#ifdef CONFIG_SHADOW_CALL_STACK
-/*
- * In testing, 1 KiB shadow stack size (i.e. 128 stack frames on a 64-bit
- * architecture) provided ~40% safety margin on stack usage while keeping
- * memory allocation overhead reasonable.
- */
-#define SCS_SIZE SZ_1K
+#define SCS_ORDER 0
+#define SCS_SIZE (PAGE_SIZE << SCS_ORDER)
#define GFP_SCS (GFP_KERNEL | __GFP_ZERO)
/* An illegal pointer value to mark the end of the shadow stack. */
#define task_scs(tsk) (task_thread_info(tsk)->scs_base)
#define task_scs_sp(tsk) (task_thread_info(tsk)->scs_sp)
+void *scs_alloc(int node);
+void scs_free(void *s);
void scs_init(void);
int scs_prepare(struct task_struct *tsk, int node);
void scs_release(struct task_struct *tsk);
#else /* CONFIG_SHADOW_CALL_STACK */
+static inline void *scs_alloc(int node) { return NULL; }
+static inline void scs_free(void *s) {}
static inline void scs_init(void) {}
static inline void scs_task_reset(struct task_struct *tsk) {}
static inline int scs_prepare(struct task_struct *tsk, int node) { return 0; }
* Copyright (C) 2019 Google LLC
*/
+#include <linux/cpuhotplug.h>
#include <linux/kasan.h>
#include <linux/mm.h>
#include <linux/scs.h>
-#include <linux/slab.h>
+#include <linux/vmalloc.h>
#include <linux/vmstat.h>
-static struct kmem_cache *scs_cache;
-
static void __scs_account(void *s, int account)
{
- struct page *scs_page = virt_to_page(s);
+ struct page *scs_page = vmalloc_to_page(s);
mod_node_page_state(page_pgdat(scs_page), NR_KERNEL_SCS_KB,
account * (SCS_SIZE / SZ_1K));
}
-static void *scs_alloc(int node)
+/* Matches NR_CACHED_STACKS for VMAP_STACK */
+#define NR_CACHED_SCS 2
+static DEFINE_PER_CPU(void *, scs_cache[NR_CACHED_SCS]);
+
+static void *__scs_alloc(int node)
{
- void *s = kmem_cache_alloc_node(scs_cache, GFP_SCS, node);
+ int i;
+ void *s;
+
+ for (i = 0; i < NR_CACHED_SCS; i++) {
+ s = this_cpu_xchg(scs_cache[i], NULL);
+ if (s) {
+ kasan_unpoison_vmalloc(s, SCS_SIZE);
+ memset(s, 0, SCS_SIZE);
+ return s;
+ }
+ }
+
+ return __vmalloc_node_range(SCS_SIZE, 1, VMALLOC_START, VMALLOC_END,
+ GFP_SCS, PAGE_KERNEL, 0, node,
+ __builtin_return_address(0));
+}
+void *scs_alloc(int node)
+{
+ void *s;
+
+ s = __scs_alloc(node);
if (!s)
return NULL;
* Poison the allocation to catch unintentional accesses to
* the shadow stack when KASAN is enabled.
*/
- kasan_poison_object_data(scs_cache, s);
+ kasan_poison_vmalloc(s, SCS_SIZE);
__scs_account(s, 1);
return s;
}
-static void scs_free(void *s)
+void scs_free(void *s)
{
+ int i;
+
__scs_account(s, -1);
- kasan_unpoison_object_data(scs_cache, s);
- kmem_cache_free(scs_cache, s);
+
+ /*
+ * We cannot sleep as this can be called in interrupt context,
+ * so use this_cpu_cmpxchg to update the cache, and vfree_atomic
+ * to free the stack.
+ */
+
+ for (i = 0; i < NR_CACHED_SCS; i++)
+ if (this_cpu_cmpxchg(scs_cache[i], 0, s) == NULL)
+ return;
+
+ vfree_atomic(s);
+}
+
+static int scs_cleanup(unsigned int cpu)
+{
+ int i;
+ void **cache = per_cpu_ptr(scs_cache, cpu);
+
+ for (i = 0; i < NR_CACHED_SCS; i++) {
+ vfree(cache[i]);
+ cache[i] = NULL;
+ }
+
+ return 0;
}
void __init scs_init(void)
{
- scs_cache = kmem_cache_create("scs_cache", SCS_SIZE, 0, 0, NULL);
+ cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "scs:scs_cache", NULL,
+ scs_cleanup);
}
int scs_prepare(struct task_struct *tsk, int node)