#include "CodeGenTarget.h"
#include "IntrinsicEmitter.h"
+#include "SequenceToOffsetTable.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/StringMatcher.h"
#include "llvm/ADT/StringExtras.h"
OS << "#endif\n\n";
}
-static void EmitTypeForValueType(raw_ostream &OS, MVT::SimpleValueType VT) {
- if (EVT(VT).isInteger()) {
- unsigned BitWidth = EVT(VT).getSizeInBits();
- OS << "IntegerType::get(Context, " << BitWidth << ")";
- } else if (VT == MVT::Other) {
- // MVT::OtherVT is used to mean the empty struct type here.
- OS << "StructType::get(Context)";
- } else if (VT == MVT::f16) {
- OS << "Type::getHalfTy(Context)";
- } else if (VT == MVT::f32) {
- OS << "Type::getFloatTy(Context)";
- } else if (VT == MVT::f64) {
- OS << "Type::getDoubleTy(Context)";
- } else if (VT == MVT::f128) {
- OS << "Type::getFP128Ty(Context)";
- } else if (VT == MVT::ppcf128) {
- OS << "Type::getPPC_FP128Ty(Context)";
- } else if (VT == MVT::isVoid) {
- OS << "Type::getVoidTy(Context)";
- } else if (VT == MVT::Metadata) {
- OS << "Type::getMetadataTy(Context)";
- } else if (VT == MVT::x86mmx) {
- OS << "Type::getX86_MMXTy(Context)";
- } else {
- assert(false && "Unsupported ValueType!");
- }
-}
-
-static void EmitTypeGenerate(raw_ostream &OS, const Record *ArgType,
- unsigned &ArgNo);
-
-static void EmitTypeGenerate(raw_ostream &OS,
- const std::vector<Record*> &ArgTypes,
- unsigned &ArgNo) {
- if (ArgTypes.empty())
- return EmitTypeForValueType(OS, MVT::isVoid);
-
- if (ArgTypes.size() == 1)
- return EmitTypeGenerate(OS, ArgTypes.front(), ArgNo);
-
- OS << "StructType::get(";
-
- for (std::vector<Record*>::const_iterator
- I = ArgTypes.begin(), E = ArgTypes.end(); I != E; ++I) {
- EmitTypeGenerate(OS, *I, ArgNo);
- OS << ", ";
- }
-
- OS << " NULL)";
-}
-
-static void EmitTypeGenerate(raw_ostream &OS, const Record *ArgType,
- unsigned &ArgNo) {
- MVT::SimpleValueType VT = getValueType(ArgType->getValueAsDef("VT"));
-
- if (ArgType->isSubClassOf("LLVMMatchType")) {
- unsigned Number = ArgType->getValueAsInt("Number");
- assert(Number < ArgNo && "Invalid matching number!");
- if (ArgType->isSubClassOf("LLVMExtendedElementVectorType"))
- OS << "VectorType::getExtendedElementVectorType"
- << "(cast<VectorType>(Tys[" << Number << "]))";
- else if (ArgType->isSubClassOf("LLVMTruncatedElementVectorType"))
- OS << "VectorType::getTruncatedElementVectorType"
- << "(cast<VectorType>(Tys[" << Number << "]))";
- else
- OS << "Tys[" << Number << "]";
- } else if (VT == MVT::iAny || VT == MVT::fAny || VT == MVT::vAny ||
- VT == MVT::iPTRAny) {
- // NOTE: The ArgNo variable here is not the absolute argument number, it is
- // the index of the "arbitrary" type in the Tys array passed to the
- // Intrinsic::getDeclaration function. Consequently, we only want to
- // increment it when we actually hit an overloaded type. Getting this wrong
- // leads to very subtle bugs!
- OS << "Tys[" << ArgNo++ << "]";
- } else if (EVT(VT).isVector()) {
- EVT VVT = VT;
- OS << "VectorType::get(";
- EmitTypeForValueType(OS, VVT.getVectorElementType().getSimpleVT().SimpleTy);
- OS << ", " << VVT.getVectorNumElements() << ")";
- } else if (VT == MVT::iPTR) {
- OS << "PointerType::getUnqual(";
- EmitTypeGenerate(OS, ArgType->getValueAsDef("ElTy"), ArgNo);
- OS << ")";
- } else if (VT == MVT::isVoid) {
- assert(ArgNo == 0);
- OS << "Type::getVoidTy(Context)";
- } else {
- EmitTypeForValueType(OS, VT);
- }
-}
-
// NOTE: This must be kept in synch with the version emitted to the .gen file!
enum IIT_Info {
static void EncodeFixedValueType(MVT::SimpleValueType VT,
- SmallVectorImpl<unsigned> &Sig) {
+ std::vector<unsigned char> &Sig) {
if (EVT(VT).isInteger()) {
unsigned BitWidth = EVT(VT).getSizeInBits();
switch (BitWidth) {
#endif
static void EncodeFixedType(Record *R, unsigned &NextArgNo,
- SmallVectorImpl<unsigned> &Sig) {
+ std::vector<unsigned char> &Sig) {
if (R->isSubClassOf("LLVMMatchType")) {
unsigned Number = R->getValueAsInt("Number");
/// ComputeFixedEncoding - If we can encode the type signature for this
/// intrinsic into 32 bits, return it. If not, return ~0U.
-static unsigned ComputeFixedEncoding(const CodeGenIntrinsic &Int) {
+static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
+ std::vector<unsigned char> &TypeSig) {
unsigned NextArgNo = 0;
- SmallVector<unsigned, 8> TypeSig;
if (Int.IS.RetVTs.empty())
TypeSig.push_back(IIT_Done);
else if (Int.IS.RetVTs.size() == 1 &&
TypeSig.push_back(IIT_Done);
else {
switch (Int.IS.RetVTs.size()) {
- case 1: break;
- case 2: TypeSig.push_back(IIT_STRUCT2); break;
- case 3: TypeSig.push_back(IIT_STRUCT3); break;
- case 4: TypeSig.push_back(IIT_STRUCT4); break;
- case 5: TypeSig.push_back(IIT_STRUCT5); break;
- default: assert(0 && "Unhandled case in struct");
+ case 1: break;
+ case 2: TypeSig.push_back(IIT_STRUCT2); break;
+ case 3: TypeSig.push_back(IIT_STRUCT3); break;
+ case 4: TypeSig.push_back(IIT_STRUCT4); break;
+ case 5: TypeSig.push_back(IIT_STRUCT5); break;
+ default: assert(0 && "Unhandled case in struct");
}
-
+
for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
EncodeFixedType(Int.IS.RetTypeDefs[i], NextArgNo, TypeSig);
}
for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
EncodeFixedType(Int.IS.ParamTypeDefs[i], NextArgNo, TypeSig);
-
- // Can only encode 8 nibbles into a 32-bit word.
- if (TypeSig.size() > 8) return ~0U;
-
- unsigned Result = 0;
- for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
- // If we had an unencodable argument, bail out.
- if (TypeSig[i] > 15)
- return ~0U;
- Result = (Result << 4) | TypeSig[e-i-1];
- }
-
- return Result;
+}
+
+void printIITEntry(raw_ostream &OS, unsigned char X) {
+ OS << (unsigned)X;
}
void IntrinsicEmitter::EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints,
OS << "};\n\n";
- // Similar to GET_INTRINSIC_VERIFIER, batch up cases that have identical
- // types.
- typedef std::map<RecPair, std::vector<unsigned>, RecordListComparator> MapTy;
- MapTy UniqueArgInfos;
-
// If we can compute a 32-bit fixed encoding for this intrinsic, do so and
// capture it in this vector, otherwise store a ~0U.
std::vector<unsigned> FixedEncodings;
+ SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable;
+
+ std::vector<unsigned char> TypeSig;
+
// Compute the unique argument type info.
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
- FixedEncodings.push_back(ComputeFixedEncoding(Ints[i]));
-
- // If we didn't compute a compact encoding, emit a long-form variant.
- if (FixedEncodings.back() == ~0U)
- UniqueArgInfos[make_pair(Ints[i].IS.RetTypeDefs,
- Ints[i].IS.ParamTypeDefs)].push_back(i);
+ // Get the signature for the intrinsic.
+ TypeSig.clear();
+ ComputeFixedEncoding(Ints[i], TypeSig);
+
+ // Check to see if we can encode it into a 32-bit word. We can only encode
+ // 8 nibbles into a 32-bit word.
+ if (TypeSig.size() <= 8) {
+ bool Failed = false;
+ unsigned Result = 0;
+ for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
+ // If we had an unencodable argument, bail out.
+ if (TypeSig[i] > 15) {
+ Failed = true;
+ break;
+ }
+ Result = (Result << 4) | TypeSig[e-i-1];
+ }
+
+ // If this could be encoded into a 31-bit word, return it.
+ if (!Failed && (Result >> 31) == 0) {
+ FixedEncodings.push_back(Result);
+ continue;
+ }
+ }
+
+ // Otherwise, we're going to unique the sequence into the
+ // LongEncodingTable, and use its offset in the 32-bit table instead.
+ LongEncodingTable.add(TypeSig);
+
+ // This is a placehold that we'll replace after the table is laid out.
+ FixedEncodings.push_back(~0U);
}
+ LongEncodingTable.layout();
+
OS << "static const unsigned IIT_Table[] = {\n ";
for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
if ((i & 7) == 7)
OS << "\n ";
- if (FixedEncodings[i] == ~0U)
- OS << "~0U, ";
- else
+
+ // If the entry fit in the table, just emit it.
+ if (FixedEncodings[i] != ~0U) {
OS << "0x" << utohexstr(FixedEncodings[i]) << ", ";
- }
-
- OS << "0\n};\n\n#endif\n\n"; // End of GET_INTRINSTIC_GENERATOR_GLOBAL
-
- OS << "// Code for generating Intrinsic function declarations.\n";
- OS << "#ifdef GET_INTRINSIC_GENERATOR\n";
- OS << " switch (id) {\n";
- OS << " default: llvm_unreachable(\"Invalid intrinsic!\");\n";
-
- // Loop through the array, emitting one generator for each batch.
- std::string IntrinsicStr = TargetPrefix + "Intrinsic::";
-
- for (MapTy::iterator I = UniqueArgInfos.begin(),
- E = UniqueArgInfos.end(); I != E; ++I) {
- for (unsigned i = 0, e = I->second.size(); i != e; ++i)
- OS << " case " << IntrinsicStr << Ints[I->second[i]].EnumName
- << ":\t\t// " << Ints[I->second[i]].Name << "\n";
+ continue;
+ }
- const RecPair &ArgTypes = I->first;
- const std::vector<Record*> &RetTys = ArgTypes.first;
- const std::vector<Record*> &ParamTys = ArgTypes.second;
+ TypeSig.clear();
+ ComputeFixedEncoding(Ints[i], TypeSig);
- unsigned N = ParamTys.size();
- unsigned ArgNo = 0;
- OS << " ResultTy = ";
- EmitTypeGenerate(OS, RetTys, ArgNo);
- OS << ";\n";
- for (unsigned j = 0; j != N; ++j) {
- OS << " ArgTys.push_back(";
- EmitTypeGenerate(OS, ParamTys[j], ArgNo);
- OS << ");\n";
- }
-
- OS << " break;\n";
+ // Otherwise, emit the offset into the long encoding table. We emit it this
+ // way so that it is easier to read the offset in the .def file.
+ OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
}
-
- OS << " }\n";
- OS << "#endif\n\n";
+
+ OS << "0\n};\n\n";
+
+ // Emit the shared table of register lists.
+ OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
+ if (!LongEncodingTable.empty())
+ LongEncodingTable.emit(OS, printIITEntry);
+ OS << " 255\n};\n\n";
+
+ OS << "#endif\n\n"; // End of GET_INTRINSTIC_GENERATOR_GLOBAL
}
namespace {