acc and perf tests
* Code cleanup
* Output fix
* Comment fix
* Added new file for parsers, stylistic corrections
* Added end line
* Namespace fix
* Code cleanup
* nnparsers.hpp moved to gapi/infer/, nnparsers -> parsers
* Removed cv:: from parsers.hpp
src/api/kernels_core.cpp
src/api/kernels_imgproc.cpp
src/api/kernels_video.cpp
+ src/api/kernels_nnparsers.cpp
src/api/render.cpp
src/api/render_ocv.cpp
src/api/ginfer.cpp
src/backends/cpu/gcpuimgproc.cpp
src/backends/cpu/gcpuvideo.cpp
src/backends/cpu/gcpucore.cpp
+ src/backends/cpu/gnnparsers.cpp
# Fluid Backend (also built-in, FIXME:move away)
src/backends/fluid/gfluidbuffer.cpp
using GMat2 = std::tuple<GMat,GMat>;
using GMat3 = std::tuple<GMat,GMat,GMat>; // FIXME: how to avoid this?
using GMat4 = std::tuple<GMat,GMat,GMat,GMat>;
- using GMatScalar = std::tuple<GMat, GScalar>;
+ using GMatScalar = std::tuple<GMat, GScalar>;
G_TYPED_KERNEL(GAdd, <GMat(GMat, GMat, int)>, "org.opencv.core.math.add") {
static GMatDesc outMeta(GMatDesc a, GMatDesc b, int ddepth) {
return in.withType(in.depth, in.chan).withSize(dsize);
}
};
+
+ G_TYPED_KERNEL(GSize, <GOpaque<Size>(GMat)>, "org.opencv.core.size") {
+ static GOpaqueDesc outMeta(const GMatDesc&) {
+ return empty_gopaque_desc();
+ }
+ };
+
+ G_TYPED_KERNEL(GSizeR, <GOpaque<Size>(GOpaque<Rect>)>, "org.opencv.core.sizeR") {
+ static GOpaqueDesc outMeta(const GOpaqueDesc&) {
+ return empty_gopaque_desc();
+ }
+ };
}
//! @addtogroup gapi_math
int borderMode = cv::BORDER_CONSTANT, const Scalar& borderValue = Scalar());
//! @} gapi_transform
+/** @brief Gets dimensions from Mat.
+
+@note Function textual ID is "org.opencv.core.size"
+
+@param src Input tensor
+@return Size (tensor dimensions).
+*/
+GAPI_EXPORTS GOpaque<Size> size(const GMat& src);
+
+/** @overload
+Gets dimensions from rectangle.
+
+@note Function textual ID is "org.opencv.core.sizeR"
+
+@param r Input rectangle.
+@return Size (rectangle dimensions).
+*/
+GAPI_EXPORTS GOpaque<Size> size(const GOpaque<Rect>& r);
} //namespace gapi
} //namespace cv
--- /dev/null
+// This file is part of OpenCV project.
+// It is subject to the license terms in the LICENSE file found in the top-level directory
+// of this distribution and at http://opencv.org/license.html.
+//
+// Copyright (C) 2020 Intel Corporation
+
+
+#ifndef OPENCV_GAPI_PARSERS_HPP
+#define OPENCV_GAPI_PARSERS_HPP
+
+#include <utility> // std::tuple
+
+#include <opencv2/gapi/gmat.hpp>
+#include <opencv2/gapi/gkernel.hpp>
+
+namespace cv { namespace gapi {
+namespace nn {
+namespace parsers {
+ using GRects = GArray<Rect>;
+ using GDetections = std::tuple<GArray<Rect>, GArray<int>>;
+
+ G_TYPED_KERNEL(GParseSSDBL, <GDetections(GMat, GOpaque<Size>, float, int)>,
+ "org.opencv.nn.parsers.parseSSD_BL") {
+ static std::tuple<GArrayDesc,GArrayDesc> outMeta(const GMatDesc&, const GOpaqueDesc&, float, int) {
+ return std::make_tuple(empty_array_desc(), empty_array_desc());
+ }
+ };
+
+ G_TYPED_KERNEL(GParseSSD, <GRects(GMat, GOpaque<Size>, float, bool, bool)>,
+ "org.opencv.nn.parsers.parseSSD") {
+ static GArrayDesc outMeta(const GMatDesc&, const GOpaqueDesc&, float, bool, bool) {
+ return empty_array_desc();
+ }
+ };
+
+ G_TYPED_KERNEL(GParseYolo, <GDetections(GMat, GOpaque<Size>, float, float, std::vector<float>)>,
+ "org.opencv.nn.parsers.parseYolo") {
+ static std::tuple<GArrayDesc, GArrayDesc> outMeta(const GMatDesc&, const GOpaqueDesc&,
+ float, float, const std::vector<float>&) {
+ return std::make_tuple(empty_array_desc(), empty_array_desc());
+ }
+ static const std::vector<float>& defaultAnchors() {
+ static std::vector<float> anchors {
+ 0.57273f, 0.677385f, 1.87446f, 2.06253f, 3.33843f, 5.47434f, 7.88282f, 3.52778f, 9.77052f, 9.16828f
+ };
+ return anchors;
+ }
+ };
+} // namespace parsers
+} // namespace nn
+
+/** @brief Parses output of SSD network.
+
+Extracts detection information (box, confidence, label) from SSD output and
+filters it by given confidence and label.
+
+@note Function textual ID is "org.opencv.nn.parsers.parseSSD_BL"
+
+@param in Input CV_32F tensor with {1,1,N,7} dimensions.
+@param inSz Size to project detected boxes to (size of the input image).
+@param confidenceThreshold If confidence of the
+detection is smaller than confidence threshold, detection is rejected.
+@param filterLabel If provided (!= -1), only detections with
+given label will get to the output.
+@return a tuple with a vector of detected boxes and a vector of appropriate labels.
+*/
+GAPI_EXPORTS std::tuple<GArray<Rect>, GArray<int>> parseSSD(const GMat& in,
+ const GOpaque<Size>& inSz,
+ const float confidenceThreshold = 0.5f,
+ const int filterLabel = -1);
+
+/** @overload
+Extracts detection information (box, confidence) from SSD output and
+filters it by given confidence and by going out of bounds.
+
+@note Function textual ID is "org.opencv.nn.parsers.parseSSD"
+
+@param in Input CV_32F tensor with {1,1,N,7} dimensions.
+@param inSz Size to project detected boxes to (size of the input image).
+@param confidenceThreshold If confidence of the
+detection is smaller than confidence threshold, detection is rejected.
+@param alignmentToSquare If provided true, bounding boxes are extended to squares.
+The center of the rectangle remains unchanged, the side of the square is
+the larger side of the rectangle.
+@param filterOutOfBounds If provided true, out-of-frame boxes are filtered.
+@return a vector of detected bounding boxes.
+*/
+GAPI_EXPORTS GArray<Rect> parseSSD(const GMat& in,
+ const GOpaque<Size>& inSz,
+ const float confidenceThreshold = 0.5f,
+ const bool alignmentToSquare = false,
+ const bool filterOutOfBounds = false);
+
+/** @brief Parses output of Yolo network.
+
+Extracts detection information (box, confidence, label) from Yolo output,
+filters it by given confidence and performs non-maximum supression for overlapping boxes.
+
+@note Function textual ID is "org.opencv.nn.parsers.parseYolo"
+
+@param in Input CV_32F tensor with {1,13,13,N} dimensions, N should satisfy:
+\f[\texttt{N} = (\texttt{num_classes} + \texttt{5}) * \texttt{5},\f]
+where num_classes - a number of classes Yolo network was trained with.
+@param inSz Size to project detected boxes to (size of the input image).
+@param confidenceThreshold If confidence of the
+detection is smaller than confidence threshold, detection is rejected.
+@param nmsThreshold Non-maximum supression threshold which controls minimum
+relative box intersection area required for rejecting the box with a smaller confidence.
+If 1.f, nms is not performed and no boxes are rejected.
+@param anchors Anchors Yolo network was trained with.
+@note The default anchor values are taken from openvinotoolkit docs:
+https://docs.openvinotoolkit.org/latest/omz_models_intel_yolo_v2_tiny_vehicle_detection_0001_description_yolo_v2_tiny_vehicle_detection_0001.html#output.
+@return a tuple with a vector of detected boxes and a vector of appropriate labels.
+*/
+GAPI_EXPORTS std::tuple<GArray<Rect>, GArray<int>> parseYolo(const GMat& in,
+ const GOpaque<Size>& inSz,
+ const float confidenceThreshold = 0.5f,
+ const float nmsThreshold = 0.5f,
+ const std::vector<float>& anchors
+ = nn::parsers::GParseYolo::defaultAnchors());
+
+} // namespace gapi
+} // namespace cv
+
+#endif // OPENCV_GAPI_PARSERS_HPP
#include "../../test/common/gapi_tests_common.hpp"
+#include "../../test/common/gapi_parsers_tests_common.hpp"
#include <opencv2/gapi/core.hpp>
namespace opencv_test
class ConvertToPerfTest : public TestPerfParams<tuple<MatType, int, cv::Size, cv::GCompileArgs>> {};
class ResizePerfTest : public TestPerfParams<tuple<compare_f, MatType, int, cv::Size, cv::Size, cv::GCompileArgs>> {};
class ResizeFxFyPerfTest : public TestPerfParams<tuple<compare_f, MatType, int, cv::Size, double, double, cv::GCompileArgs>> {};
+ class ParseSSDBLPerfTest : public TestPerfParams<tuple<cv::Size, float, int, cv::GCompileArgs>>, public ParserSSDTest {};
+ class ParseSSDPerfTest : public TestPerfParams<tuple<cv::Size, float, bool, bool, cv::GCompileArgs>>, public ParserSSDTest {};
+ class ParseYoloPerfTest : public TestPerfParams<tuple<cv::Size, float, float, int, cv::GCompileArgs>>, public ParserYoloTest {};
+ class SizePerfTest : public TestPerfParams<tuple<MatType, cv::Size, cv::GCompileArgs>> {};
+ class SizeRPerfTest : public TestPerfParams<tuple<cv::Size, cv::GCompileArgs>> {};
}
#endif // OPENCV_GAPI_CORE_PERF_TESTS_HPP
//------------------------------------------------------------------------------
+PERF_TEST_P_(ParseSSDBLPerfTest, TestPerformance)
+{
+ cv::Size sz;
+ float confidence_threshold = 0.0f;
+ int filter_label = 0;
+ cv::GCompileArgs compile_args;
+ std::tie(sz, confidence_threshold, filter_label, compile_args) = GetParam();
+ cv::Mat in_mat = generateSSDoutput(sz);
+ std::vector<cv::Rect> boxes_gapi, boxes_ref;
+ std::vector<int> labels_gapi, labels_ref;
+
+ // Reference code //////////////////////////////////////////////////////////
+ parseSSDBLref(in_mat, sz, confidence_threshold, filter_label, boxes_ref, labels_ref);
+
+ // G-API code //////////////////////////////////////////////////////////////
+ cv::GMat in;
+ cv::GOpaque<cv::Size> op_sz;
+ auto out = cv::gapi::parseSSD(in, op_sz, confidence_threshold, filter_label);
+ cv::GComputation c(cv::GIn(in, op_sz), cv::GOut(std::get<0>(out), std::get<1>(out)));
+
+ // Warm-up graph engine:
+ auto cc = c.compile(descr_of(in_mat), descr_of(sz), std::move(compile_args));
+ cc(cv::gin(in_mat, sz), cv::gout(boxes_gapi, labels_gapi));
+
+ TEST_CYCLE()
+ {
+ cc(cv::gin(in_mat, sz), cv::gout(boxes_gapi, labels_gapi));
+ }
+
+ // Comparison ////////////////////////////////////////////////////////////
+ {
+ EXPECT_TRUE(boxes_gapi == boxes_ref);
+ EXPECT_TRUE(labels_gapi == labels_ref);
+ }
+
+ SANITY_CHECK_NOTHING();
+}
+
+//------------------------------------------------------------------------------
+
+PERF_TEST_P_(ParseSSDPerfTest, TestPerformance)
+{
+ cv::Size sz;
+ float confidence_threshold = 0;
+ bool alignment_to_square = false, filter_out_of_bounds = false;
+ cv::GCompileArgs compile_args;
+ std::tie(sz, confidence_threshold, alignment_to_square, filter_out_of_bounds, compile_args) = GetParam();
+ cv::Mat in_mat = generateSSDoutput(sz);
+ std::vector<cv::Rect> boxes_gapi, boxes_ref;
+
+ // Reference code //////////////////////////////////////////////////////////
+ parseSSDref(in_mat, sz, confidence_threshold, alignment_to_square, filter_out_of_bounds, boxes_ref);
+
+ // G-API code //////////////////////////////////////////////////////////////
+ cv::GMat in;
+ cv::GOpaque<cv::Size> op_sz;
+ auto out = cv::gapi::parseSSD(in, op_sz, confidence_threshold, alignment_to_square, filter_out_of_bounds);
+ cv::GComputation c(cv::GIn(in, op_sz), cv::GOut(out));
+
+ // Warm-up graph engine:
+ auto cc = c.compile(descr_of(in_mat), descr_of(sz), std::move(compile_args));
+ cc(cv::gin(in_mat, sz), cv::gout(boxes_gapi));
+
+ TEST_CYCLE()
+ {
+ cc(cv::gin(in_mat, sz), cv::gout(boxes_gapi));
+ }
+
+ // Comparison ////////////////////////////////////////////////////////////
+ {
+ EXPECT_TRUE(boxes_gapi == boxes_ref);
+ }
+
+ SANITY_CHECK_NOTHING();
+}
+
+//------------------------------------------------------------------------------
+
+PERF_TEST_P_(ParseYoloPerfTest, TestPerformance)
+{
+ cv::Size sz;
+ float confidence_threshold = 0.0f, nms_threshold = 0.0f;
+ int num_classes = 0;
+ cv::GCompileArgs compile_args;
+ std::tie(sz, confidence_threshold, nms_threshold, num_classes, compile_args) = GetParam();
+ cv::Mat in_mat = generateYoloOutput(num_classes);
+ auto anchors = cv::gapi::nn::parsers::GParseYolo::defaultAnchors();
+ std::vector<cv::Rect> boxes_gapi, boxes_ref;
+ std::vector<int> labels_gapi, labels_ref;
+
+ // Reference code //////////////////////////////////////////////////////////
+ parseYoloRef(in_mat, sz, confidence_threshold, nms_threshold, num_classes, anchors, boxes_ref, labels_ref);
+
+ // G-API code //////////////////////////////////////////////////////////////
+ cv::GMat in;
+ cv::GOpaque<cv::Size> op_sz;
+ auto out = cv::gapi::parseYolo(in, op_sz, confidence_threshold, nms_threshold, anchors);
+ cv::GComputation c(cv::GIn(in, op_sz), cv::GOut(std::get<0>(out), std::get<1>(out)));
+
+ // Warm-up graph engine:
+ auto cc = c.compile(descr_of(in_mat), descr_of(sz), std::move(compile_args));
+ cc(cv::gin(in_mat, sz), cv::gout(boxes_gapi, labels_gapi));
+
+ TEST_CYCLE()
+ {
+ cc(cv::gin(in_mat, sz), cv::gout(boxes_gapi, labels_gapi));
+ }
+
+ // Comparison ////////////////////////////////////////////////////////////
+ {
+ EXPECT_TRUE(boxes_gapi == boxes_ref);
+ EXPECT_TRUE(labels_gapi == labels_ref);
+ }
+
+ SANITY_CHECK_NOTHING();
+}
+
+//------------------------------------------------------------------------------
+
+PERF_TEST_P_(SizePerfTest, TestPerformance)
+{
+ MatType type;
+ cv::Size sz;
+ cv::GCompileArgs compile_args;
+ std::tie(type, sz, compile_args) = GetParam();
+ in_mat1 = cv::Mat(sz, type);
+
+ // G-API code //////////////////////////////////////////////////////////////
+ cv::GMat in;
+ auto out = cv::gapi::size(in);
+ cv::GComputation c(cv::GIn(in), cv::GOut(out));
+ cv::Size out_sz;
+
+ // Warm-up graph engine:
+ auto cc = c.compile(descr_of(in_mat1), std::move(compile_args));
+ cc(cv::gin(in_mat1), cv::gout(out_sz));
+
+ TEST_CYCLE()
+ {
+ cc(cv::gin(in_mat1), cv::gout(out_sz));
+ }
+
+ // Comparison ////////////////////////////////////////////////////////////
+ {
+ EXPECT_EQ(out_sz, sz);
+ }
+
+ SANITY_CHECK_NOTHING();
+}
+
+//------------------------------------------------------------------------------
+
+PERF_TEST_P_(SizeRPerfTest, TestPerformance)
+{
+ cv::Size sz;
+ cv::GCompileArgs compile_args;
+ std::tie(sz, compile_args) = GetParam();
+ cv::Rect rect(cv::Point(0,0), sz);
+
+ // G-API code //////////////////////////////////////////////////////////////
+ cv::GOpaque<cv::Rect> op_rect;
+ auto out = cv::gapi::size(op_rect);
+ cv::GComputation c(cv::GIn(op_rect), cv::GOut(out));
+ cv::Size out_sz;
+
+ // Warm-up graph engine:
+ auto cc = c.compile(descr_of(rect), std::move(compile_args));
+ cc(cv::gin(rect), cv::gout(out_sz));
+
+ TEST_CYCLE()
+ {
+ cc(cv::gin(rect), cv::gout(out_sz));
+ }
+
+ // Comparison ////////////////////////////////////////////////////////////
+ {
+ EXPECT_EQ(out_sz, sz);
+ }
+
+ SANITY_CHECK_NOTHING();
+}
+
}
#endif // OPENCV_GAPI_CORE_PERF_TESTS_INL_HPP
Values(0.5, 0.1),
Values(0.5, 0.1),
Values(cv::compile_args(CORE_CPU))));
+
+INSTANTIATE_TEST_CASE_P(ParseSSDBLPerfTestCPU, ParseSSDBLPerfTest,
+ Combine(Values(sz720p, sz1080p),
+ Values(0.3f, 0.7f),
+ Values(0, 1),
+ Values(cv::compile_args(CORE_CPU))));
+
+INSTANTIATE_TEST_CASE_P(ParseSSDPerfTestCPU, ParseSSDPerfTest,
+ Combine(Values(sz720p, sz1080p),
+ Values(0.3f, 0.7f),
+ testing::Bool(),
+ testing::Bool(),
+ Values(cv::compile_args(CORE_CPU))));
+
+INSTANTIATE_TEST_CASE_P(ParseYoloPerfTestCPU, ParseYoloPerfTest,
+ Combine(Values(sz720p, sz1080p),
+ Values(0.3f, 0.7f),
+ Values(0.5),
+ Values(7, 80),
+ Values(cv::compile_args(CORE_CPU))));
+
+INSTANTIATE_TEST_CASE_P(SizePerfTestCPU, SizePerfTest,
+ Combine(Values(CV_8UC1, CV_8UC3, CV_32FC1),
+ Values(szSmall128, szVGA, sz720p, sz1080p),
+ Values(cv::compile_args(CORE_CPU))));
+
+INSTANTIATE_TEST_CASE_P(SizeRPerfTestCPU, SizeRPerfTest,
+ Combine(Values(szSmall128, szVGA, sz720p, sz1080p),
+ Values(cv::compile_args(CORE_CPU))));
} // opencv_test
return core::GWarpAffine::on(src, M, dsize, flags, borderMode, borderValue);
}
+GOpaque<Size> size(const GMat& src)
+{
+ return core::GSize::on(src);
+}
+
+GOpaque<Size> size(const GOpaque<Rect>& r)
+{
+ return core::GSizeR::on(r);
+}
+
} //namespace gapi
} //namespace cv
--- /dev/null
+// This file is part of OpenCV project.
+// It is subject to the license terms in the LICENSE file found in the top-level directory
+// of this distribution and at http://opencv.org/license.html.
+//
+// Copyright (C) 2020 Intel Corporation
+
+
+#include "precomp.hpp"
+
+#include <opencv2/gapi/infer/parsers.hpp>
+
+#include <tuple>
+#include <numeric>
+
+namespace cv { namespace gapi {
+
+nn::parsers::GDetections parseSSD(const GMat& in,
+ const GOpaque<Size>& inSz,
+ const float confidenceThreshold,
+ const int filterLabel)
+{
+ return nn::parsers::GParseSSDBL::on(in, inSz, confidenceThreshold, filterLabel);
+}
+
+nn::parsers::GRects parseSSD(const GMat& in,
+ const GOpaque<Size>& inSz,
+ const float confidenceThreshold,
+ const bool alignmentToSquare,
+ const bool filterOutOfBounds)
+{
+ return nn::parsers::GParseSSD::on(in, inSz, confidenceThreshold, alignmentToSquare, filterOutOfBounds);
+}
+
+nn::parsers::GDetections parseYolo(const GMat& in,
+ const GOpaque<Size>& inSz,
+ const float confidenceThreshold,
+ const float nmsThreshold,
+ const std::vector<float>& anchors)
+{
+ return nn::parsers::GParseYolo::on(in, inSz, confidenceThreshold, nmsThreshold, anchors);
+}
+
+} //namespace gapi
+} //namespace cv
#include "precomp.hpp"
+#include "gnnparsers.hpp"
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/cpu/core.hpp>
}
};
+GAPI_OCV_KERNEL(GCPUParseSSDBL, cv::gapi::nn::parsers::GParseSSDBL)
+{
+ static void run(const cv::Mat& in_ssd_result,
+ const cv::Size& in_size,
+ const float confidence_threshold,
+ const int filter_label,
+ std::vector<cv::Rect>& out_boxes,
+ std::vector<int>& out_labels)
+ {
+ cv::parseSSDBL(in_ssd_result, in_size, confidence_threshold, filter_label, out_boxes, out_labels);
+ }
+};
+
+GAPI_OCV_KERNEL(GOCVParseSSD, cv::gapi::nn::parsers::GParseSSD)
+{
+ static void run(const cv::Mat& in_ssd_result,
+ const cv::Size& in_size,
+ const float confidence_threshold,
+ const bool alignment_to_square,
+ const bool filter_out_of_bounds,
+ std::vector<cv::Rect>& out_boxes)
+ {
+ cv::parseSSD(in_ssd_result, in_size, confidence_threshold, alignment_to_square, filter_out_of_bounds, out_boxes);
+ }
+};
+
+GAPI_OCV_KERNEL(GCPUParseYolo, cv::gapi::nn::parsers::GParseYolo)
+{
+ static void run(const cv::Mat& in_yolo_result,
+ const cv::Size& in_size,
+ const float confidence_threshold,
+ const float nms_threshold,
+ const std::vector<float>& anchors,
+ std::vector<cv::Rect>& out_boxes,
+ std::vector<int>& out_labels)
+ {
+ cv::parseYolo(in_yolo_result, in_size, confidence_threshold, nms_threshold, anchors, out_boxes, out_labels);
+ }
+};
+
+GAPI_OCV_KERNEL(GCPUSize, cv::gapi::core::GSize)
+{
+ static void run(const cv::Mat& in, cv::Size& out)
+ {
+ out.width = in.cols;
+ out.height = in.rows;
+ }
+};
+
+GAPI_OCV_KERNEL(GCPUSizeR, cv::gapi::core::GSizeR)
+{
+ static void run(const cv::Rect& in, cv::Size& out)
+ {
+ out.width = in.width;
+ out.height = in.height;
+ }
+};
cv::gapi::GKernelPackage cv::gapi::core::cpu::kernels()
{
, GCPUNormalize
, GCPUWarpPerspective
, GCPUWarpAffine
+ , GCPUParseSSDBL
+ , GOCVParseSSD
+ , GCPUParseYolo
+ , GCPUSize
+ , GCPUSizeR
>();
return pkg;
}
--- /dev/null
+// This file is part of OpenCV project.
+// It is subject to the license terms in the LICENSE file found in the top-level directory
+// of this distribution and at http://opencv.org/license.html.
+//
+// Copyright (C) 2020 Intel Corporation
+
+#include "gnnparsers.hpp"
+
+namespace cv
+{
+namespace gapi
+{
+namespace nn
+{
+class YoloParser
+{
+public:
+ YoloParser(const float* out, const int side, const int lcoords, const int lclasses)
+ : m_out(out), m_side(side), m_lcoords(lcoords), m_lclasses(lclasses)
+ {}
+
+ float scale(const int i, const int b)
+ {
+ int obj_index = index(i, b, m_lcoords);
+ return m_out[obj_index];
+ }
+
+ double x(const int i, const int b)
+ {
+ int box_index = index(i, b, 0);
+ int col = i % m_side;
+ return (col + m_out[box_index]) / m_side;
+ }
+
+ double y(const int i, const int b)
+ {
+ int box_index = index(i, b, 0);
+ int row = i / m_side;
+ return (row + m_out[box_index + m_side * m_side]) / m_side;
+ }
+
+ double width(const int i, const int b, const float anchor)
+ {
+ int box_index = index(i, b, 0);
+ return std::exp(m_out[box_index + 2 * m_side * m_side]) * anchor / m_side;
+ }
+
+ double height(const int i, const int b, const float anchor)
+ {
+ int box_index = index(i, b, 0);
+ return std::exp(m_out[box_index + 3 * m_side * m_side]) * anchor / m_side;
+ }
+
+ float classConf(const int i, const int b, const int label)
+ {
+ int class_index = index(i, b, m_lcoords + 1 + label);
+ return m_out[class_index];
+ }
+
+ cv::Rect toBox(const double x, const double y, const double h, const double w, const cv::Size& in_sz)
+ {
+ auto h_scale = in_sz.height;
+ auto w_scale = in_sz.width;
+ cv::Rect r;
+ r.x = static_cast<int>((x - w / 2) * w_scale);
+ r.y = static_cast<int>((y - h / 2) * h_scale);
+ r.width = static_cast<int>(w * w_scale);
+ r.height = static_cast<int>(h * h_scale);
+ return r;
+ }
+
+private:
+ const float* m_out = nullptr;
+ int m_side = 0, m_lcoords = 0, m_lclasses = 0;
+
+ int index(const int i, const int b, const int entry)
+ {
+ return b * m_side * m_side * (m_lcoords + m_lclasses + 1) + entry * m_side * m_side + i;
+ }
+};
+
+struct YoloParams
+{
+ int num = 5;
+ int coords = 4;
+};
+
+struct Detection
+{
+ Detection(const cv::Rect& in_rect, const float in_conf, const int in_label)
+ : rect(in_rect), conf(in_conf), label(in_label)
+ {}
+ cv::Rect rect;
+ float conf = 0.0f;
+ int label = 0;
+};
+
+class SSDParser
+{
+public:
+ SSDParser(const cv::MatSize& in_ssd_dims, const cv::Size& in_size, const float* data)
+ : m_dims(in_ssd_dims), m_maxProp(in_ssd_dims[2]), m_objSize(in_ssd_dims[3]),
+ m_data(data), m_surface(cv::Rect({0,0}, in_size)), m_size(in_size)
+ {
+ GAPI_Assert(in_ssd_dims.dims() == 4u); // Fixed output layout
+ GAPI_Assert(m_objSize == 7); // Fixed SSD object size
+ }
+
+ void adjustBoundingBox(cv::Rect& boundingBox)
+ {
+ auto w = boundingBox.width;
+ auto h = boundingBox.height;
+
+ boundingBox.x -= static_cast<int>(0.067 * w);
+ boundingBox.y -= static_cast<int>(0.028 * h);
+
+ boundingBox.width += static_cast<int>(0.15 * w);
+ boundingBox.height += static_cast<int>(0.13 * h);
+
+ if (boundingBox.width < boundingBox.height)
+ {
+ auto dx = (boundingBox.height - boundingBox.width);
+ boundingBox.x -= dx / 2;
+ boundingBox.width += dx;
+ }
+ else
+ {
+ auto dy = (boundingBox.width - boundingBox.height);
+ boundingBox.y -= dy / 2;
+ boundingBox.height += dy;
+ }
+ }
+
+ std::tuple<cv::Rect, float, float, int> extract(const size_t step)
+ {
+ const float* it = m_data + step * m_objSize;
+ float image_id = it[0];
+ int label = static_cast<int>(it[1]);
+ float confidence = it[2];
+ float rc_left = it[3];
+ float rc_top = it[4];
+ float rc_right = it[5];
+ float rc_bottom = it[6];
+
+ cv::Rect rc; // Map relative coordinates to the original image scale
+ rc.x = static_cast<int>(rc_left * m_size.width);
+ rc.y = static_cast<int>(rc_top * m_size.height);
+ rc.width = static_cast<int>(rc_right * m_size.width) - rc.x;
+ rc.height = static_cast<int>(rc_bottom * m_size.height) - rc.y;
+ return std::make_tuple(rc, image_id, confidence, label);
+ }
+
+ int getMaxProposals()
+ {
+ return m_maxProp;
+ }
+
+ cv::Rect getSurface()
+ {
+ return m_surface;
+ }
+
+private:
+ const cv::MatSize m_dims;
+ int m_maxProp = 0, m_objSize = 0;
+ const float* m_data = nullptr;
+ const cv::Rect m_surface;
+ const cv::Size m_size;
+};
+} // namespace nn
+} // namespace gapi
+
+void parseSSDBL(const cv::Mat& in_ssd_result,
+ const cv::Size& in_size,
+ const float confidence_threshold,
+ const int filter_label,
+ std::vector<cv::Rect>& out_boxes,
+ std::vector<int>& out_labels)
+{
+ cv::gapi::nn::SSDParser parser(in_ssd_result.size, in_size, in_ssd_result.ptr<float>());
+ out_boxes.clear();
+ out_labels.clear();
+ cv::Rect rc;
+ float image_id, confidence;
+ int label;
+ const size_t range = parser.getMaxProposals();
+ for (size_t i = 0; i < range; ++i)
+ {
+ std::tie(rc, image_id, confidence, label) = parser.extract(i);
+
+ if (image_id < 0.f)
+ {
+ break; // marks end-of-detections
+ }
+
+ if (confidence < confidence_threshold ||
+ (filter_label != -1 && label != filter_label))
+ {
+ continue; // filter out object classes if filter is specified
+ } // and skip objects with low confidence
+ out_boxes.emplace_back(rc & parser.getSurface());
+ out_labels.emplace_back(label);
+ }
+}
+
+void parseSSD(const cv::Mat& in_ssd_result,
+ const cv::Size& in_size,
+ const float confidence_threshold,
+ const bool alignment_to_square,
+ const bool filter_out_of_bounds,
+ std::vector<cv::Rect>& out_boxes)
+{
+ cv::gapi::nn::SSDParser parser(in_ssd_result.size, in_size, in_ssd_result.ptr<float>());
+ out_boxes.clear();
+ cv::Rect rc;
+ float image_id, confidence;
+ int label;
+ const size_t range = parser.getMaxProposals();
+ for (size_t i = 0; i < range; ++i)
+ {
+ std::tie(rc, image_id, confidence, label) = parser.extract(i);
+
+ if (image_id < 0.f)
+ {
+ break; // marks end-of-detections
+ }
+ if (confidence < confidence_threshold)
+ {
+ continue; // skip objects with low confidence
+ }
+
+ if (alignment_to_square)
+ {
+ parser.adjustBoundingBox(rc);
+ }
+
+ const auto clipped_rc = rc & parser.getSurface();
+ if (filter_out_of_bounds)
+ {
+ if (clipped_rc.area() != rc.area())
+ {
+ continue;
+ }
+ }
+ out_boxes.emplace_back(clipped_rc);
+ }
+}
+
+void parseYolo(const cv::Mat& in_yolo_result,
+ const cv::Size& in_size,
+ const float confidence_threshold,
+ const float nms_threshold,
+ const std::vector<float>& anchors,
+ std::vector<cv::Rect>& out_boxes,
+ std::vector<int>& out_labels)
+{
+ const auto& dims = in_yolo_result.size;
+ GAPI_Assert(dims.dims() == 4);
+ GAPI_Assert(dims[0] == 1);
+ GAPI_Assert(dims[1] == 13);
+ GAPI_Assert(dims[2] == 13);
+ GAPI_Assert(dims[3] % 5 == 0); // 5 boxes
+ const auto num_classes = dims[3] / 5 - 5;
+ GAPI_Assert(num_classes > 0);
+ GAPI_Assert(0 < nms_threshold && nms_threshold <= 1);
+ out_boxes.clear();
+ out_labels.clear();
+ gapi::nn::YoloParams params;
+ constexpr auto side = 13;
+ constexpr auto side_square = side * side;
+ const auto output = in_yolo_result.ptr<float>();
+
+ gapi::nn::YoloParser parser(output, side, params.coords, num_classes);
+
+ std::vector<gapi::nn::Detection> detections;
+
+ for (int i = 0; i < side_square; ++i)
+ {
+ for (int b = 0; b < params.num; ++b)
+ {
+ float scale = parser.scale(i, b);
+ if (scale < confidence_threshold)
+ {
+ continue;
+ }
+ double x = parser.x(i, b);
+ double y = parser.y(i, b);
+ double height = parser.height(i, b, anchors[2 * b + 1]);
+ double width = parser.width(i, b, anchors[2 * b]);
+
+ for (int label = 0; label < num_classes; ++label)
+ {
+ float prob = scale * parser.classConf(i,b,label);
+ if (prob < confidence_threshold)
+ {
+ continue;
+ }
+ auto box = parser.toBox(x, y, height, width, in_size);
+ detections.emplace_back(gapi::nn::Detection(box, prob, label));
+ }
+ }
+ }
+ std::stable_sort(std::begin(detections), std::end(detections),
+ [](const gapi::nn::Detection& a, const gapi::nn::Detection& b)
+ {
+ return a.conf > b.conf;
+ });
+
+ if (nms_threshold < 1.0f)
+ {
+ for (const auto& d : detections)
+ {
+ // Reject boxes which overlap with previously pushed ones
+ // (They are sorted by confidence, so rejected box
+ // always has a smaller confidence
+ if (std::end(out_boxes) ==
+ std::find_if(std::begin(out_boxes), std::end(out_boxes),
+ [&d, nms_threshold](const cv::Rect& r)
+ {
+ float rectOverlap = 1.f - static_cast<float>(jaccardDistance(r, d.rect));
+ return rectOverlap > nms_threshold;
+ }))
+ {
+ out_boxes. emplace_back(d.rect);
+ out_labels.emplace_back(d.label);
+ }
+ }
+ }
+ else
+ {
+ for (const auto& d: detections)
+ {
+ out_boxes. emplace_back(d.rect);
+ out_labels.emplace_back(d.label);
+ }
+ }
+}
+} // namespace cv
--- /dev/null
+// This file is part of OpenCV project.
+// It is subject to the license terms in the LICENSE file found in the top-level directory
+// of this distribution and at http://opencv.org/license.html.
+//
+// Copyright (C) 2020 Intel Corporation
+
+#include <opencv2/gapi/infer/parsers.hpp>
+
+#ifndef OPENCV_NNPARSERS_OCV_HPP
+#define OPENCV_NNPARSERS_OCV_HPP
+
+namespace cv
+{
+void parseSSDBL(const cv::Mat& in_ssd_result,
+ const cv::Size& in_size,
+ const float confidence_threshold,
+ const int filter_label,
+ std::vector<cv::Rect>& out_boxes,
+ std::vector<int>& out_labels);
+
+void parseSSD(const cv::Mat& in_ssd_result,
+ const cv::Size& in_size,
+ const float confidence_threshold,
+ const bool alignment_to_square,
+ const bool filter_out_of_bounds,
+ std::vector<cv::Rect>& out_boxes);
+
+void parseYolo(const cv::Mat& in_yolo_result,
+ const cv::Size& in_size,
+ const float confidence_threshold,
+ const float nms_threshold,
+ const std::vector<float>& anchors,
+ std::vector<cv::Rect>& out_boxes,
+ std::vector<int>& out_labels);
+}
+#endif // OPENCV_NNPARSERS_OCV_HPP
#include <iostream>
#include "gapi_tests_common.hpp"
+#include "gapi_parsers_tests_common.hpp"
namespace opencv_test
{
GAPI_TEST_FIXTURE(WarpAffineTest, initMatrixRandU,
FIXTURE_API(CompareMats, double , double, int, int, cv::Scalar),
6, cmpF, angle, scale, flags, border_mode, border_value)
+
+GAPI_TEST_EXT_BASE_FIXTURE(ParseSSDBLTest, ParserSSDTest, initNothing,
+ FIXTURE_API(float, int), 2, confidence_threshold, filter_label)
+GAPI_TEST_EXT_BASE_FIXTURE(ParseSSDTest, ParserSSDTest, initNothing,
+ FIXTURE_API(float, bool, bool), 3, confidence_threshold, alignment_to_square, filter_out_of_bounds)
+GAPI_TEST_EXT_BASE_FIXTURE(ParseYoloTest, ParserYoloTest, initNothing,
+ FIXTURE_API(float, float, int), 3, confidence_threshold, nms_threshold, num_classes)
+GAPI_TEST_FIXTURE(SizeTest, initMatrixRandU, <>, 0)
+GAPI_TEST_FIXTURE(SizeRTest, initNothing, <>, 0)
} // opencv_test
#endif //OPENCV_GAPI_CORE_TESTS_HPP
#define OPENCV_GAPI_CORE_TESTS_INL_HPP
#include <opencv2/gapi/core.hpp>
+#include <opencv2/gapi/infer/parsers.hpp>
#include "gapi_core_tests.hpp"
namespace opencv_test
run_and_compare();
}
+TEST_P(ParseSSDBLTest, ParseTest)
+{
+ cv::Mat in_mat = generateSSDoutput(sz);
+ std::vector<cv::Rect> boxes_gapi, boxes_ref;
+ std::vector<int> labels_gapi, labels_ref;
+
+ // G-API code //////////////////////////////////////////////////////////////
+ cv::GMat in;
+ cv::GOpaque<cv::Size> op_sz;
+ auto out = cv::gapi::parseSSD(in, op_sz, confidence_threshold, filter_label);
+ cv::GComputation c(cv::GIn(in, op_sz), cv::GOut(std::get<0>(out), std::get<1>(out)));
+ c.apply(cv::gin(in_mat, sz), cv::gout(boxes_gapi, labels_gapi), getCompileArgs());
+
+ // Reference code //////////////////////////////////////////////////////////
+ parseSSDBLref(in_mat, sz, confidence_threshold, filter_label, boxes_ref, labels_ref);
+
+ // Comparison //////////////////////////////////////////////////////////////
+ EXPECT_TRUE(boxes_gapi == boxes_ref);
+ EXPECT_TRUE(labels_gapi == labels_ref);
+}
+
+TEST_P(ParseSSDTest, ParseTest)
+{
+ cv::Mat in_mat = generateSSDoutput(sz);
+ std::vector<cv::Rect> boxes_gapi, boxes_ref;
+
+ // G-API code //////////////////////////////////////////////////////////////
+ cv::GMat in;
+ cv::GOpaque<cv::Size> op_sz;
+ auto out = cv::gapi::parseSSD(in, op_sz, confidence_threshold,
+ alignment_to_square, filter_out_of_bounds);
+ cv::GComputation c(cv::GIn(in, op_sz), cv::GOut(out));
+ c.apply(cv::gin(in_mat, sz), cv::gout(boxes_gapi), getCompileArgs());
+
+ // Reference code //////////////////////////////////////////////////////////
+ parseSSDref(in_mat, sz, confidence_threshold, alignment_to_square,
+ filter_out_of_bounds, boxes_ref);
+
+ // Comparison //////////////////////////////////////////////////////////////
+ EXPECT_TRUE(boxes_gapi == boxes_ref);
+}
+
+TEST_P(ParseYoloTest, ParseTest)
+{
+ cv::Mat in_mat = generateYoloOutput(num_classes);
+ auto anchors = cv::gapi::nn::parsers::GParseYolo::defaultAnchors();
+ std::vector<cv::Rect> boxes_gapi, boxes_ref;
+ std::vector<int> labels_gapi, labels_ref;
+
+ // G-API code //////////////////////////////////////////////////////////////
+ cv::GMat in;
+ cv::GOpaque<cv::Size> op_sz;
+ auto out = cv::gapi::parseYolo(in, op_sz, confidence_threshold, nms_threshold, anchors);
+ cv::GComputation c(cv::GIn(in, op_sz), cv::GOut(std::get<0>(out), std::get<1>(out)));
+ c.apply(cv::gin(in_mat, sz), cv::gout(boxes_gapi, labels_gapi), getCompileArgs());
+
+ // Reference code //////////////////////////////////////////////////////////
+ parseYoloRef(in_mat, sz, confidence_threshold, nms_threshold, num_classes, anchors, boxes_ref, labels_ref);
+
+ // Comparison //////////////////////////////////////////////////////////////
+ EXPECT_TRUE(boxes_gapi == boxes_ref);
+ EXPECT_TRUE(labels_gapi == labels_ref);
+}
+
+TEST_P(SizeTest, ParseTest)
+{
+ cv::GMat in;
+ cv::Size out_sz;
+
+ auto out = cv::gapi::size(in);
+ cv::GComputation c(cv::GIn(in), cv::GOut(out));
+ c.apply(cv::gin(in_mat1), cv::gout(out_sz), getCompileArgs());
+
+ EXPECT_EQ(out_sz, sz);
+}
+
+TEST_P(SizeRTest, ParseTest)
+{
+ cv::Rect rect(cv::Point(0,0), sz);
+ cv::Size out_sz;
+
+ cv::GOpaque<cv::Rect> op_rect;
+ auto out = cv::gapi::size(op_rect);
+ cv::GComputation c(cv::GIn(op_rect), cv::GOut(out));
+ c.apply(cv::gin(rect), cv::gout(out_sz), getCompileArgs());
+
+ EXPECT_EQ(out_sz, sz);
+}
+
} // opencv_test
#endif //OPENCV_GAPI_CORE_TESTS_INL_HPP
--- /dev/null
+// This file is part of OpenCV project.
+// It is subject to the license terms in the LICENSE file found in the top-level directory
+// of this distribution and at http://opencv.org/license.html.
+//
+// Copyright (C) 2020 Intel Corporation
+
+
+#ifndef OPENCV_GAPI_PARSERS_TESTS_COMMON_HPP
+#define OPENCV_GAPI_PARSERS_TESTS_COMMON_HPP
+
+#include "gapi_tests_common.hpp"
+#include "../../include/opencv2/gapi/infer/parsers.hpp"
+
+namespace opencv_test
+{
+class ParserSSDTest
+{
+public:
+ cv::Mat generateSSDoutput(const cv::Size& in_sz)
+ {
+ constexpr int maxN = 200;
+ constexpr int objSize = 7;
+ std::vector<int> dims{ 1, 1, maxN, objSize };
+ cv::Mat mat(dims, CV_32FC1);
+ auto data = mat.ptr<float>();
+
+ for (int i = 0; i < maxN; ++i)
+ {
+ float* it = data + i * objSize;
+ auto ssdIt = generateItem(i, in_sz);
+ it[0] = ssdIt.image_id;
+ it[1] = ssdIt.label;
+ it[2] = ssdIt.confidence;
+ it[3] = ssdIt.rc_left;
+ it[4] = ssdIt.rc_top;
+ it[5] = ssdIt.rc_right;
+ it[6] = ssdIt.rc_bottom;
+ }
+ return mat;
+ }
+
+ void parseSSDref(const cv::Mat& in_ssd_result,
+ const cv::Size& in_size,
+ const float confidence_threshold,
+ const bool alignment_to_square,
+ const bool filter_out_of_bounds,
+ std::vector<cv::Rect>& out_boxes)
+ {
+ out_boxes.clear();
+ const auto &in_ssd_dims = in_ssd_result.size;
+ CV_Assert(in_ssd_dims.dims() == 4u);
+
+ const int MAX_PROPOSALS = in_ssd_dims[2];
+ const int OBJECT_SIZE = in_ssd_dims[3];
+ CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size
+
+ const float *data = in_ssd_result.ptr<float>();
+ cv::Rect surface({0,0}, in_size), rc;
+ float image_id, confidence;
+ int label;
+ for (int i = 0; i < MAX_PROPOSALS; ++i)
+ {
+ std::tie(rc, image_id, confidence, label)
+ = extract(data + i*OBJECT_SIZE, in_size);
+ if (image_id < 0.f)
+ {
+ break; // marks end-of-detections
+ }
+
+ if (confidence < confidence_threshold)
+ {
+ continue; // skip objects with low confidence
+ }
+
+ if (alignment_to_square)
+ {
+ adjustBoundingBox(rc);
+ }
+
+ const auto clipped_rc = rc & surface;
+ if (filter_out_of_bounds)
+ {
+ if (clipped_rc.area() != rc.area())
+ {
+ continue;
+ }
+ }
+ out_boxes.emplace_back(clipped_rc);
+ }
+ }
+
+ void parseSSDBLref(const cv::Mat& in_ssd_result,
+ const cv::Size& in_size,
+ const float confidence_threshold,
+ const int filter_label,
+ std::vector<cv::Rect>& out_boxes,
+ std::vector<int>& out_labels)
+ {
+ out_boxes.clear();
+ out_labels.clear();
+ const auto &in_ssd_dims = in_ssd_result.size;
+ CV_Assert(in_ssd_dims.dims() == 4u);
+
+ const int MAX_PROPOSALS = in_ssd_dims[2];
+ const int OBJECT_SIZE = in_ssd_dims[3];
+ CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size
+ cv::Rect surface({0,0}, in_size), rc;
+ float image_id, confidence;
+ int label;
+ const float *data = in_ssd_result.ptr<float>();
+ for (int i = 0; i < MAX_PROPOSALS; i++)
+ {
+ std::tie(rc, image_id, confidence, label)
+ = extract(data + i*OBJECT_SIZE, in_size);
+ if (image_id < 0.f)
+ {
+ break; // marks end-of-detections
+ }
+
+ if (confidence < confidence_threshold ||
+ (filter_label != -1 && label != filter_label))
+ {
+ continue; // filter out object classes if filter is specified
+ }
+
+ out_boxes.emplace_back(rc & surface);
+ out_labels.emplace_back(label);
+ }
+ }
+
+private:
+ void adjustBoundingBox(cv::Rect& boundingBox)
+ {
+ auto w = boundingBox.width;
+ auto h = boundingBox.height;
+
+ boundingBox.x -= static_cast<int>(0.067 * w);
+ boundingBox.y -= static_cast<int>(0.028 * h);
+
+ boundingBox.width += static_cast<int>(0.15 * w);
+ boundingBox.height += static_cast<int>(0.13 * h);
+
+ if (boundingBox.width < boundingBox.height)
+ {
+ auto dx = (boundingBox.height - boundingBox.width);
+ boundingBox.x -= dx / 2;
+ boundingBox.width += dx;
+ }
+ else
+ {
+ auto dy = (boundingBox.width - boundingBox.height);
+ boundingBox.y -= dy / 2;
+ boundingBox.height += dy;
+ }
+ }
+
+ std::tuple<cv::Rect, float, float, int> extract(const float* it,
+ const cv::Size& in_size)
+ {
+ float image_id = it[0];
+ int label = static_cast<int>(it[1]);
+ float confidence = it[2];
+ float rc_left = it[3];
+ float rc_top = it[4];
+ float rc_right = it[5];
+ float rc_bottom = it[6];
+
+ cv::Rect rc; // map relative coordinates to the original image scale
+ rc.x = static_cast<int>(rc_left * in_size.width);
+ rc.y = static_cast<int>(rc_top * in_size.height);
+ rc.width = static_cast<int>(rc_right * in_size.width) - rc.x;
+ rc.height = static_cast<int>(rc_bottom * in_size.height) - rc.y;
+ return std::make_tuple(rc, image_id, confidence, label);
+ }
+
+ int randInRange(const int start, const int end)
+ {
+ GAPI_Assert(start <= end);
+ return start + std::rand() % (end - start + 1);
+ }
+
+ cv::Rect generateBox(const cv::Size& in_sz)
+ {
+ // Generated rectangle can reside outside of the initial image by border pixels
+ constexpr int border = 10;
+ constexpr int minW = 16;
+ constexpr int minH = 16;
+ cv::Rect box;
+ box.width = randInRange(minW, in_sz.width + 2*border);
+ box.height = randInRange(minH, in_sz.height + 2*border);
+ box.x = randInRange(-border, in_sz.width + border - box.width);
+ box.y = randInRange(-border, in_sz.height + border - box.height);
+ return box;
+ }
+
+ struct SSDitem
+ {
+ float image_id = 0.0f;
+ float label = 0.0f;
+ float confidence = 0.0f;
+ float rc_left = 0.0f;
+ float rc_top = 0.0f;
+ float rc_right = 0.0f;
+ float rc_bottom = 0.0f;
+ };
+
+ SSDitem generateItem(const int i, const cv::Size& in_sz)
+ {
+ const auto normalize = [](int v, int range) { return static_cast<float>(v) / range; };
+
+ SSDitem it;
+ it.image_id = static_cast<float>(i);
+ it.label = static_cast<float>(randInRange(0, 9));
+ it.confidence = static_cast<float>(std::rand()) / RAND_MAX;
+ auto box = generateBox(in_sz);
+ it.rc_left = normalize(box.x, in_sz.width);
+ it.rc_right = normalize(box.x + box.width, in_sz.width);
+ it.rc_top = normalize(box.y, in_sz.height);
+ it.rc_bottom = normalize(box.y + box.height, in_sz.height);
+
+ return it;
+ }
+};
+
+class ParserYoloTest
+{
+public:
+ cv::Mat generateYoloOutput(const int num_classes)
+ {
+ std::vector<int> dims = { 1, 13, 13, (num_classes + 5) * 5 };
+ cv::Mat mat(dims, CV_32FC1);
+ auto data = mat.ptr<float>();
+
+ const size_t range = dims[0] * dims[1] * dims[2] * dims[3];
+ for (size_t i = 0; i < range; ++i)
+ {
+ data[i] = static_cast<float>(std::rand()) / RAND_MAX;
+ }
+ return mat;
+ }
+
+ void parseYoloRef(const cv::Mat& in_yolo_result,
+ const cv::Size& in_size,
+ const float confidence_threshold,
+ const float nms_threshold,
+ const int num_classes,
+ const std::vector<float>& anchors,
+ std::vector<cv::Rect>& out_boxes,
+ std::vector<int>& out_labels)
+ {
+ YoloParams params;
+ constexpr auto side_square = 13 * 13;
+ this->m_out = in_yolo_result.ptr<float>();
+ this->m_side = 13;
+ this->m_lcoords = params.coords;
+ this->m_lclasses = num_classes;
+
+ std::vector<Detection> detections;
+
+ for (int i = 0; i < side_square; ++i)
+ {
+ for (int b = 0; b < params.num; ++b)
+ {
+ float scale = this->scale(i, b);
+ if (scale < confidence_threshold)
+ {
+ continue;
+ }
+ double x = this->x(i, b);
+ double y = this->y(i, b);
+ double height = this->height(i, b, anchors[2 * b + 1]);
+ double width = this->width(i, b, anchors[2 * b]);
+
+ for (int label = 0; label < num_classes; ++label)
+ {
+ float prob = scale * classConf(i,b,label);
+ if (prob < confidence_threshold)
+ {
+ continue;
+ }
+ auto box = toBox(x, y, height, width, in_size);
+ detections.emplace_back(Detection(box, prob, label));
+ }
+ }
+ }
+ std::stable_sort(std::begin(detections), std::end(detections),
+ [](const Detection& a, const Detection& b)
+ {
+ return a.conf > b.conf;
+ });
+
+ if (nms_threshold < 1.0f)
+ {
+ for (const auto& d : detections)
+ {
+ if (std::end(out_boxes) ==
+ std::find_if(std::begin(out_boxes), std::end(out_boxes),
+ [&d, nms_threshold](const cv::Rect& r)
+ {
+ float rectOverlap = 1.f - static_cast<float>(jaccardDistance(r, d.rect));
+ return rectOverlap > nms_threshold;
+ }))
+ {
+ out_boxes. emplace_back(d.rect);
+ out_labels.emplace_back(d.label);
+ }
+ }
+ }
+ else
+ {
+ for (const auto& d: detections)
+ {
+ out_boxes. emplace_back(d.rect);
+ out_labels.emplace_back(d.label);
+ }
+ }
+ }
+
+private:
+ struct Detection
+ {
+ Detection(const cv::Rect& in_rect, const float in_conf, const int in_label)
+ : rect(in_rect), conf(in_conf), label(in_label)
+ {}
+ cv::Rect rect;
+ float conf = 0.0f;
+ int label = 0;
+ };
+
+ struct YoloParams
+ {
+ int num = 5;
+ int coords = 4;
+ };
+
+ float scale(const int i, const int b)
+ {
+ int obj_index = index(i, b, m_lcoords);
+ return m_out[obj_index];
+ }
+
+ double x(const int i, const int b)
+ {
+ int box_index = index(i, b, 0);
+ int col = i % m_side;
+ return (col + m_out[box_index]) / m_side;
+ }
+
+ double y(const int i, const int b)
+ {
+ int box_index = index(i, b, 0);
+ int row = i / m_side;
+ return (row + m_out[box_index + m_side * m_side]) / m_side;
+ }
+
+ double width(const int i, const int b, const float anchor)
+ {
+ int box_index = index(i, b, 0);
+ return std::exp(m_out[box_index + 2 * m_side * m_side]) * anchor / m_side;
+ }
+
+ double height(const int i, const int b, const float anchor)
+ {
+ int box_index = index(i, b, 0);
+ return std::exp(m_out[box_index + 3 * m_side * m_side]) * anchor / m_side;
+ }
+
+ float classConf(const int i, const int b, const int label)
+ {
+ int class_index = index(i, b, m_lcoords + 1 + label);
+ return m_out[class_index];
+ }
+
+ cv::Rect toBox(const double x, const double y, const double h, const double w, const cv::Size& in_sz)
+ {
+ auto h_scale = in_sz.height;
+ auto w_scale = in_sz.width;
+ cv::Rect r;
+ r.x = static_cast<int>((x - w / 2) * w_scale);
+ r.y = static_cast<int>((y - h / 2) * h_scale);
+ r.width = static_cast<int>(w * w_scale);
+ r.height = static_cast<int>(h * h_scale);
+ return r;
+ }
+
+ int index(const int i, const int b, const int entry)
+ {
+ return b * m_side * m_side * (m_lcoords + m_lclasses + 1) + entry * m_side * m_side + i;
+ }
+
+ const float* m_out = nullptr;
+ int m_side = 0, m_lcoords = 0, m_lclasses = 0;
+};
+
+} // namespace opencv_test
+
+#endif // OPENCV_GAPI_PARSERS_TESTS_COMMON_HPP
/**
* @private
+ * @brief Create G-API test fixture with TestWithParams base class and additional base class.
+ * @param Fixture test fixture name.
+ @param ExtBase additional base class.
+ * @param InitF callable that will initialize default available members (from TestFunctional)
+ * @param API base class API. Specifies types of user-defined parameters. If there are no such
+ * parameters, empty angle brackets ("<>") must be specified.
+ * @param Number number of user-defined parameters (corresponds to the number of types in API).
+ * if there are no such parameters, 0 must be specified.
+ * @param ... list of names of user-defined parameters. if there are no parameters, the list
+ * must be empty.
+ */
+#define GAPI_TEST_EXT_BASE_FIXTURE(Fixture, ExtBase, InitF, API, Number, ...) \
+ struct Fixture : public TestWithParams API, public ExtBase { \
+ static_assert(Number == AllParams::specific_params_size, \
+ "Number of user-defined parameters doesn't match size of __VA_ARGS__"); \
+ __WRAP_VAARGS(DEFINE_SPECIFIC_PARAMS_##Number(__VA_ARGS__)) \
+ Fixture() { InitF(type, sz, dtype); } \
+ };
+
+/**
+ * @private
* @brief Create G-API test fixture with TestWithParamsSpecific base class
* This fixture has reduced number of common parameters and no initialization;
* it should be used if you don't need common parameters of GAPI_TEST_FIXTURE.
Values(cv::Size(640, 400),
cv::Size(10, 480))));
+INSTANTIATE_TEST_CASE_P(ParseTestCPU, ParseSSDBLTest,
+ Combine(Values(CV_8UC1, CV_8UC3, CV_32FC1),
+ Values(cv::Size(1920, 1080)),
+ Values(-1),
+ Values(CORE_CPU),
+ Values(0.3f, 0.5f, 0.7f),
+ Values(-1, 0, 1)));
+
+INSTANTIATE_TEST_CASE_P(ParseTestCPU, ParseSSDTest,
+ Combine(Values(CV_8UC1, CV_8UC3, CV_32FC1),
+ Values(cv::Size(1920, 1080)),
+ Values(-1),
+ Values(CORE_CPU),
+ Values(0.3f, 0.5f, 0.7f),
+ testing::Bool(),
+ testing::Bool()));
+
+INSTANTIATE_TEST_CASE_P(ParseTestCPU, ParseYoloTest,
+ Combine(Values(CV_8UC1, CV_8UC3, CV_32FC1),
+ Values(cv::Size(1920, 1080)),
+ Values(-1),
+ Values(CORE_CPU),
+ Values(0.3f, 0.5f, 0.7f),
+ Values(0.5f, 1.0f),
+ Values(80, 7)));
+
+INSTANTIATE_TEST_CASE_P(SizeTestCPU, SizeTest,
+ Combine(Values(CV_8UC1, CV_8UC3, CV_32FC1),
+ Values(cv::Size(32, 32),
+ cv::Size(640, 320)),
+ Values(-1),
+ Values(CORE_CPU)));
+
+INSTANTIATE_TEST_CASE_P(SizeRTestCPU, SizeRTest,
+ Combine(Values(CV_8UC1, CV_8UC3, CV_32FC1),
+ Values(cv::Size(32, 32),
+ cv::Size(640, 320)),
+ Values(-1),
+ Values(CORE_CPU)));
}