SDNode *SelectLIBM(SDNode *N);
+ SDNode *SelectReadRegister(SDNode *N);
+ SDNode *SelectWriteRegister(SDNode *N);
+
// Include the pieces autogenerated from the target description.
#include "AArch64GenDAGISel.inc"
return true;
}
+// Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields
+// of the string and obtains the integer values from them and combines these
+// into a single value to be used in the MRS/MSR instruction.
+static int getIntOperandFromRegisterString(StringRef RegString) {
+ SmallVector<StringRef, 5> Fields;
+ RegString.split(Fields, ":");
+
+ if (Fields.size() == 1)
+ return -1;
+
+ assert(Fields.size() == 5
+ && "Invalid number of fields in read register string");
+
+ SmallVector<int, 5> Ops;
+ bool AllIntFields = true;
+
+ for (StringRef Field : Fields) {
+ unsigned IntField;
+ AllIntFields &= !Field.getAsInteger(10, IntField);
+ Ops.push_back(IntField);
+ }
+
+ assert(AllIntFields &&
+ "Unexpected non-integer value in special register string.");
+
+ // Need to combine the integer fields of the string into a single value
+ // based on the bit encoding of MRS/MSR instruction.
+ return (Ops[0] << 14) | (Ops[1] << 11) | (Ops[2] << 7) |
+ (Ops[3] << 3) | (Ops[4]);
+}
+
+// Lower the read_register intrinsic to an MRS instruction node if the special
+// register string argument is either of the form detailed in the ALCE (the
+// form described in getIntOperandsFromRegsterString) or is a named register
+// known by the MRS SysReg mapper.
+SDNode *AArch64DAGToDAGISel::SelectReadRegister(SDNode *N) {
+ const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
+ const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
+ SDLoc DL(N);
+
+ int Reg = getIntOperandFromRegisterString(RegString->getString());
+ if (Reg != -1)
+ return CurDAG->getMachineNode(AArch64::MRS, DL, N->getSimpleValueType(0),
+ MVT::Other,
+ CurDAG->getTargetConstant(Reg, DL, MVT::i32),
+ N->getOperand(0));
+
+ // Use the sysreg mapper to map the remaining possible strings to the
+ // value for the register to be used for the instruction operand.
+ AArch64SysReg::MRSMapper mapper;
+ bool IsValidSpecialReg;
+ Reg = mapper.fromString(RegString->getString(),
+ Subtarget->getFeatureBits(),
+ IsValidSpecialReg);
+ if (IsValidSpecialReg)
+ return CurDAG->getMachineNode(AArch64::MRS, DL, N->getSimpleValueType(0),
+ MVT::Other,
+ CurDAG->getTargetConstant(Reg, DL, MVT::i32),
+ N->getOperand(0));
+
+ return nullptr;
+}
+
+// Lower the write_register intrinsic to an MSR instruction node if the special
+// register string argument is either of the form detailed in the ALCE (the
+// form described in getIntOperandsFromRegsterString) or is a named register
+// known by the MSR SysReg mapper.
+SDNode *AArch64DAGToDAGISel::SelectWriteRegister(SDNode *N) {
+ const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
+ const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
+ SDLoc DL(N);
+
+ int Reg = getIntOperandFromRegisterString(RegString->getString());
+ if (Reg != -1)
+ return CurDAG->getMachineNode(AArch64::MSR, DL, MVT::Other,
+ CurDAG->getTargetConstant(Reg, DL, MVT::i32),
+ N->getOperand(2), N->getOperand(0));
+
+ // Check if the register was one of those allowed as the pstatefield value in
+ // the MSR (immediate) instruction. To accept the values allowed in the
+ // pstatefield for the MSR (immediate) instruction, we also require that an
+ // immediate value has been provided as an argument, we know that this is
+ // the case as it has been ensured by semantic checking.
+ AArch64PState::PStateMapper PMapper;
+ bool IsValidSpecialReg;
+ Reg = PMapper.fromString(RegString->getString(),
+ Subtarget->getFeatureBits(),
+ IsValidSpecialReg);
+ if (IsValidSpecialReg) {
+ assert (isa<ConstantSDNode>(N->getOperand(2))
+ && "Expected a constant integer expression.");
+ uint64_t Immed = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
+ return CurDAG->getMachineNode(AArch64::MSRpstate, DL, MVT::Other,
+ CurDAG->getTargetConstant(Reg, DL, MVT::i32),
+ CurDAG->getTargetConstant(Immed, DL, MVT::i16),
+ N->getOperand(0));
+ }
+
+ // Use the sysreg mapper to attempt to map the remaining possible strings
+ // to the value for the register to be used for the MSR (register)
+ // instruction operand.
+ AArch64SysReg::MSRMapper Mapper;
+ Reg = Mapper.fromString(RegString->getString(),
+ Subtarget->getFeatureBits(),
+ IsValidSpecialReg);
+
+ if (IsValidSpecialReg)
+ return CurDAG->getMachineNode(AArch64::MSR, DL, MVT::Other,
+ CurDAG->getTargetConstant(Reg, DL, MVT::i32),
+ N->getOperand(2), N->getOperand(0));
+
+ return nullptr;
+}
+
SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
// Dump information about the Node being selected
DEBUG(errs() << "Selecting: ");
default:
break;
+ case ISD::READ_REGISTER:
+ if (SDNode *Res = SelectReadRegister(Node))
+ return Res;
+ break;
+
+ case ISD::WRITE_REGISTER:
+ if (SDNode *Res = SelectWriteRegister(Node))
+ return Res;
+ break;
+
case ISD::ADD:
if (SDNode *I = SelectMLAV64LaneV128(Node))
return I;
.Default(0);
if (Reg)
return Reg;
- report_fatal_error("Invalid register name global variable");
+ report_fatal_error(Twine("Invalid register name \""
+ + StringRef(RegName) + "\"."));
}
SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
#include "ARMBaseInstrInfo.h"
#include "ARMTargetMachine.h"
#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
// Select special operations if node forms integer ABS pattern
SDNode *SelectABSOp(SDNode *N);
+ SDNode *SelectReadRegister(SDNode *N);
+ SDNode *SelectWriteRegister(SDNode *N);
+
SDNode *SelectInlineAsm(SDNode *N);
SDNode *SelectConcatVector(SDNode *N);
switch (N->getOpcode()) {
default: break;
+ case ISD::WRITE_REGISTER: {
+ SDNode *ResNode = SelectWriteRegister(N);
+ if (ResNode)
+ return ResNode;
+ break;
+ }
+ case ISD::READ_REGISTER: {
+ SDNode *ResNode = SelectReadRegister(N);
+ if (ResNode)
+ return ResNode;
+ break;
+ }
case ISD::INLINEASM: {
SDNode *ResNode = SelectInlineAsm(N);
if (ResNode)
return SelectCode(N);
}
+// Inspect a register string of the form
+// cp<coprocessor>:<opc1>:c<CRn>:c<CRm>:<opc2> (32bit) or
+// cp<coprocessor>:<opc1>:c<CRm> (64bit) inspect the fields of the string
+// and obtain the integer operands from them, adding these operands to the
+// provided vector.
+static void getIntOperandsFromRegisterString(StringRef RegString,
+ SelectionDAG *CurDAG, SDLoc DL,
+ std::vector<SDValue>& Ops) {
+ SmallVector<StringRef, 5> Fields;
+ RegString.split(Fields, ":");
+
+ if (Fields.size() > 1) {
+ bool AllIntFields = true;
+
+ for (StringRef Field : Fields) {
+ // Need to trim out leading 'cp' characters and get the integer field.
+ unsigned IntField;
+ AllIntFields &= !Field.trim("CPcp").getAsInteger(10, IntField);
+ Ops.push_back(CurDAG->getTargetConstant(IntField, DL, MVT::i32));
+ }
+
+ assert(AllIntFields &&
+ "Unexpected non-integer value in special register string.");
+ }
+}
+
+// Maps a Banked Register string to its mask value. The mask value returned is
+// for use in the MRSbanked / MSRbanked instruction nodes as the Banked Register
+// mask operand, which expresses which register is to be used, e.g. r8, and in
+// which mode it is to be used, e.g. usr. Returns -1 to signify that the string
+// was invalid.
+static inline int getBankedRegisterMask(StringRef RegString) {
+ return StringSwitch<int>(RegString.lower())
+ .Case("r8_usr", 0x00)
+ .Case("r9_usr", 0x01)
+ .Case("r10_usr", 0x02)
+ .Case("r11_usr", 0x03)
+ .Case("r12_usr", 0x04)
+ .Case("sp_usr", 0x05)
+ .Case("lr_usr", 0x06)
+ .Case("r8_fiq", 0x08)
+ .Case("r9_fiq", 0x09)
+ .Case("r10_fiq", 0x0a)
+ .Case("r11_fiq", 0x0b)
+ .Case("r12_fiq", 0x0c)
+ .Case("sp_fiq", 0x0d)
+ .Case("lr_fiq", 0x0e)
+ .Case("lr_irq", 0x10)
+ .Case("sp_irq", 0x11)
+ .Case("lr_svc", 0x12)
+ .Case("sp_svc", 0x13)
+ .Case("lr_abt", 0x14)
+ .Case("sp_abt", 0x15)
+ .Case("lr_und", 0x16)
+ .Case("sp_und", 0x17)
+ .Case("lr_mon", 0x1c)
+ .Case("sp_mon", 0x1d)
+ .Case("elr_hyp", 0x1e)
+ .Case("sp_hyp", 0x1f)
+ .Case("spsr_fiq", 0x2e)
+ .Case("spsr_irq", 0x30)
+ .Case("spsr_svc", 0x32)
+ .Case("spsr_abt", 0x34)
+ .Case("spsr_und", 0x36)
+ .Case("spsr_mon", 0x3c)
+ .Case("spsr_hyp", 0x3e)
+ .Default(-1);
+}
+
+// Maps a MClass special register string to its value for use in the
+// t2MRS_M / t2MSR_M instruction nodes as the SYSm value operand.
+// Returns -1 to signify that the string was invalid.
+static inline int getMClassRegisterSYSmValueMask(StringRef RegString) {
+ return StringSwitch<int>(RegString.lower())
+ .Case("apsr", 0x0)
+ .Case("iapsr", 0x1)
+ .Case("eapsr", 0x2)
+ .Case("xpsr", 0x3)
+ .Case("ipsr", 0x5)
+ .Case("epsr", 0x6)
+ .Case("iepsr", 0x7)
+ .Case("msp", 0x8)
+ .Case("psp", 0x9)
+ .Case("primask", 0x10)
+ .Case("basepri", 0x11)
+ .Case("basepri_max", 0x12)
+ .Case("faultmask", 0x13)
+ .Case("control", 0x14)
+ .Default(-1);
+}
+
+// The flags here are common to those allowed for apsr in the A class cores and
+// those allowed for the special registers in the M class cores. Returns a
+// value representing which flags were present, -1 if invalid.
+static inline int getMClassFlagsMask(StringRef Flags) {
+ if (Flags.empty())
+ return 0x3;
+
+ return StringSwitch<int>(Flags)
+ .Case("g", 0x1)
+ .Case("nzcvq", 0x2)
+ .Case("nzcvqg", 0x3)
+ .Default(-1);
+}
+
+static int getMClassRegisterMask(StringRef Reg, StringRef Flags, bool IsRead,
+ const ARMSubtarget *Subtarget) {
+ // Ensure that the register (without flags) was a valid M Class special
+ // register.
+ int SYSmvalue = getMClassRegisterSYSmValueMask(Reg);
+ if (SYSmvalue == -1)
+ return -1;
+
+ // basepri, basepri_max and faultmask are only valid for V7m.
+ if (!Subtarget->hasV7Ops() && SYSmvalue >= 0x11 && SYSmvalue <= 0x13)
+ return -1;
+
+ // If it was a read then we won't be expecting flags and so at this point
+ // we can return the mask.
+ if (IsRead) {
+ assert (Flags.empty() && "Unexpected flags for reading M class register.");
+ return SYSmvalue;
+ }
+
+ // We know we are now handling a write so need to get the mask for the flags.
+ int Mask = getMClassFlagsMask(Flags);
+
+ // Only apsr, iapsr, eapsr, xpsr can have flags. The other register values
+ // shouldn't have flags present.
+ if ((SYSmvalue < 0x4 && Mask == -1) || (SYSmvalue > 0x4 && !Flags.empty()))
+ return -1;
+
+ // The _g and _nzcvqg versions are only valid if the DSP extension is
+ // available.
+ if (!Subtarget->hasThumb2DSP() && (Mask & 0x2))
+ return -1;
+
+ // The register was valid so need to put the mask in the correct place
+ // (the flags need to be in bits 11-10) and combine with the SYSmvalue to
+ // construct the operand for the instruction node.
+ if (SYSmvalue < 0x4)
+ return SYSmvalue | Mask << 10;
+
+ return SYSmvalue;
+}
+
+static int getARClassRegisterMask(StringRef Reg, StringRef Flags) {
+ // The mask operand contains the special register (R Bit) in bit 4, whether
+ // the register is spsr (R bit is 1) or one of cpsr/apsr (R bit is 0), and
+ // bits 3-0 contains the fields to be accessed in the special register, set by
+ // the flags provided with the register.
+ int Mask = 0;
+ if (Reg == "apsr") {
+ // The flags permitted for apsr are the same flags that are allowed in
+ // M class registers. We get the flag value and then shift the flags into
+ // the correct place to combine with the mask.
+ Mask = getMClassFlagsMask(Flags);
+ if (Mask == -1)
+ return -1;
+ return Mask << 2;
+ }
+
+ if (Reg != "cpsr" && Reg != "spsr") {
+ return -1;
+ }
+
+ // This is the same as if the flags were "fc"
+ if (Flags.empty() || Flags == "all")
+ return Mask | 0x9;
+
+ // Inspect the supplied flags string and set the bits in the mask for
+ // the relevant and valid flags allowed for cpsr and spsr.
+ for (char Flag : Flags) {
+ int FlagVal;
+ switch (Flag) {
+ case 'c':
+ FlagVal = 0x1;
+ break;
+ case 'x':
+ FlagVal = 0x2;
+ break;
+ case 's':
+ FlagVal = 0x4;
+ break;
+ case 'f':
+ FlagVal = 0x8;
+ break;
+ default:
+ FlagVal = 0;
+ }
+
+ // This avoids allowing strings where the same flag bit appears twice.
+ if (!FlagVal || (Mask & FlagVal))
+ return -1;
+ Mask |= FlagVal;
+ }
+
+ // If the register is spsr then we need to set the R bit.
+ if (Reg == "spsr")
+ Mask |= 0x10;
+
+ return Mask;
+}
+
+// Lower the read_register intrinsic to ARM specific DAG nodes
+// using the supplied metadata string to select the instruction node to use
+// and the registers/masks to construct as operands for the node.
+SDNode *ARMDAGToDAGISel::SelectReadRegister(SDNode *N){
+ const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
+ const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
+ bool IsThumb2 = Subtarget->isThumb2();
+ SDLoc DL(N);
+
+ std::vector<SDValue> Ops;
+ getIntOperandsFromRegisterString(RegString->getString(), CurDAG, DL, Ops);
+
+ if (!Ops.empty()) {
+ // If the special register string was constructed of fields (as defined
+ // in the ACLE) then need to lower to MRC node (32 bit) or
+ // MRRC node(64 bit), we can make the distinction based on the number of
+ // operands we have.
+ unsigned Opcode;
+ SmallVector<EVT, 3> ResTypes;
+ if (Ops.size() == 5){
+ Opcode = IsThumb2 ? ARM::t2MRC : ARM::MRC;
+ ResTypes.append({ MVT::i32, MVT::Other });
+ } else {
+ assert(Ops.size() == 3 &&
+ "Invalid number of fields in special register string.");
+ Opcode = IsThumb2 ? ARM::t2MRRC : ARM::MRRC;
+ ResTypes.append({ MVT::i32, MVT::i32, MVT::Other });
+ }
+
+ Ops.push_back(getAL(CurDAG, DL));
+ Ops.push_back(CurDAG->getRegister(0, MVT::i32));
+ Ops.push_back(N->getOperand(0));
+ return CurDAG->getMachineNode(Opcode, DL, ResTypes, Ops);
+ }
+
+ std::string SpecialReg = RegString->getString().lower();
+
+ int BankedReg = getBankedRegisterMask(SpecialReg);
+ if (BankedReg != -1) {
+ Ops = { CurDAG->getTargetConstant(BankedReg, DL, MVT::i32),
+ getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
+ N->getOperand(0) };
+ return CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRSbanked : ARM::MRSbanked,
+ DL, MVT::i32, MVT::Other, Ops);
+ }
+
+ // The VFP registers are read by creating SelectionDAG nodes with opcodes
+ // corresponding to the register that is being read from. So we switch on the
+ // string to find which opcode we need to use.
+ unsigned Opcode = StringSwitch<unsigned>(SpecialReg)
+ .Case("fpscr", ARM::VMRS)
+ .Case("fpexc", ARM::VMRS_FPEXC)
+ .Case("fpsid", ARM::VMRS_FPSID)
+ .Case("mvfr0", ARM::VMRS_MVFR0)
+ .Case("mvfr1", ARM::VMRS_MVFR1)
+ .Case("mvfr2", ARM::VMRS_MVFR2)
+ .Case("fpinst", ARM::VMRS_FPINST)
+ .Case("fpinst2", ARM::VMRS_FPINST2)
+ .Default(0);
+
+ // If an opcode was found then we can lower the read to a VFP instruction.
+ if (Opcode) {
+ if (!Subtarget->hasVFP2())
+ return nullptr;
+ if (Opcode == ARM::VMRS_MVFR2 && !Subtarget->hasFPARMv8())
+ return nullptr;
+
+ Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
+ N->getOperand(0) };
+ return CurDAG->getMachineNode(Opcode, DL, MVT::i32, MVT::Other, Ops);
+ }
+
+ // If the target is M Class then need to validate that the register string
+ // is an acceptable value, so check that a mask can be constructed from the
+ // string.
+ if (Subtarget->isMClass()) {
+ int SYSmValue = getMClassRegisterMask(SpecialReg, "", true, Subtarget);
+ if (SYSmValue == -1)
+ return nullptr;
+
+ SDValue Ops[] = { CurDAG->getTargetConstant(SYSmValue, DL, MVT::i32),
+ getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
+ N->getOperand(0) };
+ return CurDAG->getMachineNode(ARM::t2MRS_M, DL, MVT::i32, MVT::Other, Ops);
+ }
+
+ // Here we know the target is not M Class so we need to check if it is one
+ // of the remaining possible values which are apsr, cpsr or spsr.
+ if (SpecialReg == "apsr" || SpecialReg == "cpsr") {
+ Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
+ N->getOperand(0) };
+ return CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRS_AR : ARM::MRS, DL,
+ MVT::i32, MVT::Other, Ops);
+ }
+
+ if (SpecialReg == "spsr") {
+ Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
+ N->getOperand(0) };
+ return CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRSsys_AR : ARM::MRSsys,
+ DL, MVT::i32, MVT::Other, Ops);
+ }
+
+ return nullptr;
+}
+
+// Lower the write_register intrinsic to ARM specific DAG nodes
+// using the supplied metadata string to select the instruction node to use
+// and the registers/masks to use in the nodes
+SDNode *ARMDAGToDAGISel::SelectWriteRegister(SDNode *N){
+ const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
+ const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
+ bool IsThumb2 = Subtarget->isThumb2();
+ SDLoc DL(N);
+
+ std::vector<SDValue> Ops;
+ getIntOperandsFromRegisterString(RegString->getString(), CurDAG, DL, Ops);
+
+ if (!Ops.empty()) {
+ // If the special register string was constructed of fields (as defined
+ // in the ACLE) then need to lower to MCR node (32 bit) or
+ // MCRR node(64 bit), we can make the distinction based on the number of
+ // operands we have.
+ unsigned Opcode;
+ if (Ops.size() == 5) {
+ Opcode = IsThumb2 ? ARM::t2MCR : ARM::MCR;
+ Ops.insert(Ops.begin()+2, N->getOperand(2));
+ } else {
+ assert(Ops.size() == 3 &&
+ "Invalid number of fields in special register string.");
+ Opcode = IsThumb2 ? ARM::t2MCRR : ARM::MCRR;
+ SDValue WriteValue[] = { N->getOperand(2), N->getOperand(3) };
+ Ops.insert(Ops.begin()+2, WriteValue, WriteValue+2);
+ }
+
+ Ops.push_back(getAL(CurDAG, DL));
+ Ops.push_back(CurDAG->getRegister(0, MVT::i32));
+ Ops.push_back(N->getOperand(0));
+
+ return CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops);
+ }
+
+ std::string SpecialReg = RegString->getString().lower();
+ int BankedReg = getBankedRegisterMask(SpecialReg);
+ if (BankedReg != -1) {
+ Ops = { CurDAG->getTargetConstant(BankedReg, DL, MVT::i32), N->getOperand(2),
+ getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
+ N->getOperand(0) };
+ return CurDAG->getMachineNode(IsThumb2 ? ARM::t2MSRbanked : ARM::MSRbanked,
+ DL, MVT::Other, Ops);
+ }
+
+ // The VFP registers are written to by creating SelectionDAG nodes with
+ // opcodes corresponding to the register that is being written. So we switch
+ // on the string to find which opcode we need to use.
+ unsigned Opcode = StringSwitch<unsigned>(SpecialReg)
+ .Case("fpscr", ARM::VMSR)
+ .Case("fpexc", ARM::VMSR_FPEXC)
+ .Case("fpsid", ARM::VMSR_FPSID)
+ .Case("fpinst", ARM::VMSR_FPINST)
+ .Case("fpinst2", ARM::VMSR_FPINST2)
+ .Default(0);
+
+ if (Opcode) {
+ if (!Subtarget->hasVFP2())
+ return nullptr;
+ Ops = { N->getOperand(2), getAL(CurDAG, DL),
+ CurDAG->getRegister(0, MVT::i32), N->getOperand(0) };
+ return CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops);
+ }
+
+ SmallVector<StringRef, 5> Fields;
+ StringRef(SpecialReg).split(Fields, "_", 1, false);
+ std::string Reg = Fields[0].str();
+ StringRef Flags = Fields.size() == 2 ? Fields[1] : "";
+
+ // If the target was M Class then need to validate the special register value
+ // and retrieve the mask for use in the instruction node.
+ if (Subtarget->isMClass()) {
+ // basepri_max gets split so need to correct Reg and Flags.
+ if (SpecialReg == "basepri_max") {
+ Reg = SpecialReg;
+ Flags = "";
+ }
+ int SYSmValue = getMClassRegisterMask(Reg, Flags, false, Subtarget);
+ if (SYSmValue == -1)
+ return nullptr;
+
+ SDValue Ops[] = { CurDAG->getTargetConstant(SYSmValue, DL, MVT::i32),
+ N->getOperand(2), getAL(CurDAG, DL),
+ CurDAG->getRegister(0, MVT::i32), N->getOperand(0) };
+ return CurDAG->getMachineNode(ARM::t2MSR_M, DL, MVT::Other, Ops);
+ }
+
+ // We then check to see if a valid mask can be constructed for one of the
+ // register string values permitted for the A and R class cores. These values
+ // are apsr, spsr and cpsr; these are also valid on older cores.
+ int Mask = getARClassRegisterMask(Reg, Flags);
+ if (Mask != -1) {
+ Ops = { CurDAG->getTargetConstant(Mask, DL, MVT::i32), N->getOperand(2),
+ getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
+ N->getOperand(0) };
+ return CurDAG->getMachineNode(IsThumb2 ? ARM::t2MSR_AR : ARM::MSR,
+ DL, MVT::Other, Ops);
+ }
+
+ return nullptr;
+}
+
SDNode *ARMDAGToDAGISel::SelectInlineAsm(SDNode *N){
std::vector<SDValue> AsmNodeOperands;
unsigned Flag, Kind;
setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
+ setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
+ setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
+
if (Subtarget->hasNEON()) {
addDRTypeForNEON(MVT::v2f32);
addDRTypeForNEON(MVT::v8i8);
return !Subtarget->isThumb1Only();
}
+// Trying to write a 64 bit value so need to split into two 32 bit values first,
+// and pass the lower and high parts through.
+static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ SDValue WriteValue = Op->getOperand(2);
+
+ // This function is only supposed to be called for i64 type argument.
+ assert(WriteValue.getValueType() == MVT::i64
+ && "LowerWRITE_REGISTER called for non-i64 type argument.");
+
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
+ DAG.getConstant(0, DL, MVT::i32));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
+ DAG.getConstant(1, DL, MVT::i32));
+ SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
+ return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
+}
+
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
.Default(0);
if (Reg)
return Reg;
- report_fatal_error("Invalid register name global variable");
+ report_fatal_error(Twine("Invalid register name \""
+ + StringRef(RegName) + "\"."));
+}
+
+// Result is 64 bit value so split into two 32 bit values and return as a
+// pair of values.
+static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) {
+ SDLoc DL(N);
+
+ // This function is only supposed to be called for i64 type destination.
+ assert(N->getValueType(0) == MVT::i64
+ && "ExpandREAD_REGISTER called for non-i64 type result.");
+
+ SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
+ DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
+ N->getOperand(0),
+ N->getOperand(1));
+
+ Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
+ Read.getValue(1)));
+ Results.push_back(Read.getOperand(0));
}
/// ExpandBITCAST - If the target supports VFP, this function is called to
SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: llvm_unreachable("Don't know how to custom lower this!");
+ case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::GlobalAddress:
switch (N->getOpcode()) {
default:
llvm_unreachable("Don't know how to custom expand this!");
+ case ISD::READ_REGISTER:
+ ExpandREAD_REGISTER(N, Results, DAG);
+ break;
case ISD::BITCAST:
Res = ExpandBITCAST(N, DAG);
break;
imm:$CRm, imm:$opc2),
(MRC2 imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2)>;
-class MovRRCopro<string opc, bit direction, list<dag> pattern = []>
- : ABI<0b1100, (outs), (ins p_imm:$cop, imm0_15:$opc1,
- GPRnopc:$Rt, GPRnopc:$Rt2, c_imm:$CRm),
- NoItinerary, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm", pattern> {
+class MovRRCopro<string opc, bit direction, dag oops, dag iops, list<dag>
+ pattern = []>
+ : ABI<0b1100, oops, iops, NoItinerary, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm",
+ pattern> {
+
let Inst{23-21} = 0b010;
let Inst{20} = direction;
}
def MCRR : MovRRCopro<"mcrr", 0 /* from ARM core register to coprocessor */,
+ (outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt,
+ GPRnopc:$Rt2, c_imm:$CRm),
[(int_arm_mcrr imm:$cop, imm:$opc1, GPRnopc:$Rt,
GPRnopc:$Rt2, imm:$CRm)]>;
-def MRRC : MovRRCopro<"mrrc", 1 /* from coprocessor to ARM core register */>;
+def MRRC : MovRRCopro<"mrrc", 1 /* from coprocessor to ARM core register */,
+ (outs GPRnopc:$Rt, GPRnopc:$Rt2),
+ (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>;
class MovRRCopro2<string opc, bit direction, list<dag> pattern = []>
: ABXI<0b1100, (outs), (ins p_imm:$cop, imm0_15:$opc1,
let Inst{19-16} = CRn;
}
-class t2MovRRCopro<bits<4> Op, string opc, bit direction,
+class t2MovRRCopro<bits<4> Op, string opc, bit direction, dag oops, dag iops,
list<dag> pattern = []>
- : T2Cop<Op, (outs),
- (ins p_imm:$cop, imm0_15:$opc1, GPR:$Rt, GPR:$Rt2, c_imm:$CRm),
- opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm", pattern> {
+ : T2Cop<Op, oops, iops, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm", pattern> {
let Inst{27-24} = 0b1100;
let Inst{23-21} = 0b010;
let Inst{20} = direction;
/* from ARM core register to coprocessor */
-def t2MCRR : t2MovRRCopro<0b1110, "mcrr", 0,
+def t2MCRR : t2MovRRCopro<0b1110, "mcrr", 0, (outs),
+ (ins p_imm:$cop, imm0_15:$opc1, GPR:$Rt, GPR:$Rt2,
+ c_imm:$CRm),
[(int_arm_mcrr imm:$cop, imm:$opc1, GPR:$Rt, GPR:$Rt2,
imm:$CRm)]>;
-def t2MCRR2 : t2MovRRCopro<0b1111, "mcrr2", 0,
- [(int_arm_mcrr2 imm:$cop, imm:$opc1, GPR:$Rt,
- GPR:$Rt2, imm:$CRm)]> {
+def t2MCRR2 : t2MovRRCopro<0b1111, "mcrr2", 0, (outs),
+ (ins p_imm:$cop, imm0_15:$opc1, GPR:$Rt, GPR:$Rt2,
+ c_imm:$CRm),
+ [(int_arm_mcrr2 imm:$cop, imm:$opc1, GPR:$Rt,
+ GPR:$Rt2, imm:$CRm)]> {
let Predicates = [IsThumb2, PreV8];
}
/* from coprocessor to ARM core register */
-def t2MRRC : t2MovRRCopro<0b1110, "mrrc", 1>;
+def t2MRRC : t2MovRRCopro<0b1110, "mrrc", 1, (outs GPR:$Rt, GPR:$Rt2),
+ (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm)>;
-def t2MRRC2 : t2MovRRCopro<0b1111, "mrrc2", 1> {
+def t2MRRC2 : t2MovRRCopro<0b1111, "mrrc2", 1, (outs GPR:$Rt, GPR:$Rt2),
+ (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm)> {
let Predicates = [IsThumb2, PreV8];
}
define i32 @get_stack() nounwind {
entry:
; FIXME: Include an allocatable-specific error message
-; CHECK: Invalid register name global variable
+; CHECK: Invalid register name "x5".
%sp = call i32 @llvm.read_register.i32(metadata !0)
ret i32 %sp
}
define i32 @get_stack() nounwind {
entry:
-; CHECK: Invalid register name global variable
+; CHECK: Invalid register name "notareg".
%sp = call i32 @llvm.read_register.i32(metadata !0)
ret i32 %sp
}
--- /dev/null
+; RUN: llc < %s -mtriple=aarch64-none-eabi -mcpu=cortex-a57 2>&1 | FileCheck %s
+
+define i64 @read_encoded_register() nounwind {
+entry:
+; CHECK-LABEL: read_encoded_register:
+; CHECK: mrs x0, S1_2_C3_C4_5
+ %reg = call i64 @llvm.read_register.i64(metadata !0)
+ ret i64 %reg
+}
+
+define i64 @read_daif() nounwind {
+entry:
+; CHECK-LABEL: read_daif:
+; CHECK: mrs x0, DAIF
+ %reg = call i64 @llvm.read_register.i64(metadata !1)
+ ret i64 %reg
+}
+
+define void @write_encoded_register(i64 %x) nounwind {
+entry:
+; CHECK-LABEL: write_encoded_register:
+; CHECK: msr S1_2_C3_C4_5, x0
+ call void @llvm.write_register.i64(metadata !0, i64 %x)
+ ret void
+}
+
+define void @write_daif(i64 %x) nounwind {
+entry:
+; CHECK-LABEL: write_daif:
+; CHECK: msr DAIF, x0
+ call void @llvm.write_register.i64(metadata !1, i64 %x)
+ ret void
+}
+
+define void @write_daifset() nounwind {
+entry:
+; CHECK-LABEL: write_daifset:
+; CHECK: msr DAIFSET, #2
+ call void @llvm.write_register.i64(metadata !2, i64 2)
+ ret void
+}
+
+declare i64 @llvm.read_register.i64(metadata) nounwind
+declare void @llvm.write_register.i64(metadata, i64) nounwind
+
+!0 = !{!"1:2:3:4:5"}
+!1 = !{!"daif"}
+!2 = !{!"daifset"}
define i32 @get_stack() nounwind {
entry:
; FIXME: Include an allocatable-specific error message
-; CHECK: Invalid register name global variable
+; CHECK: Invalid register name "r5".
%sp = call i32 @llvm.read_register.i32(metadata !0)
ret i32 %sp
}
define i32 @get_stack() nounwind {
entry:
-; CHECK: Invalid register name global variable
+; CHECK: Invalid register name "notareg".
%sp = call i32 @llvm.read_register.i32(metadata !0)
ret i32 %sp
}
--- /dev/null
+; RUN: llc < %s -mtriple=arm-none-eabi -mcpu=cortex-a8 2>&1 | FileCheck %s --check-prefix=ACORE
+; RUN: not llc < %s -mtriple=thumb-none-eabi -mcpu=cortex-m4 2>&1 | FileCheck %s --check-prefix=MCORE
+
+; MCORE: LLVM ERROR: Invalid register name "cpsr".
+
+define i32 @read_cpsr() nounwind {
+ ; ACORE-LABEL: read_cpsr:
+ ; ACORE: mrs r0, apsr
+ %reg = call i32 @llvm.read_register.i32(metadata !1)
+ ret i32 %reg
+}
+
+define i32 @read_aclass_registers() nounwind {
+entry:
+ ; ACORE-LABEL: read_aclass_registers:
+ ; ACORE: mrs r0, apsr
+ ; ACORE: mrs r1, spsr
+
+ %0 = call i32 @llvm.read_register.i32(metadata !0)
+ %1 = call i32 @llvm.read_register.i32(metadata !1)
+ %add1 = add i32 %1, %0
+ %2 = call i32 @llvm.read_register.i32(metadata !2)
+ %add2 = add i32 %add1, %2
+ ret i32 %add2
+}
+
+define void @write_aclass_registers(i32 %x) nounwind {
+entry:
+ ; ACORE-LABEL: write_aclass_registers:
+ ; ACORE: msr APSR_nzcvq, r0
+ ; ACORE: msr APSR_g, r0
+ ; ACORE: msr APSR_nzcvqg, r0
+ ; ACORE: msr CPSR_c, r0
+ ; ACORE: msr CPSR_x, r0
+ ; ACORE: msr APSR_g, r0
+ ; ACORE: msr APSR_nzcvq, r0
+ ; ACORE: msr CPSR_fsxc, r0
+ ; ACORE: msr SPSR_c, r0
+ ; ACORE: msr SPSR_x, r0
+ ; ACORE: msr SPSR_s, r0
+ ; ACORE: msr SPSR_f, r0
+ ; ACORE: msr SPSR_fsxc, r0
+
+ call void @llvm.write_register.i32(metadata !3, i32 %x)
+ call void @llvm.write_register.i32(metadata !4, i32 %x)
+ call void @llvm.write_register.i32(metadata !5, i32 %x)
+ call void @llvm.write_register.i32(metadata !6, i32 %x)
+ call void @llvm.write_register.i32(metadata !7, i32 %x)
+ call void @llvm.write_register.i32(metadata !8, i32 %x)
+ call void @llvm.write_register.i32(metadata !9, i32 %x)
+ call void @llvm.write_register.i32(metadata !10, i32 %x)
+ call void @llvm.write_register.i32(metadata !11, i32 %x)
+ call void @llvm.write_register.i32(metadata !12, i32 %x)
+ call void @llvm.write_register.i32(metadata !13, i32 %x)
+ call void @llvm.write_register.i32(metadata !14, i32 %x)
+ call void @llvm.write_register.i32(metadata !15, i32 %x)
+ ret void
+}
+
+declare i32 @llvm.read_register.i32(metadata) nounwind
+declare void @llvm.write_register.i32(metadata, i32) nounwind
+
+!0 = !{!"apsr"}
+!1 = !{!"cpsr"}
+!2 = !{!"spsr"}
+!3 = !{!"apsr_nzcvq"}
+!4 = !{!"apsr_g"}
+!5 = !{!"apsr_nzcvqg"}
+!6 = !{!"cpsr_c"}
+!7 = !{!"cpsr_x"}
+!8 = !{!"cpsr_s"}
+!9 = !{!"cpsr_f"}
+!10 = !{!"cpsr_cxsf"}
+!11 = !{!"spsr_c"}
+!12 = !{!"spsr_x"}
+!13 = !{!"spsr_s"}
+!14 = !{!"spsr_f"}
+!15 = !{!"spsr_cxsf"}
--- /dev/null
+; RUN: llc < %s -mtriple=thumb-none-eabi -mcpu=cortex-m4 2>&1 | FileCheck %s --check-prefix=MCORE
+; RUN: not llc < %s -mtriple=thumb-none-eabi -mcpu=cortex-m3 2>&1 | FileCheck %s --check-prefix=M3CORE
+; RUN: not llc < %s -mtriple=arm-none-eabi -mcpu=cortex-a8 2>&1 | FileCheck %s --check-prefix=ACORE
+
+; ACORE: LLVM ERROR: Invalid register name "control".
+; M3CORE: LLVM ERROR: Invalid register name "control".
+
+define i32 @read_mclass_registers() nounwind {
+entry:
+ ; MCORE-LABEL: read_mclass_registers:
+ ; MCORE: mrs r0, apsr
+ ; MCORE: mrs r1, iapsr
+ ; MCORE: mrs r1, eapsr
+ ; MCORE: mrs r1, xpsr
+ ; MCORE: mrs r1, ipsr
+ ; MCORE: mrs r1, epsr
+ ; MCORE: mrs r1, iepsr
+ ; MCORE: mrs r1, msp
+ ; MCORE: mrs r1, psp
+ ; MCORE: mrs r1, primask
+ ; MCORE: mrs r1, basepri
+ ; MCORE: mrs r1, basepri_max
+ ; MCORE: mrs r1, faultmask
+ ; MCORE: mrs r1, control
+
+ %0 = call i32 @llvm.read_register.i32(metadata !0)
+ %1 = call i32 @llvm.read_register.i32(metadata !4)
+ %add1 = add i32 %1, %0
+ %2 = call i32 @llvm.read_register.i32(metadata !8)
+ %add2 = add i32 %add1, %2
+ %3 = call i32 @llvm.read_register.i32(metadata !12)
+ %add3 = add i32 %add2, %3
+ %4 = call i32 @llvm.read_register.i32(metadata !16)
+ %add4 = add i32 %add3, %4
+ %5 = call i32 @llvm.read_register.i32(metadata !17)
+ %add5 = add i32 %add4, %5
+ %6 = call i32 @llvm.read_register.i32(metadata !18)
+ %add6 = add i32 %add5, %6
+ %7 = call i32 @llvm.read_register.i32(metadata !19)
+ %add7 = add i32 %add6, %7
+ %8 = call i32 @llvm.read_register.i32(metadata !20)
+ %add8 = add i32 %add7, %8
+ %9 = call i32 @llvm.read_register.i32(metadata !21)
+ %add9 = add i32 %add8, %9
+ %10 = call i32 @llvm.read_register.i32(metadata !22)
+ %add10 = add i32 %add9, %10
+ %11 = call i32 @llvm.read_register.i32(metadata !23)
+ %add11 = add i32 %add10, %11
+ %12 = call i32 @llvm.read_register.i32(metadata !24)
+ %add12 = add i32 %add11, %12
+ %13 = call i32 @llvm.read_register.i32(metadata !25)
+ %add13 = add i32 %add12, %13
+ ret i32 %add13
+}
+
+define void @write_mclass_registers(i32 %x) nounwind {
+entry:
+ ; MCORE-LABEL: write_mclass_registers:
+ ; MCORE: msr apsr_nzcvqg, r0
+ ; MCORE: msr apsr_nzcvq, r0
+ ; MCORE: msr apsr_g, r0
+ ; MCORE: msr apsr_nzcvqg, r0
+ ; MCORE: msr iapsr_nzcvqg, r0
+ ; MCORE: msr iapsr_nzcvq, r0
+ ; MCORE: msr iapsr_g, r0
+ ; MCORE: msr iapsr_nzcvqg, r0
+ ; MCORE: msr eapsr_nzcvqg, r0
+ ; MCORE: msr eapsr_nzcvq, r0
+ ; MCORE: msr eapsr_g, r0
+ ; MCORE: msr eapsr_nzcvqg, r0
+ ; MCORE: msr xpsr_nzcvqg, r0
+ ; MCORE: msr xpsr_nzcvq, r0
+ ; MCORE: msr xpsr_g, r0
+ ; MCORE: msr xpsr_nzcvqg, r0
+ ; MCORE: msr ipsr, r0
+ ; MCORE: msr epsr, r0
+ ; MCORE: msr iepsr, r0
+ ; MCORE: msr msp, r0
+ ; MCORE: msr psp, r0
+ ; MCORE: msr primask, r0
+ ; MCORE: msr basepri, r0
+ ; MCORE: msr basepri_max, r0
+ ; MCORE: msr faultmask, r0
+ ; MCORE: msr control, r0
+
+ call void @llvm.write_register.i32(metadata !0, i32 %x)
+ call void @llvm.write_register.i32(metadata !1, i32 %x)
+ call void @llvm.write_register.i32(metadata !2, i32 %x)
+ call void @llvm.write_register.i32(metadata !3, i32 %x)
+ call void @llvm.write_register.i32(metadata !4, i32 %x)
+ call void @llvm.write_register.i32(metadata !5, i32 %x)
+ call void @llvm.write_register.i32(metadata !6, i32 %x)
+ call void @llvm.write_register.i32(metadata !7, i32 %x)
+ call void @llvm.write_register.i32(metadata !8, i32 %x)
+ call void @llvm.write_register.i32(metadata !9, i32 %x)
+ call void @llvm.write_register.i32(metadata !10, i32 %x)
+ call void @llvm.write_register.i32(metadata !11, i32 %x)
+ call void @llvm.write_register.i32(metadata !12, i32 %x)
+ call void @llvm.write_register.i32(metadata !13, i32 %x)
+ call void @llvm.write_register.i32(metadata !14, i32 %x)
+ call void @llvm.write_register.i32(metadata !15, i32 %x)
+ call void @llvm.write_register.i32(metadata !16, i32 %x)
+ call void @llvm.write_register.i32(metadata !17, i32 %x)
+ call void @llvm.write_register.i32(metadata !18, i32 %x)
+ call void @llvm.write_register.i32(metadata !19, i32 %x)
+ call void @llvm.write_register.i32(metadata !20, i32 %x)
+ call void @llvm.write_register.i32(metadata !21, i32 %x)
+ call void @llvm.write_register.i32(metadata !22, i32 %x)
+ call void @llvm.write_register.i32(metadata !23, i32 %x)
+ call void @llvm.write_register.i32(metadata !24, i32 %x)
+ call void @llvm.write_register.i32(metadata !25, i32 %x)
+ ret void
+}
+
+declare i32 @llvm.read_register.i32(metadata) nounwind
+declare void @llvm.write_register.i32(metadata, i32) nounwind
+
+!0 = !{!"apsr"}
+!1 = !{!"apsr_nzcvq"}
+!2 = !{!"apsr_g"}
+!3 = !{!"apsr_nzcvqg"}
+!4 = !{!"iapsr"}
+!5 = !{!"iapsr_nzcvq"}
+!6 = !{!"iapsr_g"}
+!7 = !{!"iapsr_nzcvqg"}
+!8 = !{!"eapsr"}
+!9 = !{!"eapsr_nzcvq"}
+!10 = !{!"eapsr_g"}
+!11 = !{!"eapsr_nzcvqg"}
+!12 = !{!"xpsr"}
+!13 = !{!"xpsr_nzcvq"}
+!14 = !{!"xpsr_g"}
+!15 = !{!"xpsr_nzcvqg"}
+!16 = !{!"ipsr"}
+!17 = !{!"epsr"}
+!18 = !{!"iepsr"}
+!19 = !{!"msp"}
+!20 = !{!"psp"}
+!21 = !{!"primask"}
+!22 = !{!"basepri"}
+!23 = !{!"basepri_max"}
+!24 = !{!"faultmask"}
+!25 = !{!"control"}
--- /dev/null
+; RUN: llc < %s -mtriple=arm-none-eabi -mcpu=cortex-a8 2>&1 | FileCheck %s --check-prefix=ARM --check-prefix=ACORE
+; RUN: llc < %s -mtriple=thumb-none-eabi -mcpu=cortex-m4 2>&1 | FileCheck %s --check-prefix=ARM --check-prefix=MCORE
+
+define i32 @read_i32_encoded_register() nounwind {
+entry:
+; ARM-LABEL: read_i32_encoded_register:
+; ARM: mrc p1, #2, r0, c3, c4, #5
+ %reg = call i32 @llvm.read_register.i32(metadata !0)
+ ret i32 %reg
+}
+
+define i64 @read_i64_encoded_register() nounwind {
+entry:
+; ARM-LABEL: read_i64_encoded_register:
+; ARM: mrrc p1, #2, r0, r1, c3
+ %reg = call i64 @llvm.read_register.i64(metadata !1)
+ ret i64 %reg
+}
+
+define i32 @read_apsr() nounwind {
+entry:
+; ARM-LABEL: read_apsr:
+; ARM: mrs r0, apsr
+ %reg = call i32 @llvm.read_register.i32(metadata !2)
+ ret i32 %reg
+}
+
+define i32 @read_fpscr() nounwind {
+entry:
+; ARM-LABEL: read_fpscr:
+; ARM: vmrs r0, fpscr
+ %reg = call i32 @llvm.read_register.i32(metadata !3)
+ ret i32 %reg
+}
+
+define void @write_i32_encoded_register(i32 %x) nounwind {
+entry:
+; ARM-LABEL: write_i32_encoded_register:
+; ARM: mcr p1, #2, r0, c3, c4, #5
+ call void @llvm.write_register.i32(metadata !0, i32 %x)
+ ret void
+}
+
+define void @write_i64_encoded_register(i64 %x) nounwind {
+entry:
+; ARM-LABEL: write_i64_encoded_register:
+; ARM: mcrr p1, #2, r0, r1, c3
+ call void @llvm.write_register.i64(metadata !1, i64 %x)
+ ret void
+}
+
+define void @write_apsr(i32 %x) nounwind {
+entry:
+; ARM-LABEL: write_apsr:
+; ACORE: msr APSR_nzcvq, r0
+; MCORE: msr apsr_nzcvq, r0
+ call void @llvm.write_register.i32(metadata !4, i32 %x)
+ ret void
+}
+
+define void @write_fpscr(i32 %x) nounwind {
+entry:
+; ARM-LABEL: write_fpscr:
+; ARM: vmsr fpscr, r0
+ call void @llvm.write_register.i32(metadata !3, i32 %x)
+ ret void
+}
+
+declare i32 @llvm.read_register.i32(metadata) nounwind
+declare i64 @llvm.read_register.i64(metadata) nounwind
+declare void @llvm.write_register.i32(metadata, i32) nounwind
+declare void @llvm.write_register.i64(metadata, i64) nounwind
+
+!0 = !{!"cp1:2:c3:c4:5"}
+!1 = !{!"cp1:2:c3"}
+!2 = !{!"apsr"}
+!3 = !{!"fpscr"}
+!4 = !{!"apsr_nzcvq"}