-//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//\r
-//\r
-// The LLVM Compiler Infrastructure\r
-//\r
-// This file is distributed under the University of Illinois Open Source\r
-// License. See LICENSE.TXT for details.\r
-//\r
-//===----------------------------------------------------------------------===//\r
-//\r
-// This file implements the operating system Host concept.\r
-//\r
-//===----------------------------------------------------------------------===//\r
-\r
-#include "llvm/Support/Host.h"\r
-#include "llvm/ADT/SmallSet.h"\r
-#include "llvm/ADT/SmallVector.h"\r
-#include "llvm/ADT/StringRef.h"\r
-#include "llvm/ADT/StringSwitch.h"\r
-#include "llvm/ADT/Triple.h"\r
-#include "llvm/Config/config.h"\r
-#include "llvm/Support/Debug.h"\r
-#include "llvm/Support/FileSystem.h"\r
-#include "llvm/Support/MemoryBuffer.h"\r
-#include "llvm/Support/raw_ostream.h"\r
-#include <assert.h>\r
-#include <string.h>\r
-\r
-// Include the platform-specific parts of this class.\r
-#ifdef LLVM_ON_UNIX\r
-#include "Unix/Host.inc"\r
-#endif\r
-#ifdef LLVM_ON_WIN32\r
-#include "Windows/Host.inc"\r
-#endif\r
-#ifdef _MSC_VER\r
-#include <intrin.h>\r
-#endif\r
-#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))\r
-#include <mach/host_info.h>\r
-#include <mach/mach.h>\r
-#include <mach/mach_host.h>\r
-#include <mach/machine.h>\r
-#endif\r
-\r
-#define DEBUG_TYPE "host-detection"\r
-\r
-//===----------------------------------------------------------------------===//\r
-//\r
-// Implementations of the CPU detection routines\r
-//\r
-//===----------------------------------------------------------------------===//\r
-\r
-using namespace llvm;\r
-\r
-static std::unique_ptr<llvm::MemoryBuffer>\r
- LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {\r
- llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =\r
- llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");\r
- if (std::error_code EC = Text.getError()) {\r
- llvm::errs() << "Can't read "\r
- << "/proc/cpuinfo: " << EC.message() << "\n";\r
- return nullptr;\r
- }\r
- return std::move(*Text);\r
-}\r
-\r
-StringRef sys::detail::getHostCPUNameForPowerPC(\r
- const StringRef &ProcCpuinfoContent) {\r
- // Access to the Processor Version Register (PVR) on PowerPC is privileged,\r
- // and so we must use an operating-system interface to determine the current\r
- // processor type. On Linux, this is exposed through the /proc/cpuinfo file.\r
- const char *generic = "generic";\r
-\r
- // The cpu line is second (after the 'processor: 0' line), so if this\r
- // buffer is too small then something has changed (or is wrong).\r
- StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();\r
- StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();\r
-\r
- StringRef::const_iterator CIP = CPUInfoStart;\r
-\r
- StringRef::const_iterator CPUStart = 0;\r
- size_t CPULen = 0;\r
-\r
- // We need to find the first line which starts with cpu, spaces, and a colon.\r
- // After the colon, there may be some additional spaces and then the cpu type.\r
- while (CIP < CPUInfoEnd && CPUStart == 0) {\r
- if (CIP < CPUInfoEnd && *CIP == '\n')\r
- ++CIP;\r
-\r
- if (CIP < CPUInfoEnd && *CIP == 'c') {\r
- ++CIP;\r
- if (CIP < CPUInfoEnd && *CIP == 'p') {\r
- ++CIP;\r
- if (CIP < CPUInfoEnd && *CIP == 'u') {\r
- ++CIP;\r
- while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))\r
- ++CIP;\r
-\r
- if (CIP < CPUInfoEnd && *CIP == ':') {\r
- ++CIP;\r
- while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))\r
- ++CIP;\r
-\r
- if (CIP < CPUInfoEnd) {\r
- CPUStart = CIP;\r
- while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&\r
- *CIP != ',' && *CIP != '\n'))\r
- ++CIP;\r
- CPULen = CIP - CPUStart;\r
- }\r
- }\r
- }\r
- }\r
- }\r
-\r
- if (CPUStart == 0)\r
- while (CIP < CPUInfoEnd && *CIP != '\n')\r
- ++CIP;\r
- }\r
-\r
- if (CPUStart == 0)\r
- return generic;\r
-\r
- return StringSwitch<const char *>(StringRef(CPUStart, CPULen))\r
- .Case("604e", "604e")\r
- .Case("604", "604")\r
- .Case("7400", "7400")\r
- .Case("7410", "7400")\r
- .Case("7447", "7400")\r
- .Case("7455", "7450")\r
- .Case("G4", "g4")\r
- .Case("POWER4", "970")\r
- .Case("PPC970FX", "970")\r
- .Case("PPC970MP", "970")\r
- .Case("G5", "g5")\r
- .Case("POWER5", "g5")\r
- .Case("A2", "a2")\r
- .Case("POWER6", "pwr6")\r
- .Case("POWER7", "pwr7")\r
- .Case("POWER8", "pwr8")\r
- .Case("POWER8E", "pwr8")\r
- .Case("POWER8NVL", "pwr8")\r
- .Case("POWER9", "pwr9")\r
- .Default(generic);\r
-}\r
-\r
-StringRef sys::detail::getHostCPUNameForARM(\r
- const StringRef &ProcCpuinfoContent) {\r
- // The cpuid register on arm is not accessible from user space. On Linux,\r
- // it is exposed through the /proc/cpuinfo file.\r
-\r
- // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line\r
- // in all cases.\r
- SmallVector<StringRef, 32> Lines;\r
- ProcCpuinfoContent.split(Lines, "\n");\r
-\r
- // Look for the CPU implementer line.\r
- StringRef Implementer;\r
- StringRef Hardware;\r
- for (unsigned I = 0, E = Lines.size(); I != E; ++I) {\r
- if (Lines[I].startswith("CPU implementer"))\r
- Implementer = Lines[I].substr(15).ltrim("\t :");\r
- if (Lines[I].startswith("Hardware"))\r
- Hardware = Lines[I].substr(8).ltrim("\t :");\r
- }\r
-\r
- if (Implementer == "0x41") { // ARM Ltd.\r
- // MSM8992/8994 may give cpu part for the core that the kernel is running on,\r
- // which is undeterministic and wrong. Always return cortex-a53 for these SoC.\r
- if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))\r
- return "cortex-a53";\r
-\r
-\r
- // Look for the CPU part line.\r
- for (unsigned I = 0, E = Lines.size(); I != E; ++I)\r
- if (Lines[I].startswith("CPU part"))\r
- // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The\r
- // values correspond to the "Part number" in the CP15/c0 register. The\r
- // contents are specified in the various processor manuals.\r
- return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))\r
- .Case("0x926", "arm926ej-s")\r
- .Case("0xb02", "mpcore")\r
- .Case("0xb36", "arm1136j-s")\r
- .Case("0xb56", "arm1156t2-s")\r
- .Case("0xb76", "arm1176jz-s")\r
- .Case("0xc08", "cortex-a8")\r
- .Case("0xc09", "cortex-a9")\r
- .Case("0xc0f", "cortex-a15")\r
- .Case("0xc20", "cortex-m0")\r
- .Case("0xc23", "cortex-m3")\r
- .Case("0xc24", "cortex-m4")\r
- .Case("0xd04", "cortex-a35")\r
- .Case("0xd03", "cortex-a53")\r
- .Case("0xd07", "cortex-a57")\r
- .Case("0xd08", "cortex-a72")\r
- .Case("0xd09", "cortex-a73")\r
- .Default("generic");\r
- }\r
-\r
- if (Implementer == "0x51") // Qualcomm Technologies, Inc.\r
- // Look for the CPU part line.\r
- for (unsigned I = 0, E = Lines.size(); I != E; ++I)\r
- if (Lines[I].startswith("CPU part"))\r
- // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The\r
- // values correspond to the "Part number" in the CP15/c0 register. The\r
- // contents are specified in the various processor manuals.\r
- return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))\r
- .Case("0x06f", "krait") // APQ8064\r
- .Case("0x201", "kryo")\r
- .Case("0x205", "kryo")\r
- .Default("generic");\r
-\r
- return "generic";\r
-}\r
-\r
-StringRef sys::detail::getHostCPUNameForS390x(\r
- const StringRef &ProcCpuinfoContent) {\r
- // STIDP is a privileged operation, so use /proc/cpuinfo instead.\r
-\r
- // The "processor 0:" line comes after a fair amount of other information,\r
- // including a cache breakdown, but this should be plenty.\r
- SmallVector<StringRef, 32> Lines;\r
- ProcCpuinfoContent.split(Lines, "\n");\r
-\r
- // Look for the CPU features.\r
- SmallVector<StringRef, 32> CPUFeatures;\r
- for (unsigned I = 0, E = Lines.size(); I != E; ++I)\r
- if (Lines[I].startswith("features")) {\r
- size_t Pos = Lines[I].find(":");\r
- if (Pos != StringRef::npos) {\r
- Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');\r
- break;\r
- }\r
- }\r
-\r
- // We need to check for the presence of vector support independently of\r
- // the machine type, since we may only use the vector register set when\r
- // supported by the kernel (and hypervisor).\r
- bool HaveVectorSupport = false;\r
- for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {\r
- if (CPUFeatures[I] == "vx")\r
- HaveVectorSupport = true;\r
- }\r
-\r
- // Now check the processor machine type.\r
- for (unsigned I = 0, E = Lines.size(); I != E; ++I) {\r
- if (Lines[I].startswith("processor ")) {\r
- size_t Pos = Lines[I].find("machine = ");\r
- if (Pos != StringRef::npos) {\r
- Pos += sizeof("machine = ") - 1;\r
- unsigned int Id;\r
- if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {\r
- if (Id >= 2964 && HaveVectorSupport)\r
- return "z13";\r
- if (Id >= 2827)\r
- return "zEC12";\r
- if (Id >= 2817)\r
- return "z196";\r
- }\r
- }\r
- break;\r
- }\r
- }\r
-\r
- return "generic";\r
-}\r
-\r
-#if defined(__i386__) || defined(_M_IX86) || \\r
- defined(__x86_64__) || defined(_M_X64)\r
-\r
-enum VendorSignatures {\r
- SIG_INTEL = 0x756e6547 /* Genu */,\r
- SIG_AMD = 0x68747541 /* Auth */\r
-};\r
-\r
-enum ProcessorVendors {\r
- VENDOR_INTEL = 1,\r
- VENDOR_AMD,\r
- VENDOR_OTHER,\r
- VENDOR_MAX\r
-};\r
-\r
-enum ProcessorTypes {\r
- INTEL_ATOM = 1,\r
- INTEL_CORE2,\r
- INTEL_COREI7,\r
- AMDFAM10H,\r
- AMDFAM15H,\r
- INTEL_i386,\r
- INTEL_i486,\r
- INTEL_PENTIUM,\r
- INTEL_PENTIUM_PRO,\r
- INTEL_PENTIUM_II,\r
- INTEL_PENTIUM_III,\r
- INTEL_PENTIUM_IV,\r
- INTEL_PENTIUM_M,\r
- INTEL_CORE_DUO,\r
- INTEL_XEONPHI,\r
- INTEL_X86_64,\r
- INTEL_NOCONA,\r
- INTEL_PRESCOTT,\r
- AMD_i486,\r
- AMDPENTIUM,\r
- AMDATHLON,\r
- AMDFAM14H,\r
- AMDFAM16H,\r
- AMDFAM17H,\r
- CPU_TYPE_MAX\r
-};\r
-\r
-enum ProcessorSubtypes {\r
- INTEL_COREI7_NEHALEM = 1,\r
- INTEL_COREI7_WESTMERE,\r
- INTEL_COREI7_SANDYBRIDGE,\r
- AMDFAM10H_BARCELONA,\r
- AMDFAM10H_SHANGHAI,\r
- AMDFAM10H_ISTANBUL,\r
- AMDFAM15H_BDVER1,\r
- AMDFAM15H_BDVER2,\r
- INTEL_PENTIUM_MMX,\r
- INTEL_CORE2_65,\r
- INTEL_CORE2_45,\r
- INTEL_COREI7_IVYBRIDGE,\r
- INTEL_COREI7_HASWELL,\r
- INTEL_COREI7_BROADWELL,\r
- INTEL_COREI7_SKYLAKE,\r
- INTEL_COREI7_SKYLAKE_AVX512,\r
- INTEL_ATOM_BONNELL,\r
- INTEL_ATOM_SILVERMONT,\r
- INTEL_KNIGHTS_LANDING,\r
- AMDPENTIUM_K6,\r
- AMDPENTIUM_K62,\r
- AMDPENTIUM_K63,\r
- AMDPENTIUM_GEODE,\r
- AMDATHLON_TBIRD,\r
- AMDATHLON_MP,\r
- AMDATHLON_XP,\r
- AMDATHLON_K8SSE3,\r
- AMDATHLON_OPTERON,\r
- AMDATHLON_FX,\r
- AMDATHLON_64,\r
- AMD_BTVER1,\r
- AMD_BTVER2,\r
- AMDFAM15H_BDVER3,\r
- AMDFAM15H_BDVER4,\r
- AMDFAM17H_ZNVER1,\r
- CPU_SUBTYPE_MAX\r
-};\r
-\r
-enum ProcessorFeatures {\r
- FEATURE_CMOV = 0,\r
- FEATURE_MMX,\r
- FEATURE_POPCNT,\r
- FEATURE_SSE,\r
- FEATURE_SSE2,\r
- FEATURE_SSE3,\r
- FEATURE_SSSE3,\r
- FEATURE_SSE4_1,\r
- FEATURE_SSE4_2,\r
- FEATURE_AVX,\r
- FEATURE_AVX2,\r
- FEATURE_AVX512,\r
- FEATURE_AVX512SAVE,\r
- FEATURE_MOVBE,\r
- FEATURE_ADX,\r
- FEATURE_EM64T\r
-};\r
-\r
-// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).\r
-// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID\r
-// support. Consequently, for i386, the presence of CPUID is checked first\r
-// via the corresponding eflags bit.\r
-// Removal of cpuid.h header motivated by PR30384\r
-// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp\r
-// or test-suite, but are used in external projects e.g. libstdcxx\r
-static bool isCpuIdSupported() {\r
-#if defined(__GNUC__) || defined(__clang__)\r
-#if defined(__i386__)\r
- int __cpuid_supported;\r
- __asm__(" pushfl\n"\r
- " popl %%eax\n"\r
- " movl %%eax,%%ecx\n"\r
- " xorl $0x00200000,%%eax\n"\r
- " pushl %%eax\n"\r
- " popfl\n"\r
- " pushfl\n"\r
- " popl %%eax\n"\r
- " movl $0,%0\n"\r
- " cmpl %%eax,%%ecx\n"\r
- " je 1f\n"\r
- " movl $1,%0\n"\r
- "1:"\r
- : "=r"(__cpuid_supported)\r
- :\r
- : "eax", "ecx");\r
- if (!__cpuid_supported)\r
- return false;\r
-#endif\r
- return true;\r
-#endif\r
- return true;\r
-}\r
-\r
-/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in\r
-/// the specified arguments. If we can't run cpuid on the host, return true.\r
-static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,\r
- unsigned *rECX, unsigned *rEDX) {\r
-#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)\r
-#if defined(__GNUC__) || defined(__clang__)\r
-#if defined(__x86_64__)\r
- // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.\r
- // FIXME: should we save this for Clang?\r
- __asm__("movq\t%%rbx, %%rsi\n\t"\r
- "cpuid\n\t"\r
- "xchgq\t%%rbx, %%rsi\n\t"\r
- : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)\r
- : "a"(value));\r
-#elif defined(__i386__)\r
- __asm__("movl\t%%ebx, %%esi\n\t"\r
- "cpuid\n\t"\r
- "xchgl\t%%ebx, %%esi\n\t"\r
- : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)\r
- : "a"(value));\r
-#else\r
- assert(0 && "This method is defined only for x86.");\r
-#endif\r
-#elif defined(_MSC_VER)\r
- // The MSVC intrinsic is portable across x86 and x64.\r
- int registers[4];\r
- __cpuid(registers, value);\r
- *rEAX = registers[0];\r
- *rEBX = registers[1];\r
- *rECX = registers[2];\r
- *rEDX = registers[3];\r
-#endif\r
- return false;\r
-#else\r
- return true;\r
-#endif\r
-}\r
-\r
-/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return\r
-/// the 4 values in the specified arguments. If we can't run cpuid on the host,\r
-/// return true.\r
-static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,\r
- unsigned *rEAX, unsigned *rEBX, unsigned *rECX,\r
- unsigned *rEDX) {\r
-#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)\r
-#if defined(__x86_64__) || defined(_M_X64)\r
-#if defined(__GNUC__) || defined(__clang__)\r
- // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.\r
- // FIXME: should we save this for Clang?\r
- __asm__("movq\t%%rbx, %%rsi\n\t"\r
- "cpuid\n\t"\r
- "xchgq\t%%rbx, %%rsi\n\t"\r
- : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)\r
- : "a"(value), "c"(subleaf));\r
-#elif defined(_MSC_VER)\r
- int registers[4];\r
- __cpuidex(registers, value, subleaf);\r
- *rEAX = registers[0];\r
- *rEBX = registers[1];\r
- *rECX = registers[2];\r
- *rEDX = registers[3];\r
-#endif\r
-#elif defined(__i386__) || defined(_M_IX86)\r
-#if defined(__GNUC__) || defined(__clang__)\r
- __asm__("movl\t%%ebx, %%esi\n\t"\r
- "cpuid\n\t"\r
- "xchgl\t%%ebx, %%esi\n\t"\r
- : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)\r
- : "a"(value), "c"(subleaf));\r
-#elif defined(_MSC_VER)\r
- __asm {\r
- mov eax,value\r
- mov ecx,subleaf\r
- cpuid\r
- mov esi,rEAX\r
- mov dword ptr [esi],eax\r
- mov esi,rEBX\r
- mov dword ptr [esi],ebx\r
- mov esi,rECX\r
- mov dword ptr [esi],ecx\r
- mov esi,rEDX\r
- mov dword ptr [esi],edx\r
- }\r
-#endif\r
-#else\r
- assert(0 && "This method is defined only for x86.");\r
-#endif\r
- return false;\r
-#else\r
- return true;\r
-#endif\r
-}\r
-\r
-static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {\r
-#if defined(__GNUC__) || defined(__clang__)\r
- // Check xgetbv; this uses a .byte sequence instead of the instruction\r
- // directly because older assemblers do not include support for xgetbv and\r
- // there is no easy way to conditionally compile based on the assembler used.\r
- __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));\r
- return false;\r
-#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)\r
- unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);\r
- *rEAX = Result;\r
- *rEDX = Result >> 32;\r
- return false;\r
-#else\r
- return true;\r
-#endif\r
-}\r
-\r
-static void detectX86FamilyModel(unsigned EAX, unsigned *Family,\r
- unsigned *Model) {\r
- *Family = (EAX >> 8) & 0xf; // Bits 8 - 11\r
- *Model = (EAX >> 4) & 0xf; // Bits 4 - 7\r
- if (*Family == 6 || *Family == 0xf) {\r
- if (*Family == 0xf)\r
- // Examine extended family ID if family ID is F.\r
- *Family += (EAX >> 20) & 0xff; // Bits 20 - 27\r
- // Examine extended model ID if family ID is 6 or F.\r
- *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19\r
- }\r
-}\r
-\r
-static void\r
-getIntelProcessorTypeAndSubtype(unsigned int Family, unsigned int Model,\r
- unsigned int Brand_id, unsigned int Features,\r
- unsigned *Type, unsigned *Subtype) {\r
- if (Brand_id != 0)\r
- return;\r
- switch (Family) {\r
- case 3:\r
- *Type = INTEL_i386;\r
- break;\r
- case 4:\r
- switch (Model) {\r
- case 0: // Intel486 DX processors\r
- case 1: // Intel486 DX processors\r
- case 2: // Intel486 SX processors\r
- case 3: // Intel487 processors, IntelDX2 OverDrive processors,\r
- // IntelDX2 processors\r
- case 4: // Intel486 SL processor\r
- case 5: // IntelSX2 processors\r
- case 7: // Write-Back Enhanced IntelDX2 processors\r
- case 8: // IntelDX4 OverDrive processors, IntelDX4 processors\r
- default:\r
- *Type = INTEL_i486;\r
- break;\r
- }\r
- break;\r
- case 5:\r
- switch (Model) {\r
- case 1: // Pentium OverDrive processor for Pentium processor (60, 66),\r
- // Pentium processors (60, 66)\r
- case 2: // Pentium OverDrive processor for Pentium processor (75, 90,\r
- // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,\r
- // 150, 166, 200)\r
- case 3: // Pentium OverDrive processors for Intel486 processor-based\r
- // systems\r
- *Type = INTEL_PENTIUM;\r
- break;\r
- case 4: // Pentium OverDrive processor with MMX technology for Pentium\r
- // processor (75, 90, 100, 120, 133), Pentium processor with\r
- // MMX technology (166, 200)\r
- *Type = INTEL_PENTIUM;\r
- *Subtype = INTEL_PENTIUM_MMX;\r
- break;\r
- default:\r
- *Type = INTEL_PENTIUM;\r
- break;\r
- }\r
- break;\r
- case 6:\r
- switch (Model) {\r
- case 0x01: // Pentium Pro processor\r
- *Type = INTEL_PENTIUM_PRO;\r
- break;\r
- case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,\r
- // model 03\r
- case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,\r
- // model 05, and Intel Celeron processor, model 05\r
- case 0x06: // Celeron processor, model 06\r
- *Type = INTEL_PENTIUM_II;\r
- break;\r
- case 0x07: // Pentium III processor, model 07, and Pentium III Xeon\r
- // processor, model 07\r
- case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,\r
- // model 08, and Celeron processor, model 08\r
- case 0x0a: // Pentium III Xeon processor, model 0Ah\r
- case 0x0b: // Pentium III processor, model 0Bh\r
- *Type = INTEL_PENTIUM_III;\r
- break;\r
- case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.\r
- case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model\r
- // 0Dh. All processors are manufactured using the 90 nm process.\r
- case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579\r
- // Integrated Processor with Intel QuickAssist Technology\r
- *Type = INTEL_PENTIUM_M;\r
- break;\r
- case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model\r
- // 0Eh. All processors are manufactured using the 65 nm process.\r
- *Type = INTEL_CORE_DUO;\r
- break; // yonah\r
- case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile\r
- // processor, Intel Core 2 Quad processor, Intel Core 2 Quad\r
- // mobile processor, Intel Core 2 Extreme processor, Intel\r
- // Pentium Dual-Core processor, Intel Xeon processor, model\r
- // 0Fh. All processors are manufactured using the 65 nm process.\r
- case 0x16: // Intel Celeron processor model 16h. All processors are\r
- // manufactured using the 65 nm process\r
- *Type = INTEL_CORE2; // "core2"\r
- *Subtype = INTEL_CORE2_65;\r
- break;\r
- case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model\r
- // 17h. All processors are manufactured using the 45 nm process.\r
- //\r
- // 45nm: Penryn , Wolfdale, Yorkfield (XE)\r
- case 0x1d: // Intel Xeon processor MP. All processors are manufactured using\r
- // the 45 nm process.\r
- *Type = INTEL_CORE2; // "penryn"\r
- *Subtype = INTEL_CORE2_45;\r
- break;\r
- case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All\r
- // processors are manufactured using the 45 nm process.\r
- case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.\r
- // As found in a Summer 2010 model iMac.\r
- case 0x1f:\r
- case 0x2e: // Nehalem EX\r
- *Type = INTEL_COREI7; // "nehalem"\r
- *Subtype = INTEL_COREI7_NEHALEM;\r
- break;\r
- case 0x25: // Intel Core i7, laptop version.\r
- case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All\r
- // processors are manufactured using the 32 nm process.\r
- case 0x2f: // Westmere EX\r
- *Type = INTEL_COREI7; // "westmere"\r
- *Subtype = INTEL_COREI7_WESTMERE;\r
- break;\r
- case 0x2a: // Intel Core i7 processor. All processors are manufactured\r
- // using the 32 nm process.\r
- case 0x2d:\r
- *Type = INTEL_COREI7; //"sandybridge"\r
- *Subtype = INTEL_COREI7_SANDYBRIDGE;\r
- break;\r
- case 0x3a:\r
- case 0x3e: // Ivy Bridge EP\r
- *Type = INTEL_COREI7; // "ivybridge"\r
- *Subtype = INTEL_COREI7_IVYBRIDGE;\r
- break;\r
-\r
- // Haswell:\r
- case 0x3c:\r
- case 0x3f:\r
- case 0x45:\r
- case 0x46:\r
- *Type = INTEL_COREI7; // "haswell"\r
- *Subtype = INTEL_COREI7_HASWELL;\r
- break;\r
-\r
- // Broadwell:\r
- case 0x3d:\r
- case 0x47:\r
- case 0x4f:\r
- case 0x56:\r
- *Type = INTEL_COREI7; // "broadwell"\r
- *Subtype = INTEL_COREI7_BROADWELL;\r
- break;\r
-\r
- // Skylake:\r
- case 0x4e: // Skylake mobile\r
- case 0x5e: // Skylake desktop\r
- case 0x8e: // Kaby Lake mobile\r
- case 0x9e: // Kaby Lake desktop\r
- *Type = INTEL_COREI7; // "skylake"\r
- *Subtype = INTEL_COREI7_SKYLAKE;\r
- break;\r
-\r
- // Skylake Xeon:\r
- case 0x55:\r
- *Type = INTEL_COREI7;\r
- // Check that we really have AVX512\r
- if (Features & (1 << FEATURE_AVX512)) {\r
- *Subtype = INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"\r
- } else {\r
- *Subtype = INTEL_COREI7_SKYLAKE; // "skylake"\r
- }\r
- break;\r
-\r
- case 0x1c: // Most 45 nm Intel Atom processors\r
- case 0x26: // 45 nm Atom Lincroft\r
- case 0x27: // 32 nm Atom Medfield\r
- case 0x35: // 32 nm Atom Midview\r
- case 0x36: // 32 nm Atom Midview\r
- *Type = INTEL_ATOM;\r
- *Subtype = INTEL_ATOM_BONNELL;\r
- break; // "bonnell"\r
-\r
- // Atom Silvermont codes from the Intel software optimization guide.\r
- case 0x37:\r
- case 0x4a:\r
- case 0x4d:\r
- case 0x5a:\r
- case 0x5d:\r
- case 0x4c: // really airmont\r
- *Type = INTEL_ATOM;\r
- *Subtype = INTEL_ATOM_SILVERMONT;\r
- break; // "silvermont"\r
-\r
- case 0x57:\r
- *Type = INTEL_XEONPHI; // knl\r
- *Subtype = INTEL_KNIGHTS_LANDING;\r
- break;\r
-\r
- default: // Unknown family 6 CPU, try to guess.\r
- if (Features & (1 << FEATURE_AVX512)) {\r
- *Type = INTEL_XEONPHI; // knl\r
- *Subtype = INTEL_KNIGHTS_LANDING;\r
- break;\r
- }\r
- if (Features & (1 << FEATURE_ADX)) {\r
- *Type = INTEL_COREI7;\r
- *Subtype = INTEL_COREI7_BROADWELL;\r
- break;\r
- }\r
- if (Features & (1 << FEATURE_AVX2)) {\r
- *Type = INTEL_COREI7;\r
- *Subtype = INTEL_COREI7_HASWELL;\r
- break;\r
- }\r
- if (Features & (1 << FEATURE_AVX)) {\r
- *Type = INTEL_COREI7;\r
- *Subtype = INTEL_COREI7_SANDYBRIDGE;\r
- break;\r
- }\r
- if (Features & (1 << FEATURE_SSE4_2)) {\r
- if (Features & (1 << FEATURE_MOVBE)) {\r
- *Type = INTEL_ATOM;\r
- *Subtype = INTEL_ATOM_SILVERMONT;\r
- } else {\r
- *Type = INTEL_COREI7;\r
- *Subtype = INTEL_COREI7_NEHALEM;\r
- }\r
- break;\r
- }\r
- if (Features & (1 << FEATURE_SSE4_1)) {\r
- *Type = INTEL_CORE2; // "penryn"\r
- *Subtype = INTEL_CORE2_45;\r
- break;\r
- }\r
- if (Features & (1 << FEATURE_SSSE3)) {\r
- if (Features & (1 << FEATURE_MOVBE)) {\r
- *Type = INTEL_ATOM;\r
- *Subtype = INTEL_ATOM_BONNELL; // "bonnell"\r
- } else {\r
- *Type = INTEL_CORE2; // "core2"\r
- *Subtype = INTEL_CORE2_65;\r
- }\r
- break;\r
- }\r
- if (Features & (1 << FEATURE_EM64T)) {\r
- *Type = INTEL_X86_64;\r
- break; // x86-64\r
- }\r
- if (Features & (1 << FEATURE_SSE2)) {\r
- *Type = INTEL_PENTIUM_M;\r
- break;\r
- }\r
- if (Features & (1 << FEATURE_SSE)) {\r
- *Type = INTEL_PENTIUM_III;\r
- break;\r
- }\r
- if (Features & (1 << FEATURE_MMX)) {\r
- *Type = INTEL_PENTIUM_II;\r
- break;\r
- }\r
- *Type = INTEL_PENTIUM_PRO;\r
- break;\r
- }\r
- break;\r
- case 15: {\r
- switch (Model) {\r
- case 0: // Pentium 4 processor, Intel Xeon processor. All processors are\r
- // model 00h and manufactured using the 0.18 micron process.\r
- case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon\r
- // processor MP, and Intel Celeron processor. All processors are\r
- // model 01h and manufactured using the 0.18 micron process.\r
- case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,\r
- // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron\r
- // processor, and Mobile Intel Celeron processor. All processors\r
- // are model 02h and manufactured using the 0.13 micron process.\r
- *Type =\r
- ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);\r
- break;\r
-\r
- case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D\r
- // processor. All processors are model 03h and manufactured using\r
- // the 90 nm process.\r
- case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,\r
- // Pentium D processor, Intel Xeon processor, Intel Xeon\r
- // processor MP, Intel Celeron D processor. All processors are\r
- // model 04h and manufactured using the 90 nm process.\r
- case 6: // Pentium 4 processor, Pentium D processor, Pentium processor\r
- // Extreme Edition, Intel Xeon processor, Intel Xeon processor\r
- // MP, Intel Celeron D processor. All processors are model 06h\r
- // and manufactured using the 65 nm process.\r
- *Type =\r
- ((Features & (1 << FEATURE_EM64T)) ? INTEL_NOCONA : INTEL_PRESCOTT);\r
- break;\r
-\r
- default:\r
- *Type =\r
- ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);\r
- break;\r
- }\r
- break;\r
- }\r
- default:\r
- break; /*"generic"*/\r
- }\r
-}\r
-\r
-static void getAMDProcessorTypeAndSubtype(unsigned int Family,\r
- unsigned int Model,\r
- unsigned int Features,\r
- unsigned *Type,\r
- unsigned *Subtype) {\r
- // FIXME: this poorly matches the generated SubtargetFeatureKV table. There\r
- // appears to be no way to generate the wide variety of AMD-specific targets\r
- // from the information returned from CPUID.\r
- switch (Family) {\r
- case 4:\r
- *Type = AMD_i486;\r
- break;\r
- case 5:\r
- *Type = AMDPENTIUM;\r
- switch (Model) {\r
- case 6:\r
- case 7:\r
- *Subtype = AMDPENTIUM_K6;\r
- break; // "k6"\r
- case 8:\r
- *Subtype = AMDPENTIUM_K62;\r
- break; // "k6-2"\r
- case 9:\r
- case 13:\r
- *Subtype = AMDPENTIUM_K63;\r
- break; // "k6-3"\r
- case 10:\r
- *Subtype = AMDPENTIUM_GEODE;\r
- break; // "geode"\r
- }\r
- break;\r
- case 6:\r
- *Type = AMDATHLON;\r
- switch (Model) {\r
- case 4:\r
- *Subtype = AMDATHLON_TBIRD;\r
- break; // "athlon-tbird"\r
- case 6:\r
- case 7:\r
- case 8:\r
- *Subtype = AMDATHLON_MP;\r
- break; // "athlon-mp"\r
- case 10:\r
- *Subtype = AMDATHLON_XP;\r
- break; // "athlon-xp"\r
- }\r
- break;\r
- case 15:\r
- *Type = AMDATHLON;\r
- if (Features & (1 << FEATURE_SSE3)) {\r
- *Subtype = AMDATHLON_K8SSE3;\r
- break; // "k8-sse3"\r
- }\r
- switch (Model) {\r
- case 1:\r
- *Subtype = AMDATHLON_OPTERON;\r
- break; // "opteron"\r
- case 5:\r
- *Subtype = AMDATHLON_FX;\r
- break; // "athlon-fx"; also opteron\r
- default:\r
- *Subtype = AMDATHLON_64;\r
- break; // "athlon64"\r
- }\r
- break;\r
- case 16:\r
- *Type = AMDFAM10H; // "amdfam10"\r
- switch (Model) {\r
- case 2:\r
- *Subtype = AMDFAM10H_BARCELONA;\r
- break;\r
- case 4:\r
- *Subtype = AMDFAM10H_SHANGHAI;\r
- break;\r
- case 8:\r
- *Subtype = AMDFAM10H_ISTANBUL;\r
- break;\r
- }\r
- break;\r
- case 20:\r
- *Type = AMDFAM14H;\r
- *Subtype = AMD_BTVER1;\r
- break; // "btver1";\r
- case 21:\r
- *Type = AMDFAM15H;\r
- if (!(Features &\r
- (1 << FEATURE_AVX))) { // If no AVX support, provide a sane fallback.\r
- *Subtype = AMD_BTVER1;\r
- break; // "btver1"\r
- }\r
- if (Model >= 0x50 && Model <= 0x6f) {\r
- *Subtype = AMDFAM15H_BDVER4;\r
- break; // "bdver4"; 50h-6Fh: Excavator\r
- }\r
- if (Model >= 0x30 && Model <= 0x3f) {\r
- *Subtype = AMDFAM15H_BDVER3;\r
- break; // "bdver3"; 30h-3Fh: Steamroller\r
- }\r
- if (Model >= 0x10 && Model <= 0x1f) {\r
- *Subtype = AMDFAM15H_BDVER2;\r
- break; // "bdver2"; 10h-1Fh: Piledriver\r
- }\r
- if (Model <= 0x0f) {\r
- *Subtype = AMDFAM15H_BDVER1;\r
- break; // "bdver1"; 00h-0Fh: Bulldozer\r
- }\r
- break;\r
- case 22:\r
- *Type = AMDFAM16H;\r
- if (!(Features &\r
- (1 << FEATURE_AVX))) { // If no AVX support provide a sane fallback.\r
- *Subtype = AMD_BTVER1;\r
- break; // "btver1";\r
- }\r
- *Subtype = AMD_BTVER2;\r
- break; // "btver2"\r
- case 23:\r
- *Type = AMDFAM17H;\r
- if (Features & (1 << FEATURE_ADX)) {\r
- *Subtype = AMDFAM17H_ZNVER1;\r
- break; // "znver1"\r
- }\r
- *Subtype = AMD_BTVER1;\r
- break;\r
- default:\r
- break; // "generic"\r
- }\r
-}\r
-\r
-static unsigned getAvailableFeatures(unsigned int ECX, unsigned int EDX,\r
- unsigned MaxLeaf) {\r
- unsigned Features = 0;\r
- unsigned int EAX, EBX;\r
- Features |= (((EDX >> 23) & 1) << FEATURE_MMX);\r
- Features |= (((EDX >> 25) & 1) << FEATURE_SSE);\r
- Features |= (((EDX >> 26) & 1) << FEATURE_SSE2);\r
- Features |= (((ECX >> 0) & 1) << FEATURE_SSE3);\r
- Features |= (((ECX >> 9) & 1) << FEATURE_SSSE3);\r
- Features |= (((ECX >> 19) & 1) << FEATURE_SSE4_1);\r
- Features |= (((ECX >> 20) & 1) << FEATURE_SSE4_2);\r
- Features |= (((ECX >> 22) & 1) << FEATURE_MOVBE);\r
-\r
- // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV\r
- // indicates that the AVX registers will be saved and restored on context\r
- // switch, then we have full AVX support.\r
- const unsigned AVXBits = (1 << 27) | (1 << 28);\r
- bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&\r
- ((EAX & 0x6) == 0x6);\r
- bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);\r
- bool HasLeaf7 =\r
- MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);\r
- bool HasADX = HasLeaf7 && ((EBX >> 19) & 1);\r
- bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20);\r
- bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1);\r
- Features |= (HasAVX << FEATURE_AVX);\r
- Features |= (HasAVX2 << FEATURE_AVX2);\r
- Features |= (HasAVX512 << FEATURE_AVX512);\r
- Features |= (HasAVX512Save << FEATURE_AVX512SAVE);\r
- Features |= (HasADX << FEATURE_ADX);\r
-\r
- getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);\r
- Features |= (((EDX >> 29) & 0x1) << FEATURE_EM64T);\r
- return Features;\r
-}\r
-\r
-StringRef sys::getHostCPUName() {\r
- unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;\r
- unsigned MaxLeaf, Vendor;\r
-\r
-#if defined(__GNUC__) || defined(__clang__)\r
- //FIXME: include cpuid.h from clang or copy __get_cpuid_max here\r
- // and simplify it to not invoke __cpuid (like cpu_model.c in\r
- // compiler-rt/lib/builtins/cpu_model.c?\r
- // Opting for the second option.\r
- if(!isCpuIdSupported())\r
- return "generic";\r
-#endif\r
- if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX))\r
- return "generic";\r
- if (getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))\r
- return "generic";\r
-\r
- unsigned Brand_id = EBX & 0xff;\r
- unsigned Family = 0, Model = 0;\r
- unsigned Features = 0;\r
- detectX86FamilyModel(EAX, &Family, &Model);\r
- Features = getAvailableFeatures(ECX, EDX, MaxLeaf);\r
-\r
- unsigned Type;\r
- unsigned Subtype;\r
-\r
- if (Vendor == SIG_INTEL) {\r
- getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, &Type,\r
- &Subtype);\r
- switch (Type) {\r
- case INTEL_i386:\r
- return "i386";\r
- case INTEL_i486:\r
- return "i486";\r
- case INTEL_PENTIUM:\r
- if (Subtype == INTEL_PENTIUM_MMX)\r
- return "pentium-mmx";\r
- return "pentium";\r
- case INTEL_PENTIUM_PRO:\r
- return "pentiumpro";\r
- case INTEL_PENTIUM_II:\r
- return "pentium2";\r
- case INTEL_PENTIUM_III:\r
- return "pentium3";\r
- case INTEL_PENTIUM_IV:\r
- return "pentium4";\r
- case INTEL_PENTIUM_M:\r
- return "pentium-m";\r
- case INTEL_CORE_DUO:\r
- return "yonah";\r
- case INTEL_CORE2:\r
- switch (Subtype) {\r
- case INTEL_CORE2_65:\r
- return "core2";\r
- case INTEL_CORE2_45:\r
- return "penryn";\r
- default:\r
- return "core2";\r
- }\r
- case INTEL_COREI7:\r
- switch (Subtype) {\r
- case INTEL_COREI7_NEHALEM:\r
- return "nehalem";\r
- case INTEL_COREI7_WESTMERE:\r
- return "westmere";\r
- case INTEL_COREI7_SANDYBRIDGE:\r
- return "sandybridge";\r
- case INTEL_COREI7_IVYBRIDGE:\r
- return "ivybridge";\r
- case INTEL_COREI7_HASWELL:\r
- return "haswell";\r
- case INTEL_COREI7_BROADWELL:\r
- return "broadwell";\r
- case INTEL_COREI7_SKYLAKE:\r
- return "skylake";\r
- case INTEL_COREI7_SKYLAKE_AVX512:\r
- return "skylake-avx512";\r
- default:\r
- return "corei7";\r
- }\r
- case INTEL_ATOM:\r
- switch (Subtype) {\r
- case INTEL_ATOM_BONNELL:\r
- return "bonnell";\r
- case INTEL_ATOM_SILVERMONT:\r
- return "silvermont";\r
- default:\r
- return "atom";\r
- }\r
- case INTEL_XEONPHI:\r
- return "knl"; /*update for more variants added*/\r
- case INTEL_X86_64:\r
- return "x86-64";\r
- case INTEL_NOCONA:\r
- return "nocona";\r
- case INTEL_PRESCOTT:\r
- return "prescott";\r
- default:\r
- return "generic";\r
- }\r
- } else if (Vendor == SIG_AMD) {\r
- getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);\r
- switch (Type) {\r
- case AMD_i486:\r
- return "i486";\r
- case AMDPENTIUM:\r
- switch (Subtype) {\r
- case AMDPENTIUM_K6:\r
- return "k6";\r
- case AMDPENTIUM_K62:\r
- return "k6-2";\r
- case AMDPENTIUM_K63:\r
- return "k6-3";\r
- case AMDPENTIUM_GEODE:\r
- return "geode";\r
- default:\r
- return "pentium";\r
- }\r
- case AMDATHLON:\r
- switch (Subtype) {\r
- case AMDATHLON_TBIRD:\r
- return "athlon-tbird";\r
- case AMDATHLON_MP:\r
- return "athlon-mp";\r
- case AMDATHLON_XP:\r
- return "athlon-xp";\r
- case AMDATHLON_K8SSE3:\r
- return "k8-sse3";\r
- case AMDATHLON_OPTERON:\r
- return "opteron";\r
- case AMDATHLON_FX:\r
- return "athlon-fx";\r
- case AMDATHLON_64:\r
- return "athlon64";\r
- default:\r
- return "athlon";\r
- }\r
- case AMDFAM10H:\r
- if(Subtype == AMDFAM10H_BARCELONA)\r
- return "barcelona";\r
- return "amdfam10";\r
- case AMDFAM14H:\r
- return "btver1";\r
- case AMDFAM15H:\r
- switch (Subtype) {\r
- case AMDFAM15H_BDVER1:\r
- return "bdver1";\r
- case AMDFAM15H_BDVER2:\r
- return "bdver2";\r
- case AMDFAM15H_BDVER3:\r
- return "bdver3";\r
- case AMDFAM15H_BDVER4:\r
- return "bdver4";\r
- case AMD_BTVER1:\r
- return "btver1";\r
- default:\r
- return "amdfam15";\r
- }\r
- case AMDFAM16H:\r
- switch (Subtype) {\r
- case AMD_BTVER1:\r
- return "btver1";\r
- case AMD_BTVER2:\r
- return "btver2";\r
- default:\r
- return "amdfam16";\r
- }\r
- case AMDFAM17H:\r
- switch (Subtype) {\r
- case AMD_BTVER1:\r
- return "btver1";\r
- case AMDFAM17H_ZNVER1:\r
- return "znver1";\r
- default:\r
- return "amdfam17";\r
- }\r
- default:\r
- return "generic";\r
- }\r
- }\r
- return "generic";\r
-}\r
-\r
-#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))\r
-StringRef sys::getHostCPUName() {\r
- host_basic_info_data_t hostInfo;\r
- mach_msg_type_number_t infoCount;\r
-\r
- infoCount = HOST_BASIC_INFO_COUNT;\r
- host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,\r
- &infoCount);\r
-\r
- if (hostInfo.cpu_type != CPU_TYPE_POWERPC)\r
- return "generic";\r
-\r
- switch (hostInfo.cpu_subtype) {\r
- case CPU_SUBTYPE_POWERPC_601:\r
- return "601";\r
- case CPU_SUBTYPE_POWERPC_602:\r
- return "602";\r
- case CPU_SUBTYPE_POWERPC_603:\r
- return "603";\r
- case CPU_SUBTYPE_POWERPC_603e:\r
- return "603e";\r
- case CPU_SUBTYPE_POWERPC_603ev:\r
- return "603ev";\r
- case CPU_SUBTYPE_POWERPC_604:\r
- return "604";\r
- case CPU_SUBTYPE_POWERPC_604e:\r
- return "604e";\r
- case CPU_SUBTYPE_POWERPC_620:\r
- return "620";\r
- case CPU_SUBTYPE_POWERPC_750:\r
- return "750";\r
- case CPU_SUBTYPE_POWERPC_7400:\r
- return "7400";\r
- case CPU_SUBTYPE_POWERPC_7450:\r
- return "7450";\r
- case CPU_SUBTYPE_POWERPC_970:\r
- return "970";\r
- default:;\r
- }\r
-\r
- return "generic";\r
-}\r
-#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))\r
-StringRef sys::getHostCPUName() {\r
- std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();\r
- const StringRef& Content = P ? P->getBuffer() : "";\r
- return detail::getHostCPUNameForPowerPC(Content);\r
-}\r
-#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))\r
-StringRef sys::getHostCPUName() {\r
- std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();\r
- const StringRef& Content = P ? P->getBuffer() : "";\r
- return detail::getHostCPUNameForARM(Content);\r
-}\r
-#elif defined(__linux__) && defined(__s390x__)\r
-StringRef sys::getHostCPUName() {\r
- std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();\r
- const StringRef& Content = P ? P->getBuffer() : "";\r
- return detail::getHostCPUNameForS390x(Content);\r
-}\r
-#else\r
-StringRef sys::getHostCPUName() { return "generic"; }\r
-#endif\r
-\r
-#if defined(__linux__) && defined(__x86_64__)\r
-// On Linux, the number of physical cores can be computed from /proc/cpuinfo,\r
-// using the number of unique physical/core id pairs. The following\r
-// implementation reads the /proc/cpuinfo format on an x86_64 system.\r
-static int computeHostNumPhysicalCores() {\r
- // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be\r
- // mmapped because it appears to have 0 size.\r
- llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =\r
- llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");\r
- if (std::error_code EC = Text.getError()) {\r
- llvm::errs() << "Can't read "\r
- << "/proc/cpuinfo: " << EC.message() << "\n";\r
- return -1;\r
- }\r
- SmallVector<StringRef, 8> strs;\r
- (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,\r
- /*KeepEmpty=*/false);\r
- int CurPhysicalId = -1;\r
- int CurCoreId = -1;\r
- SmallSet<std::pair<int, int>, 32> UniqueItems;\r
- for (auto &Line : strs) {\r
- Line = Line.trim();\r
- if (!Line.startswith("physical id") && !Line.startswith("core id"))\r
- continue;\r
- std::pair<StringRef, StringRef> Data = Line.split(':');\r
- auto Name = Data.first.trim();\r
- auto Val = Data.second.trim();\r
- if (Name == "physical id") {\r
- assert(CurPhysicalId == -1 &&\r
- "Expected a core id before seeing another physical id");\r
- Val.getAsInteger(10, CurPhysicalId);\r
- }\r
- if (Name == "core id") {\r
- assert(CurCoreId == -1 &&\r
- "Expected a physical id before seeing another core id");\r
- Val.getAsInteger(10, CurCoreId);\r
- }\r
- if (CurPhysicalId != -1 && CurCoreId != -1) {\r
- UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));\r
- CurPhysicalId = -1;\r
- CurCoreId = -1;\r
- }\r
- }\r
- return UniqueItems.size();\r
-}\r
-#elif defined(__APPLE__) && defined(__x86_64__)\r
-#include <sys/param.h>\r
-#include <sys/sysctl.h>\r
-\r
-// Gets the number of *physical cores* on the machine.\r
-static int computeHostNumPhysicalCores() {\r
- uint32_t count;\r
- size_t len = sizeof(count);\r
- sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);\r
- if (count < 1) {\r
- int nm[2];\r
- nm[0] = CTL_HW;\r
- nm[1] = HW_AVAILCPU;\r
- sysctl(nm, 2, &count, &len, NULL, 0);\r
- if (count < 1)\r
- return -1;\r
- }\r
- return count;\r
-}\r
-#else\r
-// On other systems, return -1 to indicate unknown.\r
-static int computeHostNumPhysicalCores() { return -1; }\r
-#endif\r
-\r
-int sys::getHostNumPhysicalCores() {\r
- static int NumCores = computeHostNumPhysicalCores();\r
- return NumCores;\r
-}\r
-\r
-#if defined(__i386__) || defined(_M_IX86) || \\r
- defined(__x86_64__) || defined(_M_X64)\r
-bool sys::getHostCPUFeatures(StringMap<bool> &Features) {\r
- unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;\r
- unsigned MaxLevel;\r
- union {\r
- unsigned u[3];\r
- char c[12];\r
- } text;\r
-\r
- if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||\r
- MaxLevel < 1)\r
- return false;\r
-\r
- getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);\r
-\r
- Features["cmov"] = (EDX >> 15) & 1;\r
- Features["mmx"] = (EDX >> 23) & 1;\r
- Features["sse"] = (EDX >> 25) & 1;\r
- Features["sse2"] = (EDX >> 26) & 1;\r
- Features["sse3"] = (ECX >> 0) & 1;\r
- Features["ssse3"] = (ECX >> 9) & 1;\r
- Features["sse4.1"] = (ECX >> 19) & 1;\r
- Features["sse4.2"] = (ECX >> 20) & 1;\r
-\r
- Features["pclmul"] = (ECX >> 1) & 1;\r
- Features["cx16"] = (ECX >> 13) & 1;\r
- Features["movbe"] = (ECX >> 22) & 1;\r
- Features["popcnt"] = (ECX >> 23) & 1;\r
- Features["aes"] = (ECX >> 25) & 1;\r
- Features["rdrnd"] = (ECX >> 30) & 1;\r
-\r
- // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV\r
- // indicates that the AVX registers will be saved and restored on context\r
- // switch, then we have full AVX support.\r
- bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&\r
- !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);\r
- Features["avx"] = HasAVXSave;\r
- Features["fma"] = HasAVXSave && (ECX >> 12) & 1;\r
- Features["f16c"] = HasAVXSave && (ECX >> 29) & 1;\r
-\r
- // Only enable XSAVE if OS has enabled support for saving YMM state.\r
- Features["xsave"] = HasAVXSave && (ECX >> 26) & 1;\r
-\r
- // AVX512 requires additional context to be saved by the OS.\r
- bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);\r
-\r
- unsigned MaxExtLevel;\r
- getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);\r
-\r
- bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&\r
- !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);\r
- Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);\r
- Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);\r
- Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);\r
- Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;\r
- Features["lwp"] = HasExtLeaf1 && ((ECX >> 15) & 1);\r
- Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;\r
- Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);\r
- Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);\r
-\r
- bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&\r
- !getX86CpuIDAndInfoEx(0x80000008,0x0, &EAX, &EBX, &ECX, &EDX);\r
- Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1);\r
-\r
- bool HasLeaf7 =\r
- MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);\r
-\r
- // AVX2 is only supported if we have the OS save support from AVX.\r
- Features["avx2"] = HasAVXSave && HasLeaf7 && ((EBX >> 5) & 1);\r
-\r
- Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);\r
- Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1);\r
- Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);\r
- Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);\r
- Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);\r
- Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);\r
- Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);\r
- Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);\r
- Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1);\r
- Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);\r
-\r
- // AVX512 is only supported if the OS supports the context save for it.\r
- Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;\r
- Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;\r
- Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;\r
- Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;\r
- Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;\r
- Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;\r
- Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;\r
- Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;\r
-\r
- Features["prefetchwt1"] = HasLeaf7 && (ECX & 1);\r
- Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;\r
- // Enable protection keys\r
- Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1);\r
-\r
- bool HasLeafD = MaxLevel >= 0xd &&\r
- !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);\r
-\r
- // Only enable XSAVE if OS has enabled support for saving YMM state.\r
- Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1);\r
- Features["xsavec"] = HasAVXSave && HasLeafD && ((EAX >> 1) & 1);\r
- Features["xsaves"] = HasAVXSave && HasLeafD && ((EAX >> 3) & 1);\r
-\r
- return true;\r
-}\r
-#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))\r
-bool sys::getHostCPUFeatures(StringMap<bool> &Features) {\r
- std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();\r
- if (!P)\r
- return false;\r
-\r
- SmallVector<StringRef, 32> Lines;\r
- P->getBuffer().split(Lines, "\n");\r
-\r
- SmallVector<StringRef, 32> CPUFeatures;\r
-\r
- // Look for the CPU features.\r
- for (unsigned I = 0, E = Lines.size(); I != E; ++I)\r
- if (Lines[I].startswith("Features")) {\r
- Lines[I].split(CPUFeatures, ' ');\r
- break;\r
- }\r
-\r
-#if defined(__aarch64__)\r
- // Keep track of which crypto features we have seen\r
- enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };\r
- uint32_t crypto = 0;\r
-#endif\r
-\r
- for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {\r
- StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])\r
-#if defined(__aarch64__)\r
- .Case("asimd", "neon")\r
- .Case("fp", "fp-armv8")\r
- .Case("crc32", "crc")\r
-#else\r
- .Case("half", "fp16")\r
- .Case("neon", "neon")\r
- .Case("vfpv3", "vfp3")\r
- .Case("vfpv3d16", "d16")\r
- .Case("vfpv4", "vfp4")\r
- .Case("idiva", "hwdiv-arm")\r
- .Case("idivt", "hwdiv")\r
-#endif\r
- .Default("");\r
-\r
-#if defined(__aarch64__)\r
- // We need to check crypto separately since we need all of the crypto\r
- // extensions to enable the subtarget feature\r
- if (CPUFeatures[I] == "aes")\r
- crypto |= CAP_AES;\r
- else if (CPUFeatures[I] == "pmull")\r
- crypto |= CAP_PMULL;\r
- else if (CPUFeatures[I] == "sha1")\r
- crypto |= CAP_SHA1;\r
- else if (CPUFeatures[I] == "sha2")\r
- crypto |= CAP_SHA2;\r
-#endif\r
-\r
- if (LLVMFeatureStr != "")\r
- Features[LLVMFeatureStr] = true;\r
- }\r
-\r
-#if defined(__aarch64__)\r
- // If we have all crypto bits we can add the feature\r
- if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))\r
- Features["crypto"] = true;\r
-#endif\r
-\r
- return true;\r
-}\r
-#else\r
-bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }\r
-#endif\r
-\r
-std::string sys::getProcessTriple() {\r
- Triple PT(Triple::normalize(LLVM_HOST_TRIPLE));\r
-\r
- if (sizeof(void *) == 8 && PT.isArch32Bit())\r
- PT = PT.get64BitArchVariant();\r
- if (sizeof(void *) == 4 && PT.isArch64Bit())\r
- PT = PT.get32BitArchVariant();\r
-\r
- return PT.str();\r
-}\r
+//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the operating system Host concept.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/Host.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Config/config.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <assert.h>
+#include <string.h>
+
+// Include the platform-specific parts of this class.
+#ifdef LLVM_ON_UNIX
+#include "Unix/Host.inc"
+#endif
+#ifdef LLVM_ON_WIN32
+#include "Windows/Host.inc"
+#endif
+#ifdef _MSC_VER
+#include <intrin.h>
+#endif
+#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
+#include <mach/host_info.h>
+#include <mach/mach.h>
+#include <mach/mach_host.h>
+#include <mach/machine.h>
+#endif
+
+#define DEBUG_TYPE "host-detection"
+
+//===----------------------------------------------------------------------===//
+//
+// Implementations of the CPU detection routines
+//
+//===----------------------------------------------------------------------===//
+
+using namespace llvm;
+
+static std::unique_ptr<llvm::MemoryBuffer>
+ LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
+ llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
+ llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
+ if (std::error_code EC = Text.getError()) {
+ llvm::errs() << "Can't read "
+ << "/proc/cpuinfo: " << EC.message() << "\n";
+ return nullptr;
+ }
+ return std::move(*Text);
+}
+
+StringRef sys::detail::getHostCPUNameForPowerPC(
+ const StringRef &ProcCpuinfoContent) {
+ // Access to the Processor Version Register (PVR) on PowerPC is privileged,
+ // and so we must use an operating-system interface to determine the current
+ // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
+ const char *generic = "generic";
+
+ // The cpu line is second (after the 'processor: 0' line), so if this
+ // buffer is too small then something has changed (or is wrong).
+ StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
+ StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
+
+ StringRef::const_iterator CIP = CPUInfoStart;
+
+ StringRef::const_iterator CPUStart = 0;
+ size_t CPULen = 0;
+
+ // We need to find the first line which starts with cpu, spaces, and a colon.
+ // After the colon, there may be some additional spaces and then the cpu type.
+ while (CIP < CPUInfoEnd && CPUStart == 0) {
+ if (CIP < CPUInfoEnd && *CIP == '\n')
+ ++CIP;
+
+ if (CIP < CPUInfoEnd && *CIP == 'c') {
+ ++CIP;
+ if (CIP < CPUInfoEnd && *CIP == 'p') {
+ ++CIP;
+ if (CIP < CPUInfoEnd && *CIP == 'u') {
+ ++CIP;
+ while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
+ ++CIP;
+
+ if (CIP < CPUInfoEnd && *CIP == ':') {
+ ++CIP;
+ while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
+ ++CIP;
+
+ if (CIP < CPUInfoEnd) {
+ CPUStart = CIP;
+ while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
+ *CIP != ',' && *CIP != '\n'))
+ ++CIP;
+ CPULen = CIP - CPUStart;
+ }
+ }
+ }
+ }
+ }
+
+ if (CPUStart == 0)
+ while (CIP < CPUInfoEnd && *CIP != '\n')
+ ++CIP;
+ }
+
+ if (CPUStart == 0)
+ return generic;
+
+ return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
+ .Case("604e", "604e")
+ .Case("604", "604")
+ .Case("7400", "7400")
+ .Case("7410", "7400")
+ .Case("7447", "7400")
+ .Case("7455", "7450")
+ .Case("G4", "g4")
+ .Case("POWER4", "970")
+ .Case("PPC970FX", "970")
+ .Case("PPC970MP", "970")
+ .Case("G5", "g5")
+ .Case("POWER5", "g5")
+ .Case("A2", "a2")
+ .Case("POWER6", "pwr6")
+ .Case("POWER7", "pwr7")
+ .Case("POWER8", "pwr8")
+ .Case("POWER8E", "pwr8")
+ .Case("POWER8NVL", "pwr8")
+ .Case("POWER9", "pwr9")
+ .Default(generic);
+}
+
+StringRef sys::detail::getHostCPUNameForARM(
+ const StringRef &ProcCpuinfoContent) {
+ // The cpuid register on arm is not accessible from user space. On Linux,
+ // it is exposed through the /proc/cpuinfo file.
+
+ // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
+ // in all cases.
+ SmallVector<StringRef, 32> Lines;
+ ProcCpuinfoContent.split(Lines, "\n");
+
+ // Look for the CPU implementer line.
+ StringRef Implementer;
+ StringRef Hardware;
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
+ if (Lines[I].startswith("CPU implementer"))
+ Implementer = Lines[I].substr(15).ltrim("\t :");
+ if (Lines[I].startswith("Hardware"))
+ Hardware = Lines[I].substr(8).ltrim("\t :");
+ }
+
+ if (Implementer == "0x41") { // ARM Ltd.
+ // MSM8992/8994 may give cpu part for the core that the kernel is running on,
+ // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
+ if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
+ return "cortex-a53";
+
+
+ // Look for the CPU part line.
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I)
+ if (Lines[I].startswith("CPU part"))
+ // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
+ // values correspond to the "Part number" in the CP15/c0 register. The
+ // contents are specified in the various processor manuals.
+ return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
+ .Case("0x926", "arm926ej-s")
+ .Case("0xb02", "mpcore")
+ .Case("0xb36", "arm1136j-s")
+ .Case("0xb56", "arm1156t2-s")
+ .Case("0xb76", "arm1176jz-s")
+ .Case("0xc08", "cortex-a8")
+ .Case("0xc09", "cortex-a9")
+ .Case("0xc0f", "cortex-a15")
+ .Case("0xc20", "cortex-m0")
+ .Case("0xc23", "cortex-m3")
+ .Case("0xc24", "cortex-m4")
+ .Case("0xd04", "cortex-a35")
+ .Case("0xd03", "cortex-a53")
+ .Case("0xd07", "cortex-a57")
+ .Case("0xd08", "cortex-a72")
+ .Case("0xd09", "cortex-a73")
+ .Default("generic");
+ }
+
+ if (Implementer == "0x51") // Qualcomm Technologies, Inc.
+ // Look for the CPU part line.
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I)
+ if (Lines[I].startswith("CPU part"))
+ // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
+ // values correspond to the "Part number" in the CP15/c0 register. The
+ // contents are specified in the various processor manuals.
+ return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
+ .Case("0x06f", "krait") // APQ8064
+ .Case("0x201", "kryo")
+ .Case("0x205", "kryo")
+ .Default("generic");
+
+ return "generic";
+}
+
+StringRef sys::detail::getHostCPUNameForS390x(
+ const StringRef &ProcCpuinfoContent) {
+ // STIDP is a privileged operation, so use /proc/cpuinfo instead.
+
+ // The "processor 0:" line comes after a fair amount of other information,
+ // including a cache breakdown, but this should be plenty.
+ SmallVector<StringRef, 32> Lines;
+ ProcCpuinfoContent.split(Lines, "\n");
+
+ // Look for the CPU features.
+ SmallVector<StringRef, 32> CPUFeatures;
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I)
+ if (Lines[I].startswith("features")) {
+ size_t Pos = Lines[I].find(":");
+ if (Pos != StringRef::npos) {
+ Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
+ break;
+ }
+ }
+
+ // We need to check for the presence of vector support independently of
+ // the machine type, since we may only use the vector register set when
+ // supported by the kernel (and hypervisor).
+ bool HaveVectorSupport = false;
+ for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
+ if (CPUFeatures[I] == "vx")
+ HaveVectorSupport = true;
+ }
+
+ // Now check the processor machine type.
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
+ if (Lines[I].startswith("processor ")) {
+ size_t Pos = Lines[I].find("machine = ");
+ if (Pos != StringRef::npos) {
+ Pos += sizeof("machine = ") - 1;
+ unsigned int Id;
+ if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
+ if (Id >= 2964 && HaveVectorSupport)
+ return "z13";
+ if (Id >= 2827)
+ return "zEC12";
+ if (Id >= 2817)
+ return "z196";
+ }
+ }
+ break;
+ }
+ }
+
+ return "generic";
+}
+
+#if defined(__i386__) || defined(_M_IX86) || \
+ defined(__x86_64__) || defined(_M_X64)
+
+enum VendorSignatures {
+ SIG_INTEL = 0x756e6547 /* Genu */,
+ SIG_AMD = 0x68747541 /* Auth */
+};
+
+enum ProcessorVendors {
+ VENDOR_INTEL = 1,
+ VENDOR_AMD,
+ VENDOR_OTHER,
+ VENDOR_MAX
+};
+
+enum ProcessorTypes {
+ INTEL_ATOM = 1,
+ INTEL_CORE2,
+ INTEL_COREI7,
+ AMDFAM10H,
+ AMDFAM15H,
+ INTEL_i386,
+ INTEL_i486,
+ INTEL_PENTIUM,
+ INTEL_PENTIUM_PRO,
+ INTEL_PENTIUM_II,
+ INTEL_PENTIUM_III,
+ INTEL_PENTIUM_IV,
+ INTEL_PENTIUM_M,
+ INTEL_CORE_DUO,
+ INTEL_XEONPHI,
+ INTEL_X86_64,
+ INTEL_NOCONA,
+ INTEL_PRESCOTT,
+ AMD_i486,
+ AMDPENTIUM,
+ AMDATHLON,
+ AMDFAM14H,
+ AMDFAM16H,
+ AMDFAM17H,
+ CPU_TYPE_MAX
+};
+
+enum ProcessorSubtypes {
+ INTEL_COREI7_NEHALEM = 1,
+ INTEL_COREI7_WESTMERE,
+ INTEL_COREI7_SANDYBRIDGE,
+ AMDFAM10H_BARCELONA,
+ AMDFAM10H_SHANGHAI,
+ AMDFAM10H_ISTANBUL,
+ AMDFAM15H_BDVER1,
+ AMDFAM15H_BDVER2,
+ INTEL_PENTIUM_MMX,
+ INTEL_CORE2_65,
+ INTEL_CORE2_45,
+ INTEL_COREI7_IVYBRIDGE,
+ INTEL_COREI7_HASWELL,
+ INTEL_COREI7_BROADWELL,
+ INTEL_COREI7_SKYLAKE,
+ INTEL_COREI7_SKYLAKE_AVX512,
+ INTEL_ATOM_BONNELL,
+ INTEL_ATOM_SILVERMONT,
+ INTEL_KNIGHTS_LANDING,
+ AMDPENTIUM_K6,
+ AMDPENTIUM_K62,
+ AMDPENTIUM_K63,
+ AMDPENTIUM_GEODE,
+ AMDATHLON_TBIRD,
+ AMDATHLON_MP,
+ AMDATHLON_XP,
+ AMDATHLON_K8SSE3,
+ AMDATHLON_OPTERON,
+ AMDATHLON_FX,
+ AMDATHLON_64,
+ AMD_BTVER1,
+ AMD_BTVER2,
+ AMDFAM15H_BDVER3,
+ AMDFAM15H_BDVER4,
+ AMDFAM17H_ZNVER1,
+ CPU_SUBTYPE_MAX
+};
+
+enum ProcessorFeatures {
+ FEATURE_CMOV = 0,
+ FEATURE_MMX,
+ FEATURE_POPCNT,
+ FEATURE_SSE,
+ FEATURE_SSE2,
+ FEATURE_SSE3,
+ FEATURE_SSSE3,
+ FEATURE_SSE4_1,
+ FEATURE_SSE4_2,
+ FEATURE_AVX,
+ FEATURE_AVX2,
+ FEATURE_AVX512,
+ FEATURE_AVX512SAVE,
+ FEATURE_MOVBE,
+ FEATURE_ADX,
+ FEATURE_EM64T
+};
+
+// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
+// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
+// support. Consequently, for i386, the presence of CPUID is checked first
+// via the corresponding eflags bit.
+// Removal of cpuid.h header motivated by PR30384
+// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
+// or test-suite, but are used in external projects e.g. libstdcxx
+static bool isCpuIdSupported() {
+#if defined(__GNUC__) || defined(__clang__)
+#if defined(__i386__)
+ int __cpuid_supported;
+ __asm__(" pushfl\n"
+ " popl %%eax\n"
+ " movl %%eax,%%ecx\n"
+ " xorl $0x00200000,%%eax\n"
+ " pushl %%eax\n"
+ " popfl\n"
+ " pushfl\n"
+ " popl %%eax\n"
+ " movl $0,%0\n"
+ " cmpl %%eax,%%ecx\n"
+ " je 1f\n"
+ " movl $1,%0\n"
+ "1:"
+ : "=r"(__cpuid_supported)
+ :
+ : "eax", "ecx");
+ if (!__cpuid_supported)
+ return false;
+#endif
+ return true;
+#endif
+ return true;
+}
+
+/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
+/// the specified arguments. If we can't run cpuid on the host, return true.
+static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
+ unsigned *rECX, unsigned *rEDX) {
+#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)
+#if defined(__GNUC__) || defined(__clang__)
+#if defined(__x86_64__)
+ // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
+ // FIXME: should we save this for Clang?
+ __asm__("movq\t%%rbx, %%rsi\n\t"
+ "cpuid\n\t"
+ "xchgq\t%%rbx, %%rsi\n\t"
+ : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
+ : "a"(value));
+#elif defined(__i386__)
+ __asm__("movl\t%%ebx, %%esi\n\t"
+ "cpuid\n\t"
+ "xchgl\t%%ebx, %%esi\n\t"
+ : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
+ : "a"(value));
+#else
+ assert(0 && "This method is defined only for x86.");
+#endif
+#elif defined(_MSC_VER)
+ // The MSVC intrinsic is portable across x86 and x64.
+ int registers[4];
+ __cpuid(registers, value);
+ *rEAX = registers[0];
+ *rEBX = registers[1];
+ *rECX = registers[2];
+ *rEDX = registers[3];
+#endif
+ return false;
+#else
+ return true;
+#endif
+}
+
+/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
+/// the 4 values in the specified arguments. If we can't run cpuid on the host,
+/// return true.
+static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
+ unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
+ unsigned *rEDX) {
+#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)
+#if defined(__x86_64__) || defined(_M_X64)
+#if defined(__GNUC__) || defined(__clang__)
+ // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
+ // FIXME: should we save this for Clang?
+ __asm__("movq\t%%rbx, %%rsi\n\t"
+ "cpuid\n\t"
+ "xchgq\t%%rbx, %%rsi\n\t"
+ : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
+ : "a"(value), "c"(subleaf));
+#elif defined(_MSC_VER)
+ int registers[4];
+ __cpuidex(registers, value, subleaf);
+ *rEAX = registers[0];
+ *rEBX = registers[1];
+ *rECX = registers[2];
+ *rEDX = registers[3];
+#endif
+#elif defined(__i386__) || defined(_M_IX86)
+#if defined(__GNUC__) || defined(__clang__)
+ __asm__("movl\t%%ebx, %%esi\n\t"
+ "cpuid\n\t"
+ "xchgl\t%%ebx, %%esi\n\t"
+ : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
+ : "a"(value), "c"(subleaf));
+#elif defined(_MSC_VER)
+ __asm {
+ mov eax,value
+ mov ecx,subleaf
+ cpuid
+ mov esi,rEAX
+ mov dword ptr [esi],eax
+ mov esi,rEBX
+ mov dword ptr [esi],ebx
+ mov esi,rECX
+ mov dword ptr [esi],ecx
+ mov esi,rEDX
+ mov dword ptr [esi],edx
+ }
+#endif
+#else
+ assert(0 && "This method is defined only for x86.");
+#endif
+ return false;
+#else
+ return true;
+#endif
+}
+
+static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
+#if defined(__GNUC__) || defined(__clang__)
+ // Check xgetbv; this uses a .byte sequence instead of the instruction
+ // directly because older assemblers do not include support for xgetbv and
+ // there is no easy way to conditionally compile based on the assembler used.
+ __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
+ return false;
+#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
+ unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
+ *rEAX = Result;
+ *rEDX = Result >> 32;
+ return false;
+#else
+ return true;
+#endif
+}
+
+static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
+ unsigned *Model) {
+ *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
+ *Model = (EAX >> 4) & 0xf; // Bits 4 - 7
+ if (*Family == 6 || *Family == 0xf) {
+ if (*Family == 0xf)
+ // Examine extended family ID if family ID is F.
+ *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
+ // Examine extended model ID if family ID is 6 or F.
+ *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
+ }
+}
+
+static void
+getIntelProcessorTypeAndSubtype(unsigned int Family, unsigned int Model,
+ unsigned int Brand_id, unsigned int Features,
+ unsigned *Type, unsigned *Subtype) {
+ if (Brand_id != 0)
+ return;
+ switch (Family) {
+ case 3:
+ *Type = INTEL_i386;
+ break;
+ case 4:
+ switch (Model) {
+ case 0: // Intel486 DX processors
+ case 1: // Intel486 DX processors
+ case 2: // Intel486 SX processors
+ case 3: // Intel487 processors, IntelDX2 OverDrive processors,
+ // IntelDX2 processors
+ case 4: // Intel486 SL processor
+ case 5: // IntelSX2 processors
+ case 7: // Write-Back Enhanced IntelDX2 processors
+ case 8: // IntelDX4 OverDrive processors, IntelDX4 processors
+ default:
+ *Type = INTEL_i486;
+ break;
+ }
+ break;
+ case 5:
+ switch (Model) {
+ case 1: // Pentium OverDrive processor for Pentium processor (60, 66),
+ // Pentium processors (60, 66)
+ case 2: // Pentium OverDrive processor for Pentium processor (75, 90,
+ // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
+ // 150, 166, 200)
+ case 3: // Pentium OverDrive processors for Intel486 processor-based
+ // systems
+ *Type = INTEL_PENTIUM;
+ break;
+ case 4: // Pentium OverDrive processor with MMX technology for Pentium
+ // processor (75, 90, 100, 120, 133), Pentium processor with
+ // MMX technology (166, 200)
+ *Type = INTEL_PENTIUM;
+ *Subtype = INTEL_PENTIUM_MMX;
+ break;
+ default:
+ *Type = INTEL_PENTIUM;
+ break;
+ }
+ break;
+ case 6:
+ switch (Model) {
+ case 0x01: // Pentium Pro processor
+ *Type = INTEL_PENTIUM_PRO;
+ break;
+ case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
+ // model 03
+ case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
+ // model 05, and Intel Celeron processor, model 05
+ case 0x06: // Celeron processor, model 06
+ *Type = INTEL_PENTIUM_II;
+ break;
+ case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
+ // processor, model 07
+ case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
+ // model 08, and Celeron processor, model 08
+ case 0x0a: // Pentium III Xeon processor, model 0Ah
+ case 0x0b: // Pentium III processor, model 0Bh
+ *Type = INTEL_PENTIUM_III;
+ break;
+ case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
+ case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
+ // 0Dh. All processors are manufactured using the 90 nm process.
+ case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
+ // Integrated Processor with Intel QuickAssist Technology
+ *Type = INTEL_PENTIUM_M;
+ break;
+ case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
+ // 0Eh. All processors are manufactured using the 65 nm process.
+ *Type = INTEL_CORE_DUO;
+ break; // yonah
+ case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
+ // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
+ // mobile processor, Intel Core 2 Extreme processor, Intel
+ // Pentium Dual-Core processor, Intel Xeon processor, model
+ // 0Fh. All processors are manufactured using the 65 nm process.
+ case 0x16: // Intel Celeron processor model 16h. All processors are
+ // manufactured using the 65 nm process
+ *Type = INTEL_CORE2; // "core2"
+ *Subtype = INTEL_CORE2_65;
+ break;
+ case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
+ // 17h. All processors are manufactured using the 45 nm process.
+ //
+ // 45nm: Penryn , Wolfdale, Yorkfield (XE)
+ case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
+ // the 45 nm process.
+ *Type = INTEL_CORE2; // "penryn"
+ *Subtype = INTEL_CORE2_45;
+ break;
+ case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
+ // processors are manufactured using the 45 nm process.
+ case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
+ // As found in a Summer 2010 model iMac.
+ case 0x1f:
+ case 0x2e: // Nehalem EX
+ *Type = INTEL_COREI7; // "nehalem"
+ *Subtype = INTEL_COREI7_NEHALEM;
+ break;
+ case 0x25: // Intel Core i7, laptop version.
+ case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
+ // processors are manufactured using the 32 nm process.
+ case 0x2f: // Westmere EX
+ *Type = INTEL_COREI7; // "westmere"
+ *Subtype = INTEL_COREI7_WESTMERE;
+ break;
+ case 0x2a: // Intel Core i7 processor. All processors are manufactured
+ // using the 32 nm process.
+ case 0x2d:
+ *Type = INTEL_COREI7; //"sandybridge"
+ *Subtype = INTEL_COREI7_SANDYBRIDGE;
+ break;
+ case 0x3a:
+ case 0x3e: // Ivy Bridge EP
+ *Type = INTEL_COREI7; // "ivybridge"
+ *Subtype = INTEL_COREI7_IVYBRIDGE;
+ break;
+
+ // Haswell:
+ case 0x3c:
+ case 0x3f:
+ case 0x45:
+ case 0x46:
+ *Type = INTEL_COREI7; // "haswell"
+ *Subtype = INTEL_COREI7_HASWELL;
+ break;
+
+ // Broadwell:
+ case 0x3d:
+ case 0x47:
+ case 0x4f:
+ case 0x56:
+ *Type = INTEL_COREI7; // "broadwell"
+ *Subtype = INTEL_COREI7_BROADWELL;
+ break;
+
+ // Skylake:
+ case 0x4e: // Skylake mobile
+ case 0x5e: // Skylake desktop
+ case 0x8e: // Kaby Lake mobile
+ case 0x9e: // Kaby Lake desktop
+ *Type = INTEL_COREI7; // "skylake"
+ *Subtype = INTEL_COREI7_SKYLAKE;
+ break;
+
+ // Skylake Xeon:
+ case 0x55:
+ *Type = INTEL_COREI7;
+ // Check that we really have AVX512
+ if (Features & (1 << FEATURE_AVX512)) {
+ *Subtype = INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"
+ } else {
+ *Subtype = INTEL_COREI7_SKYLAKE; // "skylake"
+ }
+ break;
+
+ case 0x1c: // Most 45 nm Intel Atom processors
+ case 0x26: // 45 nm Atom Lincroft
+ case 0x27: // 32 nm Atom Medfield
+ case 0x35: // 32 nm Atom Midview
+ case 0x36: // 32 nm Atom Midview
+ *Type = INTEL_ATOM;
+ *Subtype = INTEL_ATOM_BONNELL;
+ break; // "bonnell"
+
+ // Atom Silvermont codes from the Intel software optimization guide.
+ case 0x37:
+ case 0x4a:
+ case 0x4d:
+ case 0x5a:
+ case 0x5d:
+ case 0x4c: // really airmont
+ *Type = INTEL_ATOM;
+ *Subtype = INTEL_ATOM_SILVERMONT;
+ break; // "silvermont"
+
+ case 0x57:
+ *Type = INTEL_XEONPHI; // knl
+ *Subtype = INTEL_KNIGHTS_LANDING;
+ break;
+
+ default: // Unknown family 6 CPU, try to guess.
+ if (Features & (1 << FEATURE_AVX512)) {
+ *Type = INTEL_XEONPHI; // knl
+ *Subtype = INTEL_KNIGHTS_LANDING;
+ break;
+ }
+ if (Features & (1 << FEATURE_ADX)) {
+ *Type = INTEL_COREI7;
+ *Subtype = INTEL_COREI7_BROADWELL;
+ break;
+ }
+ if (Features & (1 << FEATURE_AVX2)) {
+ *Type = INTEL_COREI7;
+ *Subtype = INTEL_COREI7_HASWELL;
+ break;
+ }
+ if (Features & (1 << FEATURE_AVX)) {
+ *Type = INTEL_COREI7;
+ *Subtype = INTEL_COREI7_SANDYBRIDGE;
+ break;
+ }
+ if (Features & (1 << FEATURE_SSE4_2)) {
+ if (Features & (1 << FEATURE_MOVBE)) {
+ *Type = INTEL_ATOM;
+ *Subtype = INTEL_ATOM_SILVERMONT;
+ } else {
+ *Type = INTEL_COREI7;
+ *Subtype = INTEL_COREI7_NEHALEM;
+ }
+ break;
+ }
+ if (Features & (1 << FEATURE_SSE4_1)) {
+ *Type = INTEL_CORE2; // "penryn"
+ *Subtype = INTEL_CORE2_45;
+ break;
+ }
+ if (Features & (1 << FEATURE_SSSE3)) {
+ if (Features & (1 << FEATURE_MOVBE)) {
+ *Type = INTEL_ATOM;
+ *Subtype = INTEL_ATOM_BONNELL; // "bonnell"
+ } else {
+ *Type = INTEL_CORE2; // "core2"
+ *Subtype = INTEL_CORE2_65;
+ }
+ break;
+ }
+ if (Features & (1 << FEATURE_EM64T)) {
+ *Type = INTEL_X86_64;
+ break; // x86-64
+ }
+ if (Features & (1 << FEATURE_SSE2)) {
+ *Type = INTEL_PENTIUM_M;
+ break;
+ }
+ if (Features & (1 << FEATURE_SSE)) {
+ *Type = INTEL_PENTIUM_III;
+ break;
+ }
+ if (Features & (1 << FEATURE_MMX)) {
+ *Type = INTEL_PENTIUM_II;
+ break;
+ }
+ *Type = INTEL_PENTIUM_PRO;
+ break;
+ }
+ break;
+ case 15: {
+ switch (Model) {
+ case 0: // Pentium 4 processor, Intel Xeon processor. All processors are
+ // model 00h and manufactured using the 0.18 micron process.
+ case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
+ // processor MP, and Intel Celeron processor. All processors are
+ // model 01h and manufactured using the 0.18 micron process.
+ case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,
+ // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
+ // processor, and Mobile Intel Celeron processor. All processors
+ // are model 02h and manufactured using the 0.13 micron process.
+ *Type =
+ ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);
+ break;
+
+ case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
+ // processor. All processors are model 03h and manufactured using
+ // the 90 nm process.
+ case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
+ // Pentium D processor, Intel Xeon processor, Intel Xeon
+ // processor MP, Intel Celeron D processor. All processors are
+ // model 04h and manufactured using the 90 nm process.
+ case 6: // Pentium 4 processor, Pentium D processor, Pentium processor
+ // Extreme Edition, Intel Xeon processor, Intel Xeon processor
+ // MP, Intel Celeron D processor. All processors are model 06h
+ // and manufactured using the 65 nm process.
+ *Type =
+ ((Features & (1 << FEATURE_EM64T)) ? INTEL_NOCONA : INTEL_PRESCOTT);
+ break;
+
+ default:
+ *Type =
+ ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);
+ break;
+ }
+ break;
+ }
+ default:
+ break; /*"generic"*/
+ }
+}
+
+static void getAMDProcessorTypeAndSubtype(unsigned int Family,
+ unsigned int Model,
+ unsigned int Features,
+ unsigned *Type,
+ unsigned *Subtype) {
+ // FIXME: this poorly matches the generated SubtargetFeatureKV table. There
+ // appears to be no way to generate the wide variety of AMD-specific targets
+ // from the information returned from CPUID.
+ switch (Family) {
+ case 4:
+ *Type = AMD_i486;
+ break;
+ case 5:
+ *Type = AMDPENTIUM;
+ switch (Model) {
+ case 6:
+ case 7:
+ *Subtype = AMDPENTIUM_K6;
+ break; // "k6"
+ case 8:
+ *Subtype = AMDPENTIUM_K62;
+ break; // "k6-2"
+ case 9:
+ case 13:
+ *Subtype = AMDPENTIUM_K63;
+ break; // "k6-3"
+ case 10:
+ *Subtype = AMDPENTIUM_GEODE;
+ break; // "geode"
+ }
+ break;
+ case 6:
+ *Type = AMDATHLON;
+ switch (Model) {
+ case 4:
+ *Subtype = AMDATHLON_TBIRD;
+ break; // "athlon-tbird"
+ case 6:
+ case 7:
+ case 8:
+ *Subtype = AMDATHLON_MP;
+ break; // "athlon-mp"
+ case 10:
+ *Subtype = AMDATHLON_XP;
+ break; // "athlon-xp"
+ }
+ break;
+ case 15:
+ *Type = AMDATHLON;
+ if (Features & (1 << FEATURE_SSE3)) {
+ *Subtype = AMDATHLON_K8SSE3;
+ break; // "k8-sse3"
+ }
+ switch (Model) {
+ case 1:
+ *Subtype = AMDATHLON_OPTERON;
+ break; // "opteron"
+ case 5:
+ *Subtype = AMDATHLON_FX;
+ break; // "athlon-fx"; also opteron
+ default:
+ *Subtype = AMDATHLON_64;
+ break; // "athlon64"
+ }
+ break;
+ case 16:
+ *Type = AMDFAM10H; // "amdfam10"
+ switch (Model) {
+ case 2:
+ *Subtype = AMDFAM10H_BARCELONA;
+ break;
+ case 4:
+ *Subtype = AMDFAM10H_SHANGHAI;
+ break;
+ case 8:
+ *Subtype = AMDFAM10H_ISTANBUL;
+ break;
+ }
+ break;
+ case 20:
+ *Type = AMDFAM14H;
+ *Subtype = AMD_BTVER1;
+ break; // "btver1";
+ case 21:
+ *Type = AMDFAM15H;
+ if (!(Features &
+ (1 << FEATURE_AVX))) { // If no AVX support, provide a sane fallback.
+ *Subtype = AMD_BTVER1;
+ break; // "btver1"
+ }
+ if (Model >= 0x50 && Model <= 0x6f) {
+ *Subtype = AMDFAM15H_BDVER4;
+ break; // "bdver4"; 50h-6Fh: Excavator
+ }
+ if (Model >= 0x30 && Model <= 0x3f) {
+ *Subtype = AMDFAM15H_BDVER3;
+ break; // "bdver3"; 30h-3Fh: Steamroller
+ }
+ if (Model >= 0x10 && Model <= 0x1f) {
+ *Subtype = AMDFAM15H_BDVER2;
+ break; // "bdver2"; 10h-1Fh: Piledriver
+ }
+ if (Model <= 0x0f) {
+ *Subtype = AMDFAM15H_BDVER1;
+ break; // "bdver1"; 00h-0Fh: Bulldozer
+ }
+ break;
+ case 22:
+ *Type = AMDFAM16H;
+ if (!(Features &
+ (1 << FEATURE_AVX))) { // If no AVX support provide a sane fallback.
+ *Subtype = AMD_BTVER1;
+ break; // "btver1";
+ }
+ *Subtype = AMD_BTVER2;
+ break; // "btver2"
+ case 23:
+ *Type = AMDFAM17H;
+ if (Features & (1 << FEATURE_ADX)) {
+ *Subtype = AMDFAM17H_ZNVER1;
+ break; // "znver1"
+ }
+ *Subtype = AMD_BTVER1;
+ break;
+ default:
+ break; // "generic"
+ }
+}
+
+static unsigned getAvailableFeatures(unsigned int ECX, unsigned int EDX,
+ unsigned MaxLeaf) {
+ unsigned Features = 0;
+ unsigned int EAX, EBX;
+ Features |= (((EDX >> 23) & 1) << FEATURE_MMX);
+ Features |= (((EDX >> 25) & 1) << FEATURE_SSE);
+ Features |= (((EDX >> 26) & 1) << FEATURE_SSE2);
+ Features |= (((ECX >> 0) & 1) << FEATURE_SSE3);
+ Features |= (((ECX >> 9) & 1) << FEATURE_SSSE3);
+ Features |= (((ECX >> 19) & 1) << FEATURE_SSE4_1);
+ Features |= (((ECX >> 20) & 1) << FEATURE_SSE4_2);
+ Features |= (((ECX >> 22) & 1) << FEATURE_MOVBE);
+
+ // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
+ // indicates that the AVX registers will be saved and restored on context
+ // switch, then we have full AVX support.
+ const unsigned AVXBits = (1 << 27) | (1 << 28);
+ bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
+ ((EAX & 0x6) == 0x6);
+ bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
+ bool HasLeaf7 =
+ MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
+ bool HasADX = HasLeaf7 && ((EBX >> 19) & 1);
+ bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20);
+ bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1);
+ Features |= (HasAVX << FEATURE_AVX);
+ Features |= (HasAVX2 << FEATURE_AVX2);
+ Features |= (HasAVX512 << FEATURE_AVX512);
+ Features |= (HasAVX512Save << FEATURE_AVX512SAVE);
+ Features |= (HasADX << FEATURE_ADX);
+
+ getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
+ Features |= (((EDX >> 29) & 0x1) << FEATURE_EM64T);
+ return Features;
+}
+
+StringRef sys::getHostCPUName() {
+ unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
+ unsigned MaxLeaf, Vendor;
+
+#if defined(__GNUC__) || defined(__clang__)
+ //FIXME: include cpuid.h from clang or copy __get_cpuid_max here
+ // and simplify it to not invoke __cpuid (like cpu_model.c in
+ // compiler-rt/lib/builtins/cpu_model.c?
+ // Opting for the second option.
+ if(!isCpuIdSupported())
+ return "generic";
+#endif
+ if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX))
+ return "generic";
+ if (getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
+ return "generic";
+
+ unsigned Brand_id = EBX & 0xff;
+ unsigned Family = 0, Model = 0;
+ unsigned Features = 0;
+ detectX86FamilyModel(EAX, &Family, &Model);
+ Features = getAvailableFeatures(ECX, EDX, MaxLeaf);
+
+ unsigned Type;
+ unsigned Subtype;
+
+ if (Vendor == SIG_INTEL) {
+ getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, &Type,
+ &Subtype);
+ switch (Type) {
+ case INTEL_i386:
+ return "i386";
+ case INTEL_i486:
+ return "i486";
+ case INTEL_PENTIUM:
+ if (Subtype == INTEL_PENTIUM_MMX)
+ return "pentium-mmx";
+ return "pentium";
+ case INTEL_PENTIUM_PRO:
+ return "pentiumpro";
+ case INTEL_PENTIUM_II:
+ return "pentium2";
+ case INTEL_PENTIUM_III:
+ return "pentium3";
+ case INTEL_PENTIUM_IV:
+ return "pentium4";
+ case INTEL_PENTIUM_M:
+ return "pentium-m";
+ case INTEL_CORE_DUO:
+ return "yonah";
+ case INTEL_CORE2:
+ switch (Subtype) {
+ case INTEL_CORE2_65:
+ return "core2";
+ case INTEL_CORE2_45:
+ return "penryn";
+ default:
+ return "core2";
+ }
+ case INTEL_COREI7:
+ switch (Subtype) {
+ case INTEL_COREI7_NEHALEM:
+ return "nehalem";
+ case INTEL_COREI7_WESTMERE:
+ return "westmere";
+ case INTEL_COREI7_SANDYBRIDGE:
+ return "sandybridge";
+ case INTEL_COREI7_IVYBRIDGE:
+ return "ivybridge";
+ case INTEL_COREI7_HASWELL:
+ return "haswell";
+ case INTEL_COREI7_BROADWELL:
+ return "broadwell";
+ case INTEL_COREI7_SKYLAKE:
+ return "skylake";
+ case INTEL_COREI7_SKYLAKE_AVX512:
+ return "skylake-avx512";
+ default:
+ return "corei7";
+ }
+ case INTEL_ATOM:
+ switch (Subtype) {
+ case INTEL_ATOM_BONNELL:
+ return "bonnell";
+ case INTEL_ATOM_SILVERMONT:
+ return "silvermont";
+ default:
+ return "atom";
+ }
+ case INTEL_XEONPHI:
+ return "knl"; /*update for more variants added*/
+ case INTEL_X86_64:
+ return "x86-64";
+ case INTEL_NOCONA:
+ return "nocona";
+ case INTEL_PRESCOTT:
+ return "prescott";
+ default:
+ return "generic";
+ }
+ } else if (Vendor == SIG_AMD) {
+ getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);
+ switch (Type) {
+ case AMD_i486:
+ return "i486";
+ case AMDPENTIUM:
+ switch (Subtype) {
+ case AMDPENTIUM_K6:
+ return "k6";
+ case AMDPENTIUM_K62:
+ return "k6-2";
+ case AMDPENTIUM_K63:
+ return "k6-3";
+ case AMDPENTIUM_GEODE:
+ return "geode";
+ default:
+ return "pentium";
+ }
+ case AMDATHLON:
+ switch (Subtype) {
+ case AMDATHLON_TBIRD:
+ return "athlon-tbird";
+ case AMDATHLON_MP:
+ return "athlon-mp";
+ case AMDATHLON_XP:
+ return "athlon-xp";
+ case AMDATHLON_K8SSE3:
+ return "k8-sse3";
+ case AMDATHLON_OPTERON:
+ return "opteron";
+ case AMDATHLON_FX:
+ return "athlon-fx";
+ case AMDATHLON_64:
+ return "athlon64";
+ default:
+ return "athlon";
+ }
+ case AMDFAM10H:
+ if(Subtype == AMDFAM10H_BARCELONA)
+ return "barcelona";
+ return "amdfam10";
+ case AMDFAM14H:
+ return "btver1";
+ case AMDFAM15H:
+ switch (Subtype) {
+ case AMDFAM15H_BDVER1:
+ return "bdver1";
+ case AMDFAM15H_BDVER2:
+ return "bdver2";
+ case AMDFAM15H_BDVER3:
+ return "bdver3";
+ case AMDFAM15H_BDVER4:
+ return "bdver4";
+ case AMD_BTVER1:
+ return "btver1";
+ default:
+ return "amdfam15";
+ }
+ case AMDFAM16H:
+ switch (Subtype) {
+ case AMD_BTVER1:
+ return "btver1";
+ case AMD_BTVER2:
+ return "btver2";
+ default:
+ return "amdfam16";
+ }
+ case AMDFAM17H:
+ switch (Subtype) {
+ case AMD_BTVER1:
+ return "btver1";
+ case AMDFAM17H_ZNVER1:
+ return "znver1";
+ default:
+ return "amdfam17";
+ }
+ default:
+ return "generic";
+ }
+ }
+ return "generic";
+}
+
+#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
+StringRef sys::getHostCPUName() {
+ host_basic_info_data_t hostInfo;
+ mach_msg_type_number_t infoCount;
+
+ infoCount = HOST_BASIC_INFO_COUNT;
+ host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,
+ &infoCount);
+
+ if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
+ return "generic";
+
+ switch (hostInfo.cpu_subtype) {
+ case CPU_SUBTYPE_POWERPC_601:
+ return "601";
+ case CPU_SUBTYPE_POWERPC_602:
+ return "602";
+ case CPU_SUBTYPE_POWERPC_603:
+ return "603";
+ case CPU_SUBTYPE_POWERPC_603e:
+ return "603e";
+ case CPU_SUBTYPE_POWERPC_603ev:
+ return "603ev";
+ case CPU_SUBTYPE_POWERPC_604:
+ return "604";
+ case CPU_SUBTYPE_POWERPC_604e:
+ return "604e";
+ case CPU_SUBTYPE_POWERPC_620:
+ return "620";
+ case CPU_SUBTYPE_POWERPC_750:
+ return "750";
+ case CPU_SUBTYPE_POWERPC_7400:
+ return "7400";
+ case CPU_SUBTYPE_POWERPC_7450:
+ return "7450";
+ case CPU_SUBTYPE_POWERPC_970:
+ return "970";
+ default:;
+ }
+
+ return "generic";
+}
+#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
+StringRef sys::getHostCPUName() {
+ std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
+ const StringRef& Content = P ? P->getBuffer() : "";
+ return detail::getHostCPUNameForPowerPC(Content);
+}
+#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
+StringRef sys::getHostCPUName() {
+ std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
+ const StringRef& Content = P ? P->getBuffer() : "";
+ return detail::getHostCPUNameForARM(Content);
+}
+#elif defined(__linux__) && defined(__s390x__)
+StringRef sys::getHostCPUName() {
+ std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
+ const StringRef& Content = P ? P->getBuffer() : "";
+ return detail::getHostCPUNameForS390x(Content);
+}
+#else
+StringRef sys::getHostCPUName() { return "generic"; }
+#endif
+
+#if defined(__linux__) && defined(__x86_64__)
+// On Linux, the number of physical cores can be computed from /proc/cpuinfo,
+// using the number of unique physical/core id pairs. The following
+// implementation reads the /proc/cpuinfo format on an x86_64 system.
+static int computeHostNumPhysicalCores() {
+ // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
+ // mmapped because it appears to have 0 size.
+ llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
+ llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
+ if (std::error_code EC = Text.getError()) {
+ llvm::errs() << "Can't read "
+ << "/proc/cpuinfo: " << EC.message() << "\n";
+ return -1;
+ }
+ SmallVector<StringRef, 8> strs;
+ (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
+ /*KeepEmpty=*/false);
+ int CurPhysicalId = -1;
+ int CurCoreId = -1;
+ SmallSet<std::pair<int, int>, 32> UniqueItems;
+ for (auto &Line : strs) {
+ Line = Line.trim();
+ if (!Line.startswith("physical id") && !Line.startswith("core id"))
+ continue;
+ std::pair<StringRef, StringRef> Data = Line.split(':');
+ auto Name = Data.first.trim();
+ auto Val = Data.second.trim();
+ if (Name == "physical id") {
+ assert(CurPhysicalId == -1 &&
+ "Expected a core id before seeing another physical id");
+ Val.getAsInteger(10, CurPhysicalId);
+ }
+ if (Name == "core id") {
+ assert(CurCoreId == -1 &&
+ "Expected a physical id before seeing another core id");
+ Val.getAsInteger(10, CurCoreId);
+ }
+ if (CurPhysicalId != -1 && CurCoreId != -1) {
+ UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));
+ CurPhysicalId = -1;
+ CurCoreId = -1;
+ }
+ }
+ return UniqueItems.size();
+}
+#elif defined(__APPLE__) && defined(__x86_64__)
+#include <sys/param.h>
+#include <sys/sysctl.h>
+
+// Gets the number of *physical cores* on the machine.
+static int computeHostNumPhysicalCores() {
+ uint32_t count;
+ size_t len = sizeof(count);
+ sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
+ if (count < 1) {
+ int nm[2];
+ nm[0] = CTL_HW;
+ nm[1] = HW_AVAILCPU;
+ sysctl(nm, 2, &count, &len, NULL, 0);
+ if (count < 1)
+ return -1;
+ }
+ return count;
+}
+#else
+// On other systems, return -1 to indicate unknown.
+static int computeHostNumPhysicalCores() { return -1; }
+#endif
+
+int sys::getHostNumPhysicalCores() {
+ static int NumCores = computeHostNumPhysicalCores();
+ return NumCores;
+}
+
+#if defined(__i386__) || defined(_M_IX86) || \
+ defined(__x86_64__) || defined(_M_X64)
+bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
+ unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
+ unsigned MaxLevel;
+ union {
+ unsigned u[3];
+ char c[12];
+ } text;
+
+ if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||
+ MaxLevel < 1)
+ return false;
+
+ getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
+
+ Features["cmov"] = (EDX >> 15) & 1;
+ Features["mmx"] = (EDX >> 23) & 1;
+ Features["sse"] = (EDX >> 25) & 1;
+ Features["sse2"] = (EDX >> 26) & 1;
+ Features["sse3"] = (ECX >> 0) & 1;
+ Features["ssse3"] = (ECX >> 9) & 1;
+ Features["sse4.1"] = (ECX >> 19) & 1;
+ Features["sse4.2"] = (ECX >> 20) & 1;
+
+ Features["pclmul"] = (ECX >> 1) & 1;
+ Features["cx16"] = (ECX >> 13) & 1;
+ Features["movbe"] = (ECX >> 22) & 1;
+ Features["popcnt"] = (ECX >> 23) & 1;
+ Features["aes"] = (ECX >> 25) & 1;
+ Features["rdrnd"] = (ECX >> 30) & 1;
+
+ // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
+ // indicates that the AVX registers will be saved and restored on context
+ // switch, then we have full AVX support.
+ bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
+ !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
+ Features["avx"] = HasAVXSave;
+ Features["fma"] = HasAVXSave && (ECX >> 12) & 1;
+ Features["f16c"] = HasAVXSave && (ECX >> 29) & 1;
+
+ // Only enable XSAVE if OS has enabled support for saving YMM state.
+ Features["xsave"] = HasAVXSave && (ECX >> 26) & 1;
+
+ // AVX512 requires additional context to be saved by the OS.
+ bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
+
+ unsigned MaxExtLevel;
+ getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
+
+ bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
+ !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
+ Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);
+ Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);
+ Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);
+ Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
+ Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
+ Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);
+ Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
+
+ bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
+ !getX86CpuIDAndInfoEx(0x80000008,0x0, &EAX, &EBX, &ECX, &EDX);
+ Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1);
+
+ bool HasLeaf7 =
+ MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
+
+ // AVX2 is only supported if we have the OS save support from AVX.
+ Features["avx2"] = HasAVXSave && HasLeaf7 && ((EBX >> 5) & 1);
+
+ Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);
+ Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1);
+ Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);
+ Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);
+ Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);
+ Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);
+ Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);
+ Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
+ Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1);
+ Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);
+
+ // AVX512 is only supported if the OS supports the context save for it.
+ Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
+ Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
+ Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
+ Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
+ Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
+ Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
+ Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
+ Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
+
+ Features["prefetchwt1"] = HasLeaf7 && (ECX & 1);
+ Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;
+ // Enable protection keys
+ Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1);
+
+ bool HasLeafD = MaxLevel >= 0xd &&
+ !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
+
+ // Only enable XSAVE if OS has enabled support for saving YMM state.
+ Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1);
+ Features["xsavec"] = HasAVXSave && HasLeafD && ((EAX >> 1) & 1);
+ Features["xsaves"] = HasAVXSave && HasLeafD && ((EAX >> 3) & 1);
+
+ return true;
+}
+#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
+bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
+ std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
+ if (!P)
+ return false;
+
+ SmallVector<StringRef, 32> Lines;
+ P->getBuffer().split(Lines, "\n");
+
+ SmallVector<StringRef, 32> CPUFeatures;
+
+ // Look for the CPU features.
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I)
+ if (Lines[I].startswith("Features")) {
+ Lines[I].split(CPUFeatures, ' ');
+ break;
+ }
+
+#if defined(__aarch64__)
+ // Keep track of which crypto features we have seen
+ enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
+ uint32_t crypto = 0;
+#endif
+
+ for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
+ StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
+#if defined(__aarch64__)
+ .Case("asimd", "neon")
+ .Case("fp", "fp-armv8")
+ .Case("crc32", "crc")
+#else
+ .Case("half", "fp16")
+ .Case("neon", "neon")
+ .Case("vfpv3", "vfp3")
+ .Case("vfpv3d16", "d16")
+ .Case("vfpv4", "vfp4")
+ .Case("idiva", "hwdiv-arm")
+ .Case("idivt", "hwdiv")
+#endif
+ .Default("");
+
+#if defined(__aarch64__)
+ // We need to check crypto separately since we need all of the crypto
+ // extensions to enable the subtarget feature
+ if (CPUFeatures[I] == "aes")
+ crypto |= CAP_AES;
+ else if (CPUFeatures[I] == "pmull")
+ crypto |= CAP_PMULL;
+ else if (CPUFeatures[I] == "sha1")
+ crypto |= CAP_SHA1;
+ else if (CPUFeatures[I] == "sha2")
+ crypto |= CAP_SHA2;
+#endif
+
+ if (LLVMFeatureStr != "")
+ Features[LLVMFeatureStr] = true;
+ }
+
+#if defined(__aarch64__)
+ // If we have all crypto bits we can add the feature
+ if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
+ Features["crypto"] = true;
+#endif
+
+ return true;
+}
+#else
+bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
+#endif
+
+std::string sys::getProcessTriple() {
+ Triple PT(Triple::normalize(LLVM_HOST_TRIPLE));
+
+ if (sizeof(void *) == 8 && PT.isArch32Bit())
+ PT = PT.get64BitArchVariant();
+ if (sizeof(void *) == 4 && PT.isArch64Bit())
+ PT = PT.get32BitArchVariant();
+
+ return PT.str();
+}
-//===-- X86Schedule.td - X86 Scheduling Definitions --------*- tablegen -*-===//\r
-//\r
-// The LLVM Compiler Infrastructure\r
-//\r
-// This file is distributed under the University of Illinois Open Source\r
-// License. See LICENSE.TXT for details.\r
-//\r
-//===----------------------------------------------------------------------===//\r
-\r
-// InstrSchedModel annotations for out-of-order CPUs.\r
-//\r
-// These annotations are independent of the itinerary classes defined below.\r
-\r
-// Instructions with folded loads need to read the memory operand immediately,\r
-// but other register operands don't have to be read until the load is ready.\r
-// These operands are marked with ReadAfterLd.\r
-def ReadAfterLd : SchedRead;\r
-\r
-// Instructions with both a load and a store folded are modeled as a folded\r
-// load + WriteRMW.\r
-def WriteRMW : SchedWrite;\r
-\r
-// Most instructions can fold loads, so almost every SchedWrite comes in two\r
-// variants: With and without a folded load.\r
-// An X86FoldableSchedWrite holds a reference to the corresponding SchedWrite\r
-// with a folded load.\r
-class X86FoldableSchedWrite : SchedWrite {\r
- // The SchedWrite to use when a load is folded into the instruction.\r
- SchedWrite Folded;\r
-}\r
-\r
-// Multiclass that produces a linked pair of SchedWrites.\r
-multiclass X86SchedWritePair {\r
- // Register-Memory operation.\r
- def Ld : SchedWrite;\r
- // Register-Register operation.\r
- def NAME : X86FoldableSchedWrite {\r
- let Folded = !cast<SchedWrite>(NAME#"Ld");\r
- }\r
-}\r
-\r
-// Arithmetic.\r
-defm WriteALU : X86SchedWritePair; // Simple integer ALU op.\r
-defm WriteIMul : X86SchedWritePair; // Integer multiplication.\r
-def WriteIMulH : SchedWrite; // Integer multiplication, high part.\r
-defm WriteIDiv : X86SchedWritePair; // Integer division.\r
-def WriteLEA : SchedWrite; // LEA instructions can't fold loads.\r
-\r
-// Integer shifts and rotates.\r
-defm WriteShift : X86SchedWritePair;\r
-\r
-// Loads, stores, and moves, not folded with other operations.\r
-def WriteLoad : SchedWrite;\r
-def WriteStore : SchedWrite;\r
-def WriteMove : SchedWrite;\r
-\r
-// Idioms that clear a register, like xorps %xmm0, %xmm0.\r
-// These can often bypass execution ports completely.\r
-def WriteZero : SchedWrite;\r
-\r
-// Branches don't produce values, so they have no latency, but they still\r
-// consume resources. Indirect branches can fold loads.\r
-defm WriteJump : X86SchedWritePair;\r
-\r
-// Floating point. This covers both scalar and vector operations.\r
-defm WriteFAdd : X86SchedWritePair; // Floating point add/sub/compare.\r
-defm WriteFMul : X86SchedWritePair; // Floating point multiplication.\r
-defm WriteFDiv : X86SchedWritePair; // Floating point division.\r
-defm WriteFSqrt : X86SchedWritePair; // Floating point square root.\r
-defm WriteFRcp : X86SchedWritePair; // Floating point reciprocal estimate.\r
-defm WriteFRsqrt : X86SchedWritePair; // Floating point reciprocal square root estimate.\r
-defm WriteFMA : X86SchedWritePair; // Fused Multiply Add.\r
-defm WriteFShuffle : X86SchedWritePair; // Floating point vector shuffles.\r
-defm WriteFBlend : X86SchedWritePair; // Floating point vector blends.\r
-defm WriteFVarBlend : X86SchedWritePair; // Fp vector variable blends.\r
-\r
-// FMA Scheduling helper class.\r
-class FMASC { X86FoldableSchedWrite Sched = WriteFAdd; }\r
-\r
-// Vector integer operations.\r
-defm WriteVecALU : X86SchedWritePair; // Vector integer ALU op, no logicals.\r
-defm WriteVecShift : X86SchedWritePair; // Vector integer shifts.\r
-defm WriteVecIMul : X86SchedWritePair; // Vector integer multiply.\r
-defm WriteShuffle : X86SchedWritePair; // Vector shuffles.\r
-defm WriteBlend : X86SchedWritePair; // Vector blends.\r
-defm WriteVarBlend : X86SchedWritePair; // Vector variable blends.\r
-defm WriteMPSAD : X86SchedWritePair; // Vector MPSAD.\r
-\r
-// Vector bitwise operations.\r
-// These are often used on both floating point and integer vectors.\r
-defm WriteVecLogic : X86SchedWritePair; // Vector and/or/xor.\r
-\r
-// Conversion between integer and float.\r
-defm WriteCvtF2I : X86SchedWritePair; // Float -> Integer.\r
-defm WriteCvtI2F : X86SchedWritePair; // Integer -> Float.\r
-defm WriteCvtF2F : X86SchedWritePair; // Float -> Float size conversion.\r
-\r
-// Strings instructions.\r
-// Packed Compare Implicit Length Strings, Return Mask\r
-defm WritePCmpIStrM : X86SchedWritePair;\r
-// Packed Compare Explicit Length Strings, Return Mask\r
-defm WritePCmpEStrM : X86SchedWritePair;\r
-// Packed Compare Implicit Length Strings, Return Index\r
-defm WritePCmpIStrI : X86SchedWritePair;\r
-// Packed Compare Explicit Length Strings, Return Index\r
-defm WritePCmpEStrI : X86SchedWritePair;\r
-\r
-// AES instructions.\r
-defm WriteAESDecEnc : X86SchedWritePair; // Decryption, encryption.\r
-defm WriteAESIMC : X86SchedWritePair; // InvMixColumn.\r
-defm WriteAESKeyGen : X86SchedWritePair; // Key Generation.\r
-\r
-// Carry-less multiplication instructions.\r
-defm WriteCLMul : X86SchedWritePair;\r
-\r
-// Catch-all for expensive system instructions.\r
-def WriteSystem : SchedWrite;\r
-\r
-// AVX2.\r
-defm WriteFShuffle256 : X86SchedWritePair; // Fp 256-bit width vector shuffles.\r
-defm WriteShuffle256 : X86SchedWritePair; // 256-bit width vector shuffles.\r
-defm WriteVarVecShift : X86SchedWritePair; // Variable vector shifts.\r
-\r
-// Old microcoded instructions that nobody use.\r
-def WriteMicrocoded : SchedWrite;\r
-\r
-// Fence instructions.\r
-def WriteFence : SchedWrite;\r
-\r
-// Nop, not very useful expect it provides a model for nops!\r
-def WriteNop : SchedWrite;\r
-\r
-//===----------------------------------------------------------------------===//\r
-// Instruction Itinerary classes used for X86\r
-def IIC_ALU_MEM : InstrItinClass;\r
-def IIC_ALU_NONMEM : InstrItinClass;\r
-def IIC_LEA : InstrItinClass;\r
-def IIC_LEA_16 : InstrItinClass;\r
-def IIC_MUL8 : InstrItinClass;\r
-def IIC_MUL16_MEM : InstrItinClass;\r
-def IIC_MUL16_REG : InstrItinClass;\r
-def IIC_MUL32_MEM : InstrItinClass;\r
-def IIC_MUL32_REG : InstrItinClass;\r
-def IIC_MUL64 : InstrItinClass;\r
-// imul by al, ax, eax, tax\r
-def IIC_IMUL8 : InstrItinClass;\r
-def IIC_IMUL16_MEM : InstrItinClass;\r
-def IIC_IMUL16_REG : InstrItinClass;\r
-def IIC_IMUL32_MEM : InstrItinClass;\r
-def IIC_IMUL32_REG : InstrItinClass;\r
-def IIC_IMUL64 : InstrItinClass;\r
-// imul reg by reg|mem\r
-def IIC_IMUL16_RM : InstrItinClass;\r
-def IIC_IMUL16_RR : InstrItinClass;\r
-def IIC_IMUL32_RM : InstrItinClass;\r
-def IIC_IMUL32_RR : InstrItinClass;\r
-def IIC_IMUL64_RM : InstrItinClass;\r
-def IIC_IMUL64_RR : InstrItinClass;\r
-// imul reg = reg/mem * imm\r
-def IIC_IMUL16_RMI : InstrItinClass;\r
-def IIC_IMUL16_RRI : InstrItinClass;\r
-def IIC_IMUL32_RMI : InstrItinClass;\r
-def IIC_IMUL32_RRI : InstrItinClass;\r
-def IIC_IMUL64_RMI : InstrItinClass;\r
-def IIC_IMUL64_RRI : InstrItinClass;\r
-// div\r
-def IIC_DIV8_MEM : InstrItinClass;\r
-def IIC_DIV8_REG : InstrItinClass;\r
-def IIC_DIV16 : InstrItinClass;\r
-def IIC_DIV32 : InstrItinClass;\r
-def IIC_DIV64 : InstrItinClass;\r
-// idiv\r
-def IIC_IDIV8 : InstrItinClass;\r
-def IIC_IDIV16 : InstrItinClass;\r
-def IIC_IDIV32 : InstrItinClass;\r
-def IIC_IDIV64 : InstrItinClass;\r
-// neg/not/inc/dec\r
-def IIC_UNARY_REG : InstrItinClass;\r
-def IIC_UNARY_MEM : InstrItinClass;\r
-// add/sub/and/or/xor/sbc/cmp/test\r
-def IIC_BIN_MEM : InstrItinClass;\r
-def IIC_BIN_NONMEM : InstrItinClass;\r
-// adc/sbc\r
-def IIC_BIN_CARRY_MEM : InstrItinClass;\r
-def IIC_BIN_CARRY_NONMEM : InstrItinClass;\r
-// shift/rotate\r
-def IIC_SR : InstrItinClass;\r
-// shift double\r
-def IIC_SHD16_REG_IM : InstrItinClass;\r
-def IIC_SHD16_REG_CL : InstrItinClass;\r
-def IIC_SHD16_MEM_IM : InstrItinClass;\r
-def IIC_SHD16_MEM_CL : InstrItinClass;\r
-def IIC_SHD32_REG_IM : InstrItinClass;\r
-def IIC_SHD32_REG_CL : InstrItinClass;\r
-def IIC_SHD32_MEM_IM : InstrItinClass;\r
-def IIC_SHD32_MEM_CL : InstrItinClass;\r
-def IIC_SHD64_REG_IM : InstrItinClass;\r
-def IIC_SHD64_REG_CL : InstrItinClass;\r
-def IIC_SHD64_MEM_IM : InstrItinClass;\r
-def IIC_SHD64_MEM_CL : InstrItinClass;\r
-// cmov\r
-def IIC_CMOV16_RM : InstrItinClass;\r
-def IIC_CMOV16_RR : InstrItinClass;\r
-def IIC_CMOV32_RM : InstrItinClass;\r
-def IIC_CMOV32_RR : InstrItinClass;\r
-def IIC_CMOV64_RM : InstrItinClass;\r
-def IIC_CMOV64_RR : InstrItinClass;\r
-// set\r
-def IIC_SET_R : InstrItinClass;\r
-def IIC_SET_M : InstrItinClass;\r
-// jmp/jcc/jcxz\r
-def IIC_Jcc : InstrItinClass;\r
-def IIC_JCXZ : InstrItinClass;\r
-def IIC_JMP_REL : InstrItinClass;\r
-def IIC_JMP_REG : InstrItinClass;\r
-def IIC_JMP_MEM : InstrItinClass;\r
-def IIC_JMP_FAR_MEM : InstrItinClass;\r
-def IIC_JMP_FAR_PTR : InstrItinClass;\r
-// loop\r
-def IIC_LOOP : InstrItinClass;\r
-def IIC_LOOPE : InstrItinClass;\r
-def IIC_LOOPNE : InstrItinClass;\r
-// call\r
-def IIC_CALL_RI : InstrItinClass;\r
-def IIC_CALL_MEM : InstrItinClass;\r
-def IIC_CALL_FAR_MEM : InstrItinClass;\r
-def IIC_CALL_FAR_PTR : InstrItinClass;\r
-// ret\r
-def IIC_RET : InstrItinClass;\r
-def IIC_RET_IMM : InstrItinClass;\r
-//sign extension movs\r
-def IIC_MOVSX : InstrItinClass;\r
-def IIC_MOVSX_R16_R8 : InstrItinClass;\r
-def IIC_MOVSX_R16_M8 : InstrItinClass;\r
-def IIC_MOVSX_R16_R16 : InstrItinClass;\r
-def IIC_MOVSX_R32_R32 : InstrItinClass;\r
-//zero extension movs\r
-def IIC_MOVZX : InstrItinClass;\r
-def IIC_MOVZX_R16_R8 : InstrItinClass;\r
-def IIC_MOVZX_R16_M8 : InstrItinClass;\r
-\r
-def IIC_REP_MOVS : InstrItinClass;\r
-def IIC_REP_STOS : InstrItinClass;\r
-\r
-// SSE scalar/parallel binary operations\r
-def IIC_SSE_ALU_F32S_RR : InstrItinClass;\r
-def IIC_SSE_ALU_F32S_RM : InstrItinClass;\r
-def IIC_SSE_ALU_F64S_RR : InstrItinClass;\r
-def IIC_SSE_ALU_F64S_RM : InstrItinClass;\r
-def IIC_SSE_MUL_F32S_RR : InstrItinClass;\r
-def IIC_SSE_MUL_F32S_RM : InstrItinClass;\r
-def IIC_SSE_MUL_F64S_RR : InstrItinClass;\r
-def IIC_SSE_MUL_F64S_RM : InstrItinClass;\r
-def IIC_SSE_DIV_F32S_RR : InstrItinClass;\r
-def IIC_SSE_DIV_F32S_RM : InstrItinClass;\r
-def IIC_SSE_DIV_F64S_RR : InstrItinClass;\r
-def IIC_SSE_DIV_F64S_RM : InstrItinClass;\r
-def IIC_SSE_ALU_F32P_RR : InstrItinClass;\r
-def IIC_SSE_ALU_F32P_RM : InstrItinClass;\r
-def IIC_SSE_ALU_F64P_RR : InstrItinClass;\r
-def IIC_SSE_ALU_F64P_RM : InstrItinClass;\r
-def IIC_SSE_MUL_F32P_RR : InstrItinClass;\r
-def IIC_SSE_MUL_F32P_RM : InstrItinClass;\r
-def IIC_SSE_MUL_F64P_RR : InstrItinClass;\r
-def IIC_SSE_MUL_F64P_RM : InstrItinClass;\r
-def IIC_SSE_DIV_F32P_RR : InstrItinClass;\r
-def IIC_SSE_DIV_F32P_RM : InstrItinClass;\r
-def IIC_SSE_DIV_F64P_RR : InstrItinClass;\r
-def IIC_SSE_DIV_F64P_RM : InstrItinClass;\r
-\r
-def IIC_SSE_COMIS_RR : InstrItinClass;\r
-def IIC_SSE_COMIS_RM : InstrItinClass;\r
-\r
-def IIC_SSE_HADDSUB_RR : InstrItinClass;\r
-def IIC_SSE_HADDSUB_RM : InstrItinClass;\r
-\r
-def IIC_SSE_BIT_P_RR : InstrItinClass;\r
-def IIC_SSE_BIT_P_RM : InstrItinClass;\r
-\r
-def IIC_SSE_INTALU_P_RR : InstrItinClass;\r
-def IIC_SSE_INTALU_P_RM : InstrItinClass;\r
-def IIC_SSE_INTALUQ_P_RR : InstrItinClass;\r
-def IIC_SSE_INTALUQ_P_RM : InstrItinClass;\r
-\r
-def IIC_SSE_INTMUL_P_RR : InstrItinClass;\r
-def IIC_SSE_INTMUL_P_RM : InstrItinClass;\r
-\r
-def IIC_SSE_INTSH_P_RR : InstrItinClass;\r
-def IIC_SSE_INTSH_P_RM : InstrItinClass;\r
-def IIC_SSE_INTSH_P_RI : InstrItinClass;\r
-\r
-def IIC_SSE_INTSHDQ_P_RI : InstrItinClass;\r
-\r
-def IIC_SSE_SHUFP : InstrItinClass;\r
-def IIC_SSE_PSHUF_RI : InstrItinClass;\r
-def IIC_SSE_PSHUF_MI : InstrItinClass;\r
-\r
-def IIC_SSE_UNPCK : InstrItinClass;\r
-\r
-def IIC_SSE_MOVMSK : InstrItinClass;\r
-def IIC_SSE_MASKMOV : InstrItinClass;\r
-\r
-def IIC_SSE_PEXTRW : InstrItinClass;\r
-def IIC_SSE_PINSRW : InstrItinClass;\r
-\r
-def IIC_SSE_PABS_RR : InstrItinClass;\r
-def IIC_SSE_PABS_RM : InstrItinClass;\r
-\r
-def IIC_SSE_SQRTPS_RR : InstrItinClass;\r
-def IIC_SSE_SQRTPS_RM : InstrItinClass;\r
-def IIC_SSE_SQRTSS_RR : InstrItinClass;\r
-def IIC_SSE_SQRTSS_RM : InstrItinClass;\r
-def IIC_SSE_SQRTPD_RR : InstrItinClass;\r
-def IIC_SSE_SQRTPD_RM : InstrItinClass;\r
-def IIC_SSE_SQRTSD_RR : InstrItinClass;\r
-def IIC_SSE_SQRTSD_RM : InstrItinClass;\r
-\r
-def IIC_SSE_RSQRTPS_RR : InstrItinClass;\r
-def IIC_SSE_RSQRTPS_RM : InstrItinClass;\r
-def IIC_SSE_RSQRTSS_RR : InstrItinClass;\r
-def IIC_SSE_RSQRTSS_RM : InstrItinClass;\r
-\r
-def IIC_SSE_RCPP_RR : InstrItinClass;\r
-def IIC_SSE_RCPP_RM : InstrItinClass;\r
-def IIC_SSE_RCPS_RR : InstrItinClass;\r
-def IIC_SSE_RCPS_RM : InstrItinClass;\r
-\r
-def IIC_SSE_MOV_S_RR : InstrItinClass;\r
-def IIC_SSE_MOV_S_RM : InstrItinClass;\r
-def IIC_SSE_MOV_S_MR : InstrItinClass;\r
-\r
-def IIC_SSE_MOVA_P_RR : InstrItinClass;\r
-def IIC_SSE_MOVA_P_RM : InstrItinClass;\r
-def IIC_SSE_MOVA_P_MR : InstrItinClass;\r
-\r
-def IIC_SSE_MOVU_P_RR : InstrItinClass;\r
-def IIC_SSE_MOVU_P_RM : InstrItinClass;\r
-def IIC_SSE_MOVU_P_MR : InstrItinClass;\r
-\r
-def IIC_SSE_MOVDQ : InstrItinClass;\r
-def IIC_SSE_MOVD_ToGP : InstrItinClass;\r
-def IIC_SSE_MOVQ_RR : InstrItinClass;\r
-\r
-def IIC_SSE_MOV_LH : InstrItinClass;\r
-\r
-def IIC_SSE_LDDQU : InstrItinClass;\r
-\r
-def IIC_SSE_MOVNT : InstrItinClass;\r
-\r
-def IIC_SSE_PHADDSUBD_RR : InstrItinClass;\r
-def IIC_SSE_PHADDSUBD_RM : InstrItinClass;\r
-def IIC_SSE_PHADDSUBSW_RR : InstrItinClass;\r
-def IIC_SSE_PHADDSUBSW_RM : InstrItinClass;\r
-def IIC_SSE_PHADDSUBW_RR : InstrItinClass;\r
-def IIC_SSE_PHADDSUBW_RM : InstrItinClass;\r
-def IIC_SSE_PSHUFB_RR : InstrItinClass;\r
-def IIC_SSE_PSHUFB_RM : InstrItinClass;\r
-def IIC_SSE_PSIGN_RR : InstrItinClass;\r
-def IIC_SSE_PSIGN_RM : InstrItinClass;\r
-\r
-def IIC_SSE_PMADD : InstrItinClass;\r
-def IIC_SSE_PMULHRSW : InstrItinClass;\r
-def IIC_SSE_PALIGNRR : InstrItinClass;\r
-def IIC_SSE_PALIGNRM : InstrItinClass;\r
-def IIC_SSE_MWAIT : InstrItinClass;\r
-def IIC_SSE_MONITOR : InstrItinClass;\r
-def IIC_SSE_MWAITX : InstrItinClass;\r
-def IIC_SSE_MONITORX : InstrItinClass;\r
-def IIC_SSE_CLZERO : InstrItinClass;\r
-\r
-def IIC_SSE_PREFETCH : InstrItinClass;\r
-def IIC_SSE_PAUSE : InstrItinClass;\r
-def IIC_SSE_LFENCE : InstrItinClass;\r
-def IIC_SSE_MFENCE : InstrItinClass;\r
-def IIC_SSE_SFENCE : InstrItinClass;\r
-def IIC_SSE_LDMXCSR : InstrItinClass;\r
-def IIC_SSE_STMXCSR : InstrItinClass;\r
-\r
-def IIC_SSE_CVT_PD_RR : InstrItinClass;\r
-def IIC_SSE_CVT_PD_RM : InstrItinClass;\r
-def IIC_SSE_CVT_PS_RR : InstrItinClass;\r
-def IIC_SSE_CVT_PS_RM : InstrItinClass;\r
-def IIC_SSE_CVT_PI2PS_RR : InstrItinClass;\r
-def IIC_SSE_CVT_PI2PS_RM : InstrItinClass;\r
-def IIC_SSE_CVT_Scalar_RR : InstrItinClass;\r
-def IIC_SSE_CVT_Scalar_RM : InstrItinClass;\r
-def IIC_SSE_CVT_SS2SI32_RM : InstrItinClass;\r
-def IIC_SSE_CVT_SS2SI32_RR : InstrItinClass;\r
-def IIC_SSE_CVT_SS2SI64_RM : InstrItinClass;\r
-def IIC_SSE_CVT_SS2SI64_RR : InstrItinClass;\r
-def IIC_SSE_CVT_SD2SI_RM : InstrItinClass;\r
-def IIC_SSE_CVT_SD2SI_RR : InstrItinClass;\r
-\r
-// MMX\r
-def IIC_MMX_MOV_MM_RM : InstrItinClass;\r
-def IIC_MMX_MOV_REG_MM : InstrItinClass;\r
-def IIC_MMX_MOVQ_RM : InstrItinClass;\r
-def IIC_MMX_MOVQ_RR : InstrItinClass;\r
-\r
-def IIC_MMX_ALU_RM : InstrItinClass;\r
-def IIC_MMX_ALU_RR : InstrItinClass;\r
-def IIC_MMX_ALUQ_RM : InstrItinClass;\r
-def IIC_MMX_ALUQ_RR : InstrItinClass;\r
-def IIC_MMX_PHADDSUBW_RM : InstrItinClass;\r
-def IIC_MMX_PHADDSUBW_RR : InstrItinClass;\r
-def IIC_MMX_PHADDSUBD_RM : InstrItinClass;\r
-def IIC_MMX_PHADDSUBD_RR : InstrItinClass;\r
-def IIC_MMX_PMUL : InstrItinClass;\r
-def IIC_MMX_MISC_FUNC_MEM : InstrItinClass;\r
-def IIC_MMX_MISC_FUNC_REG : InstrItinClass;\r
-def IIC_MMX_PSADBW : InstrItinClass;\r
-def IIC_MMX_SHIFT_RI : InstrItinClass;\r
-def IIC_MMX_SHIFT_RM : InstrItinClass;\r
-def IIC_MMX_SHIFT_RR : InstrItinClass;\r
-def IIC_MMX_UNPCK_H_RM : InstrItinClass;\r
-def IIC_MMX_UNPCK_H_RR : InstrItinClass;\r
-def IIC_MMX_UNPCK_L : InstrItinClass;\r
-def IIC_MMX_PCK_RM : InstrItinClass;\r
-def IIC_MMX_PCK_RR : InstrItinClass;\r
-def IIC_MMX_PSHUF : InstrItinClass;\r
-def IIC_MMX_PEXTR : InstrItinClass;\r
-def IIC_MMX_PINSRW : InstrItinClass;\r
-def IIC_MMX_MASKMOV : InstrItinClass;\r
-\r
-def IIC_MMX_CVT_PD_RR : InstrItinClass;\r
-def IIC_MMX_CVT_PD_RM : InstrItinClass;\r
-def IIC_MMX_CVT_PS_RR : InstrItinClass;\r
-def IIC_MMX_CVT_PS_RM : InstrItinClass;\r
-\r
-def IIC_CMPX_LOCK : InstrItinClass;\r
-def IIC_CMPX_LOCK_8 : InstrItinClass;\r
-def IIC_CMPX_LOCK_8B : InstrItinClass;\r
-def IIC_CMPX_LOCK_16B : InstrItinClass;\r
-\r
-def IIC_XADD_LOCK_MEM : InstrItinClass;\r
-def IIC_XADD_LOCK_MEM8 : InstrItinClass;\r
-\r
-def IIC_FILD : InstrItinClass;\r
-def IIC_FLD : InstrItinClass;\r
-def IIC_FLD80 : InstrItinClass;\r
-def IIC_FST : InstrItinClass;\r
-def IIC_FST80 : InstrItinClass;\r
-def IIC_FIST : InstrItinClass;\r
-def IIC_FLDZ : InstrItinClass;\r
-def IIC_FUCOM : InstrItinClass;\r
-def IIC_FUCOMI : InstrItinClass;\r
-def IIC_FCOMI : InstrItinClass;\r
-def IIC_FNSTSW : InstrItinClass;\r
-def IIC_FNSTCW : InstrItinClass;\r
-def IIC_FLDCW : InstrItinClass;\r
-def IIC_FNINIT : InstrItinClass;\r
-def IIC_FFREE : InstrItinClass;\r
-def IIC_FNCLEX : InstrItinClass;\r
-def IIC_WAIT : InstrItinClass;\r
-def IIC_FXAM : InstrItinClass;\r
-def IIC_FNOP : InstrItinClass;\r
-def IIC_FLDL : InstrItinClass;\r
-def IIC_F2XM1 : InstrItinClass;\r
-def IIC_FYL2X : InstrItinClass;\r
-def IIC_FPTAN : InstrItinClass;\r
-def IIC_FPATAN : InstrItinClass;\r
-def IIC_FXTRACT : InstrItinClass;\r
-def IIC_FPREM1 : InstrItinClass;\r
-def IIC_FPSTP : InstrItinClass;\r
-def IIC_FPREM : InstrItinClass;\r
-def IIC_FYL2XP1 : InstrItinClass;\r
-def IIC_FSINCOS : InstrItinClass;\r
-def IIC_FRNDINT : InstrItinClass;\r
-def IIC_FSCALE : InstrItinClass;\r
-def IIC_FCOMPP : InstrItinClass;\r
-def IIC_FXSAVE : InstrItinClass;\r
-def IIC_FXRSTOR : InstrItinClass;\r
-\r
-def IIC_FXCH : InstrItinClass;\r
-\r
-// System instructions\r
-def IIC_CPUID : InstrItinClass;\r
-def IIC_INT : InstrItinClass;\r
-def IIC_INT3 : InstrItinClass;\r
-def IIC_INVD : InstrItinClass;\r
-def IIC_INVLPG : InstrItinClass;\r
-def IIC_IRET : InstrItinClass;\r
-def IIC_HLT : InstrItinClass;\r
-def IIC_LXS : InstrItinClass;\r
-def IIC_LTR : InstrItinClass;\r
-def IIC_RDTSC : InstrItinClass;\r
-def IIC_RSM : InstrItinClass;\r
-def IIC_SIDT : InstrItinClass;\r
-def IIC_SGDT : InstrItinClass;\r
-def IIC_SLDT : InstrItinClass;\r
-def IIC_STR : InstrItinClass;\r
-def IIC_SWAPGS : InstrItinClass;\r
-def IIC_SYSCALL : InstrItinClass;\r
-def IIC_SYS_ENTER_EXIT : InstrItinClass;\r
-def IIC_IN_RR : InstrItinClass;\r
-def IIC_IN_RI : InstrItinClass;\r
-def IIC_OUT_RR : InstrItinClass;\r
-def IIC_OUT_IR : InstrItinClass;\r
-def IIC_INS : InstrItinClass;\r
-def IIC_LWP : InstrItinClass;\r
-def IIC_MOV_REG_DR : InstrItinClass;\r
-def IIC_MOV_DR_REG : InstrItinClass;\r
-def IIC_MOV_REG_CR : InstrItinClass;\r
-def IIC_MOV_CR_REG : InstrItinClass;\r
-def IIC_MOV_REG_SR : InstrItinClass;\r
-def IIC_MOV_MEM_SR : InstrItinClass;\r
-def IIC_MOV_SR_REG : InstrItinClass;\r
-def IIC_MOV_SR_MEM : InstrItinClass;\r
-def IIC_LAR_RM : InstrItinClass;\r
-def IIC_LAR_RR : InstrItinClass;\r
-def IIC_LSL_RM : InstrItinClass;\r
-def IIC_LSL_RR : InstrItinClass;\r
-def IIC_LGDT : InstrItinClass;\r
-def IIC_LIDT : InstrItinClass;\r
-def IIC_LLDT_REG : InstrItinClass;\r
-def IIC_LLDT_MEM : InstrItinClass;\r
-def IIC_PUSH_CS : InstrItinClass;\r
-def IIC_PUSH_SR : InstrItinClass;\r
-def IIC_POP_SR : InstrItinClass;\r
-def IIC_POP_SR_SS : InstrItinClass;\r
-def IIC_VERR : InstrItinClass;\r
-def IIC_VERW_REG : InstrItinClass;\r
-def IIC_VERW_MEM : InstrItinClass;\r
-def IIC_WRMSR : InstrItinClass;\r
-def IIC_RDMSR : InstrItinClass;\r
-def IIC_RDPMC : InstrItinClass;\r
-def IIC_SMSW : InstrItinClass;\r
-def IIC_LMSW_REG : InstrItinClass;\r
-def IIC_LMSW_MEM : InstrItinClass;\r
-def IIC_ENTER : InstrItinClass;\r
-def IIC_LEAVE : InstrItinClass;\r
-def IIC_POP_MEM : InstrItinClass;\r
-def IIC_POP_REG16 : InstrItinClass;\r
-def IIC_POP_REG : InstrItinClass;\r
-def IIC_POP_F : InstrItinClass;\r
-def IIC_POP_FD : InstrItinClass;\r
-def IIC_POP_A : InstrItinClass;\r
-def IIC_PUSH_IMM : InstrItinClass;\r
-def IIC_PUSH_MEM : InstrItinClass;\r
-def IIC_PUSH_REG : InstrItinClass;\r
-def IIC_PUSH_F : InstrItinClass;\r
-def IIC_PUSH_A : InstrItinClass;\r
-def IIC_BSWAP : InstrItinClass;\r
-def IIC_BIT_SCAN_MEM : InstrItinClass;\r
-def IIC_BIT_SCAN_REG : InstrItinClass;\r
-def IIC_MOVS : InstrItinClass;\r
-def IIC_STOS : InstrItinClass;\r
-def IIC_SCAS : InstrItinClass;\r
-def IIC_CMPS : InstrItinClass;\r
-def IIC_MOV : InstrItinClass;\r
-def IIC_MOV_MEM : InstrItinClass;\r
-def IIC_AHF : InstrItinClass;\r
-def IIC_BT_MI : InstrItinClass;\r
-def IIC_BT_MR : InstrItinClass;\r
-def IIC_BT_RI : InstrItinClass;\r
-def IIC_BT_RR : InstrItinClass;\r
-def IIC_BTX_MI : InstrItinClass;\r
-def IIC_BTX_MR : InstrItinClass;\r
-def IIC_BTX_RI : InstrItinClass;\r
-def IIC_BTX_RR : InstrItinClass;\r
-def IIC_XCHG_REG : InstrItinClass;\r
-def IIC_XCHG_MEM : InstrItinClass;\r
-def IIC_XADD_REG : InstrItinClass;\r
-def IIC_XADD_MEM : InstrItinClass;\r
-def IIC_CMPXCHG_MEM : InstrItinClass;\r
-def IIC_CMPXCHG_REG : InstrItinClass;\r
-def IIC_CMPXCHG_MEM8 : InstrItinClass;\r
-def IIC_CMPXCHG_REG8 : InstrItinClass;\r
-def IIC_CMPXCHG_8B : InstrItinClass;\r
-def IIC_CMPXCHG_16B : InstrItinClass;\r
-def IIC_LODS : InstrItinClass;\r
-def IIC_OUTS : InstrItinClass;\r
-def IIC_CLC : InstrItinClass;\r
-def IIC_CLD : InstrItinClass;\r
-def IIC_CLI : InstrItinClass;\r
-def IIC_CMC : InstrItinClass;\r
-def IIC_CLTS : InstrItinClass;\r
-def IIC_STC : InstrItinClass;\r
-def IIC_STI : InstrItinClass;\r
-def IIC_STD : InstrItinClass;\r
-def IIC_XLAT : InstrItinClass;\r
-def IIC_AAA : InstrItinClass;\r
-def IIC_AAD : InstrItinClass;\r
-def IIC_AAM : InstrItinClass;\r
-def IIC_AAS : InstrItinClass;\r
-def IIC_DAA : InstrItinClass;\r
-def IIC_DAS : InstrItinClass;\r
-def IIC_BOUND : InstrItinClass;\r
-def IIC_ARPL_REG : InstrItinClass;\r
-def IIC_ARPL_MEM : InstrItinClass;\r
-def IIC_MOVBE : InstrItinClass;\r
-def IIC_AES : InstrItinClass;\r
-def IIC_BLEND_MEM : InstrItinClass;\r
-def IIC_BLEND_NOMEM : InstrItinClass;\r
-def IIC_CBW : InstrItinClass;\r
-def IIC_CRC32_REG : InstrItinClass;\r
-def IIC_CRC32_MEM : InstrItinClass;\r
-def IIC_SSE_DPPD_RR : InstrItinClass;\r
-def IIC_SSE_DPPD_RM : InstrItinClass;\r
-def IIC_SSE_DPPS_RR : InstrItinClass;\r
-def IIC_SSE_DPPS_RM : InstrItinClass;\r
-def IIC_MMX_EMMS : InstrItinClass;\r
-def IIC_SSE_EXTRACTPS_RR : InstrItinClass;\r
-def IIC_SSE_EXTRACTPS_RM : InstrItinClass;\r
-def IIC_SSE_INSERTPS_RR : InstrItinClass;\r
-def IIC_SSE_INSERTPS_RM : InstrItinClass;\r
-def IIC_SSE_MPSADBW_RR : InstrItinClass;\r
-def IIC_SSE_MPSADBW_RM : InstrItinClass;\r
-def IIC_SSE_PMULLD_RR : InstrItinClass;\r
-def IIC_SSE_PMULLD_RM : InstrItinClass;\r
-def IIC_SSE_ROUNDPS_REG : InstrItinClass;\r
-def IIC_SSE_ROUNDPS_MEM : InstrItinClass;\r
-def IIC_SSE_ROUNDPD_REG : InstrItinClass;\r
-def IIC_SSE_ROUNDPD_MEM : InstrItinClass;\r
-def IIC_SSE_POPCNT_RR : InstrItinClass;\r
-def IIC_SSE_POPCNT_RM : InstrItinClass;\r
-def IIC_SSE_PCLMULQDQ_RR : InstrItinClass;\r
-def IIC_SSE_PCLMULQDQ_RM : InstrItinClass;\r
-\r
-def IIC_NOP : InstrItinClass;\r
-\r
-//===----------------------------------------------------------------------===//\r
-// Processor instruction itineraries.\r
-\r
-// IssueWidth is analogous to the number of decode units. Core and its\r
-// descendents, including Nehalem and SandyBridge have 4 decoders.\r
-// Resources beyond the decoder operate on micro-ops and are bufferred\r
-// so adjacent micro-ops don't directly compete.\r
-//\r
-// MicroOpBufferSize > 1 indicates that RAW dependencies can be\r
-// decoded in the same cycle. The value 32 is a reasonably arbitrary\r
-// number of in-flight instructions.\r
-//\r
-// HighLatency=10 is optimistic. X86InstrInfo::isHighLatencyDef\r
-// indicates high latency opcodes. Alternatively, InstrItinData\r
-// entries may be included here to define specific operand\r
-// latencies. Since these latencies are not used for pipeline hazards,\r
-// they do not need to be exact.\r
-//\r
-// The GenericX86Model contains no instruction itineraries\r
-// and disables PostRAScheduler.\r
-class GenericX86Model : SchedMachineModel {\r
- let IssueWidth = 4;\r
- let MicroOpBufferSize = 32;\r
- let LoadLatency = 4;\r
- let HighLatency = 10;\r
- let PostRAScheduler = 0;\r
- let CompleteModel = 0;\r
-}\r
-\r
-def GenericModel : GenericX86Model;\r
-\r
-// Define a model with the PostRAScheduler enabled.\r
-def GenericPostRAModel : GenericX86Model {\r
- let PostRAScheduler = 1;\r
-}\r
-\r
-include "X86ScheduleAtom.td"\r
-include "X86SchedSandyBridge.td"\r
-include "X86SchedHaswell.td"\r
-include "X86ScheduleSLM.td"\r
-include "X86ScheduleBtVer2.td"\r
-\r
+//===-- X86Schedule.td - X86 Scheduling Definitions --------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+// InstrSchedModel annotations for out-of-order CPUs.
+//
+// These annotations are independent of the itinerary classes defined below.
+
+// Instructions with folded loads need to read the memory operand immediately,
+// but other register operands don't have to be read until the load is ready.
+// These operands are marked with ReadAfterLd.
+def ReadAfterLd : SchedRead;
+
+// Instructions with both a load and a store folded are modeled as a folded
+// load + WriteRMW.
+def WriteRMW : SchedWrite;
+
+// Most instructions can fold loads, so almost every SchedWrite comes in two
+// variants: With and without a folded load.
+// An X86FoldableSchedWrite holds a reference to the corresponding SchedWrite
+// with a folded load.
+class X86FoldableSchedWrite : SchedWrite {
+ // The SchedWrite to use when a load is folded into the instruction.
+ SchedWrite Folded;
+}
+
+// Multiclass that produces a linked pair of SchedWrites.
+multiclass X86SchedWritePair {
+ // Register-Memory operation.
+ def Ld : SchedWrite;
+ // Register-Register operation.
+ def NAME : X86FoldableSchedWrite {
+ let Folded = !cast<SchedWrite>(NAME#"Ld");
+ }
+}
+
+// Arithmetic.
+defm WriteALU : X86SchedWritePair; // Simple integer ALU op.
+defm WriteIMul : X86SchedWritePair; // Integer multiplication.
+def WriteIMulH : SchedWrite; // Integer multiplication, high part.
+defm WriteIDiv : X86SchedWritePair; // Integer division.
+def WriteLEA : SchedWrite; // LEA instructions can't fold loads.
+
+// Integer shifts and rotates.
+defm WriteShift : X86SchedWritePair;
+
+// Loads, stores, and moves, not folded with other operations.
+def WriteLoad : SchedWrite;
+def WriteStore : SchedWrite;
+def WriteMove : SchedWrite;
+
+// Idioms that clear a register, like xorps %xmm0, %xmm0.
+// These can often bypass execution ports completely.
+def WriteZero : SchedWrite;
+
+// Branches don't produce values, so they have no latency, but they still
+// consume resources. Indirect branches can fold loads.
+defm WriteJump : X86SchedWritePair;
+
+// Floating point. This covers both scalar and vector operations.
+defm WriteFAdd : X86SchedWritePair; // Floating point add/sub/compare.
+defm WriteFMul : X86SchedWritePair; // Floating point multiplication.
+defm WriteFDiv : X86SchedWritePair; // Floating point division.
+defm WriteFSqrt : X86SchedWritePair; // Floating point square root.
+defm WriteFRcp : X86SchedWritePair; // Floating point reciprocal estimate.
+defm WriteFRsqrt : X86SchedWritePair; // Floating point reciprocal square root estimate.
+defm WriteFMA : X86SchedWritePair; // Fused Multiply Add.
+defm WriteFShuffle : X86SchedWritePair; // Floating point vector shuffles.
+defm WriteFBlend : X86SchedWritePair; // Floating point vector blends.
+defm WriteFVarBlend : X86SchedWritePair; // Fp vector variable blends.
+
+// FMA Scheduling helper class.
+class FMASC { X86FoldableSchedWrite Sched = WriteFAdd; }
+
+// Vector integer operations.
+defm WriteVecALU : X86SchedWritePair; // Vector integer ALU op, no logicals.
+defm WriteVecShift : X86SchedWritePair; // Vector integer shifts.
+defm WriteVecIMul : X86SchedWritePair; // Vector integer multiply.
+defm WriteShuffle : X86SchedWritePair; // Vector shuffles.
+defm WriteBlend : X86SchedWritePair; // Vector blends.
+defm WriteVarBlend : X86SchedWritePair; // Vector variable blends.
+defm WriteMPSAD : X86SchedWritePair; // Vector MPSAD.
+
+// Vector bitwise operations.
+// These are often used on both floating point and integer vectors.
+defm WriteVecLogic : X86SchedWritePair; // Vector and/or/xor.
+
+// Conversion between integer and float.
+defm WriteCvtF2I : X86SchedWritePair; // Float -> Integer.
+defm WriteCvtI2F : X86SchedWritePair; // Integer -> Float.
+defm WriteCvtF2F : X86SchedWritePair; // Float -> Float size conversion.
+
+// Strings instructions.
+// Packed Compare Implicit Length Strings, Return Mask
+defm WritePCmpIStrM : X86SchedWritePair;
+// Packed Compare Explicit Length Strings, Return Mask
+defm WritePCmpEStrM : X86SchedWritePair;
+// Packed Compare Implicit Length Strings, Return Index
+defm WritePCmpIStrI : X86SchedWritePair;
+// Packed Compare Explicit Length Strings, Return Index
+defm WritePCmpEStrI : X86SchedWritePair;
+
+// AES instructions.
+defm WriteAESDecEnc : X86SchedWritePair; // Decryption, encryption.
+defm WriteAESIMC : X86SchedWritePair; // InvMixColumn.
+defm WriteAESKeyGen : X86SchedWritePair; // Key Generation.
+
+// Carry-less multiplication instructions.
+defm WriteCLMul : X86SchedWritePair;
+
+// Catch-all for expensive system instructions.
+def WriteSystem : SchedWrite;
+
+// AVX2.
+defm WriteFShuffle256 : X86SchedWritePair; // Fp 256-bit width vector shuffles.
+defm WriteShuffle256 : X86SchedWritePair; // 256-bit width vector shuffles.
+defm WriteVarVecShift : X86SchedWritePair; // Variable vector shifts.
+
+// Old microcoded instructions that nobody use.
+def WriteMicrocoded : SchedWrite;
+
+// Fence instructions.
+def WriteFence : SchedWrite;
+
+// Nop, not very useful expect it provides a model for nops!
+def WriteNop : SchedWrite;
+
+//===----------------------------------------------------------------------===//
+// Instruction Itinerary classes used for X86
+def IIC_ALU_MEM : InstrItinClass;
+def IIC_ALU_NONMEM : InstrItinClass;
+def IIC_LEA : InstrItinClass;
+def IIC_LEA_16 : InstrItinClass;
+def IIC_MUL8 : InstrItinClass;
+def IIC_MUL16_MEM : InstrItinClass;
+def IIC_MUL16_REG : InstrItinClass;
+def IIC_MUL32_MEM : InstrItinClass;
+def IIC_MUL32_REG : InstrItinClass;
+def IIC_MUL64 : InstrItinClass;
+// imul by al, ax, eax, tax
+def IIC_IMUL8 : InstrItinClass;
+def IIC_IMUL16_MEM : InstrItinClass;
+def IIC_IMUL16_REG : InstrItinClass;
+def IIC_IMUL32_MEM : InstrItinClass;
+def IIC_IMUL32_REG : InstrItinClass;
+def IIC_IMUL64 : InstrItinClass;
+// imul reg by reg|mem
+def IIC_IMUL16_RM : InstrItinClass;
+def IIC_IMUL16_RR : InstrItinClass;
+def IIC_IMUL32_RM : InstrItinClass;
+def IIC_IMUL32_RR : InstrItinClass;
+def IIC_IMUL64_RM : InstrItinClass;
+def IIC_IMUL64_RR : InstrItinClass;
+// imul reg = reg/mem * imm
+def IIC_IMUL16_RMI : InstrItinClass;
+def IIC_IMUL16_RRI : InstrItinClass;
+def IIC_IMUL32_RMI : InstrItinClass;
+def IIC_IMUL32_RRI : InstrItinClass;
+def IIC_IMUL64_RMI : InstrItinClass;
+def IIC_IMUL64_RRI : InstrItinClass;
+// div
+def IIC_DIV8_MEM : InstrItinClass;
+def IIC_DIV8_REG : InstrItinClass;
+def IIC_DIV16 : InstrItinClass;
+def IIC_DIV32 : InstrItinClass;
+def IIC_DIV64 : InstrItinClass;
+// idiv
+def IIC_IDIV8 : InstrItinClass;
+def IIC_IDIV16 : InstrItinClass;
+def IIC_IDIV32 : InstrItinClass;
+def IIC_IDIV64 : InstrItinClass;
+// neg/not/inc/dec
+def IIC_UNARY_REG : InstrItinClass;
+def IIC_UNARY_MEM : InstrItinClass;
+// add/sub/and/or/xor/sbc/cmp/test
+def IIC_BIN_MEM : InstrItinClass;
+def IIC_BIN_NONMEM : InstrItinClass;
+// adc/sbc
+def IIC_BIN_CARRY_MEM : InstrItinClass;
+def IIC_BIN_CARRY_NONMEM : InstrItinClass;
+// shift/rotate
+def IIC_SR : InstrItinClass;
+// shift double
+def IIC_SHD16_REG_IM : InstrItinClass;
+def IIC_SHD16_REG_CL : InstrItinClass;
+def IIC_SHD16_MEM_IM : InstrItinClass;
+def IIC_SHD16_MEM_CL : InstrItinClass;
+def IIC_SHD32_REG_IM : InstrItinClass;
+def IIC_SHD32_REG_CL : InstrItinClass;
+def IIC_SHD32_MEM_IM : InstrItinClass;
+def IIC_SHD32_MEM_CL : InstrItinClass;
+def IIC_SHD64_REG_IM : InstrItinClass;
+def IIC_SHD64_REG_CL : InstrItinClass;
+def IIC_SHD64_MEM_IM : InstrItinClass;
+def IIC_SHD64_MEM_CL : InstrItinClass;
+// cmov
+def IIC_CMOV16_RM : InstrItinClass;
+def IIC_CMOV16_RR : InstrItinClass;
+def IIC_CMOV32_RM : InstrItinClass;
+def IIC_CMOV32_RR : InstrItinClass;
+def IIC_CMOV64_RM : InstrItinClass;
+def IIC_CMOV64_RR : InstrItinClass;
+// set
+def IIC_SET_R : InstrItinClass;
+def IIC_SET_M : InstrItinClass;
+// jmp/jcc/jcxz
+def IIC_Jcc : InstrItinClass;
+def IIC_JCXZ : InstrItinClass;
+def IIC_JMP_REL : InstrItinClass;
+def IIC_JMP_REG : InstrItinClass;
+def IIC_JMP_MEM : InstrItinClass;
+def IIC_JMP_FAR_MEM : InstrItinClass;
+def IIC_JMP_FAR_PTR : InstrItinClass;
+// loop
+def IIC_LOOP : InstrItinClass;
+def IIC_LOOPE : InstrItinClass;
+def IIC_LOOPNE : InstrItinClass;
+// call
+def IIC_CALL_RI : InstrItinClass;
+def IIC_CALL_MEM : InstrItinClass;
+def IIC_CALL_FAR_MEM : InstrItinClass;
+def IIC_CALL_FAR_PTR : InstrItinClass;
+// ret
+def IIC_RET : InstrItinClass;
+def IIC_RET_IMM : InstrItinClass;
+//sign extension movs
+def IIC_MOVSX : InstrItinClass;
+def IIC_MOVSX_R16_R8 : InstrItinClass;
+def IIC_MOVSX_R16_M8 : InstrItinClass;
+def IIC_MOVSX_R16_R16 : InstrItinClass;
+def IIC_MOVSX_R32_R32 : InstrItinClass;
+//zero extension movs
+def IIC_MOVZX : InstrItinClass;
+def IIC_MOVZX_R16_R8 : InstrItinClass;
+def IIC_MOVZX_R16_M8 : InstrItinClass;
+
+def IIC_REP_MOVS : InstrItinClass;
+def IIC_REP_STOS : InstrItinClass;
+
+// SSE scalar/parallel binary operations
+def IIC_SSE_ALU_F32S_RR : InstrItinClass;
+def IIC_SSE_ALU_F32S_RM : InstrItinClass;
+def IIC_SSE_ALU_F64S_RR : InstrItinClass;
+def IIC_SSE_ALU_F64S_RM : InstrItinClass;
+def IIC_SSE_MUL_F32S_RR : InstrItinClass;
+def IIC_SSE_MUL_F32S_RM : InstrItinClass;
+def IIC_SSE_MUL_F64S_RR : InstrItinClass;
+def IIC_SSE_MUL_F64S_RM : InstrItinClass;
+def IIC_SSE_DIV_F32S_RR : InstrItinClass;
+def IIC_SSE_DIV_F32S_RM : InstrItinClass;
+def IIC_SSE_DIV_F64S_RR : InstrItinClass;
+def IIC_SSE_DIV_F64S_RM : InstrItinClass;
+def IIC_SSE_ALU_F32P_RR : InstrItinClass;
+def IIC_SSE_ALU_F32P_RM : InstrItinClass;
+def IIC_SSE_ALU_F64P_RR : InstrItinClass;
+def IIC_SSE_ALU_F64P_RM : InstrItinClass;
+def IIC_SSE_MUL_F32P_RR : InstrItinClass;
+def IIC_SSE_MUL_F32P_RM : InstrItinClass;
+def IIC_SSE_MUL_F64P_RR : InstrItinClass;
+def IIC_SSE_MUL_F64P_RM : InstrItinClass;
+def IIC_SSE_DIV_F32P_RR : InstrItinClass;
+def IIC_SSE_DIV_F32P_RM : InstrItinClass;
+def IIC_SSE_DIV_F64P_RR : InstrItinClass;
+def IIC_SSE_DIV_F64P_RM : InstrItinClass;
+
+def IIC_SSE_COMIS_RR : InstrItinClass;
+def IIC_SSE_COMIS_RM : InstrItinClass;
+
+def IIC_SSE_HADDSUB_RR : InstrItinClass;
+def IIC_SSE_HADDSUB_RM : InstrItinClass;
+
+def IIC_SSE_BIT_P_RR : InstrItinClass;
+def IIC_SSE_BIT_P_RM : InstrItinClass;
+
+def IIC_SSE_INTALU_P_RR : InstrItinClass;
+def IIC_SSE_INTALU_P_RM : InstrItinClass;
+def IIC_SSE_INTALUQ_P_RR : InstrItinClass;
+def IIC_SSE_INTALUQ_P_RM : InstrItinClass;
+
+def IIC_SSE_INTMUL_P_RR : InstrItinClass;
+def IIC_SSE_INTMUL_P_RM : InstrItinClass;
+
+def IIC_SSE_INTSH_P_RR : InstrItinClass;
+def IIC_SSE_INTSH_P_RM : InstrItinClass;
+def IIC_SSE_INTSH_P_RI : InstrItinClass;
+
+def IIC_SSE_INTSHDQ_P_RI : InstrItinClass;
+
+def IIC_SSE_SHUFP : InstrItinClass;
+def IIC_SSE_PSHUF_RI : InstrItinClass;
+def IIC_SSE_PSHUF_MI : InstrItinClass;
+
+def IIC_SSE_UNPCK : InstrItinClass;
+
+def IIC_SSE_MOVMSK : InstrItinClass;
+def IIC_SSE_MASKMOV : InstrItinClass;
+
+def IIC_SSE_PEXTRW : InstrItinClass;
+def IIC_SSE_PINSRW : InstrItinClass;
+
+def IIC_SSE_PABS_RR : InstrItinClass;
+def IIC_SSE_PABS_RM : InstrItinClass;
+
+def IIC_SSE_SQRTPS_RR : InstrItinClass;
+def IIC_SSE_SQRTPS_RM : InstrItinClass;
+def IIC_SSE_SQRTSS_RR : InstrItinClass;
+def IIC_SSE_SQRTSS_RM : InstrItinClass;
+def IIC_SSE_SQRTPD_RR : InstrItinClass;
+def IIC_SSE_SQRTPD_RM : InstrItinClass;
+def IIC_SSE_SQRTSD_RR : InstrItinClass;
+def IIC_SSE_SQRTSD_RM : InstrItinClass;
+
+def IIC_SSE_RSQRTPS_RR : InstrItinClass;
+def IIC_SSE_RSQRTPS_RM : InstrItinClass;
+def IIC_SSE_RSQRTSS_RR : InstrItinClass;
+def IIC_SSE_RSQRTSS_RM : InstrItinClass;
+
+def IIC_SSE_RCPP_RR : InstrItinClass;
+def IIC_SSE_RCPP_RM : InstrItinClass;
+def IIC_SSE_RCPS_RR : InstrItinClass;
+def IIC_SSE_RCPS_RM : InstrItinClass;
+
+def IIC_SSE_MOV_S_RR : InstrItinClass;
+def IIC_SSE_MOV_S_RM : InstrItinClass;
+def IIC_SSE_MOV_S_MR : InstrItinClass;
+
+def IIC_SSE_MOVA_P_RR : InstrItinClass;
+def IIC_SSE_MOVA_P_RM : InstrItinClass;
+def IIC_SSE_MOVA_P_MR : InstrItinClass;
+
+def IIC_SSE_MOVU_P_RR : InstrItinClass;
+def IIC_SSE_MOVU_P_RM : InstrItinClass;
+def IIC_SSE_MOVU_P_MR : InstrItinClass;
+
+def IIC_SSE_MOVDQ : InstrItinClass;
+def IIC_SSE_MOVD_ToGP : InstrItinClass;
+def IIC_SSE_MOVQ_RR : InstrItinClass;
+
+def IIC_SSE_MOV_LH : InstrItinClass;
+
+def IIC_SSE_LDDQU : InstrItinClass;
+
+def IIC_SSE_MOVNT : InstrItinClass;
+
+def IIC_SSE_PHADDSUBD_RR : InstrItinClass;
+def IIC_SSE_PHADDSUBD_RM : InstrItinClass;
+def IIC_SSE_PHADDSUBSW_RR : InstrItinClass;
+def IIC_SSE_PHADDSUBSW_RM : InstrItinClass;
+def IIC_SSE_PHADDSUBW_RR : InstrItinClass;
+def IIC_SSE_PHADDSUBW_RM : InstrItinClass;
+def IIC_SSE_PSHUFB_RR : InstrItinClass;
+def IIC_SSE_PSHUFB_RM : InstrItinClass;
+def IIC_SSE_PSIGN_RR : InstrItinClass;
+def IIC_SSE_PSIGN_RM : InstrItinClass;
+
+def IIC_SSE_PMADD : InstrItinClass;
+def IIC_SSE_PMULHRSW : InstrItinClass;
+def IIC_SSE_PALIGNRR : InstrItinClass;
+def IIC_SSE_PALIGNRM : InstrItinClass;
+def IIC_SSE_MWAIT : InstrItinClass;
+def IIC_SSE_MONITOR : InstrItinClass;
+def IIC_SSE_MWAITX : InstrItinClass;
+def IIC_SSE_MONITORX : InstrItinClass;
+def IIC_SSE_CLZERO : InstrItinClass;
+
+def IIC_SSE_PREFETCH : InstrItinClass;
+def IIC_SSE_PAUSE : InstrItinClass;
+def IIC_SSE_LFENCE : InstrItinClass;
+def IIC_SSE_MFENCE : InstrItinClass;
+def IIC_SSE_SFENCE : InstrItinClass;
+def IIC_SSE_LDMXCSR : InstrItinClass;
+def IIC_SSE_STMXCSR : InstrItinClass;
+
+def IIC_SSE_CVT_PD_RR : InstrItinClass;
+def IIC_SSE_CVT_PD_RM : InstrItinClass;
+def IIC_SSE_CVT_PS_RR : InstrItinClass;
+def IIC_SSE_CVT_PS_RM : InstrItinClass;
+def IIC_SSE_CVT_PI2PS_RR : InstrItinClass;
+def IIC_SSE_CVT_PI2PS_RM : InstrItinClass;
+def IIC_SSE_CVT_Scalar_RR : InstrItinClass;
+def IIC_SSE_CVT_Scalar_RM : InstrItinClass;
+def IIC_SSE_CVT_SS2SI32_RM : InstrItinClass;
+def IIC_SSE_CVT_SS2SI32_RR : InstrItinClass;
+def IIC_SSE_CVT_SS2SI64_RM : InstrItinClass;
+def IIC_SSE_CVT_SS2SI64_RR : InstrItinClass;
+def IIC_SSE_CVT_SD2SI_RM : InstrItinClass;
+def IIC_SSE_CVT_SD2SI_RR : InstrItinClass;
+
+// MMX
+def IIC_MMX_MOV_MM_RM : InstrItinClass;
+def IIC_MMX_MOV_REG_MM : InstrItinClass;
+def IIC_MMX_MOVQ_RM : InstrItinClass;
+def IIC_MMX_MOVQ_RR : InstrItinClass;
+
+def IIC_MMX_ALU_RM : InstrItinClass;
+def IIC_MMX_ALU_RR : InstrItinClass;
+def IIC_MMX_ALUQ_RM : InstrItinClass;
+def IIC_MMX_ALUQ_RR : InstrItinClass;
+def IIC_MMX_PHADDSUBW_RM : InstrItinClass;
+def IIC_MMX_PHADDSUBW_RR : InstrItinClass;
+def IIC_MMX_PHADDSUBD_RM : InstrItinClass;
+def IIC_MMX_PHADDSUBD_RR : InstrItinClass;
+def IIC_MMX_PMUL : InstrItinClass;
+def IIC_MMX_MISC_FUNC_MEM : InstrItinClass;
+def IIC_MMX_MISC_FUNC_REG : InstrItinClass;
+def IIC_MMX_PSADBW : InstrItinClass;
+def IIC_MMX_SHIFT_RI : InstrItinClass;
+def IIC_MMX_SHIFT_RM : InstrItinClass;
+def IIC_MMX_SHIFT_RR : InstrItinClass;
+def IIC_MMX_UNPCK_H_RM : InstrItinClass;
+def IIC_MMX_UNPCK_H_RR : InstrItinClass;
+def IIC_MMX_UNPCK_L : InstrItinClass;
+def IIC_MMX_PCK_RM : InstrItinClass;
+def IIC_MMX_PCK_RR : InstrItinClass;
+def IIC_MMX_PSHUF : InstrItinClass;
+def IIC_MMX_PEXTR : InstrItinClass;
+def IIC_MMX_PINSRW : InstrItinClass;
+def IIC_MMX_MASKMOV : InstrItinClass;
+
+def IIC_MMX_CVT_PD_RR : InstrItinClass;
+def IIC_MMX_CVT_PD_RM : InstrItinClass;
+def IIC_MMX_CVT_PS_RR : InstrItinClass;
+def IIC_MMX_CVT_PS_RM : InstrItinClass;
+
+def IIC_CMPX_LOCK : InstrItinClass;
+def IIC_CMPX_LOCK_8 : InstrItinClass;
+def IIC_CMPX_LOCK_8B : InstrItinClass;
+def IIC_CMPX_LOCK_16B : InstrItinClass;
+
+def IIC_XADD_LOCK_MEM : InstrItinClass;
+def IIC_XADD_LOCK_MEM8 : InstrItinClass;
+
+def IIC_FILD : InstrItinClass;
+def IIC_FLD : InstrItinClass;
+def IIC_FLD80 : InstrItinClass;
+def IIC_FST : InstrItinClass;
+def IIC_FST80 : InstrItinClass;
+def IIC_FIST : InstrItinClass;
+def IIC_FLDZ : InstrItinClass;
+def IIC_FUCOM : InstrItinClass;
+def IIC_FUCOMI : InstrItinClass;
+def IIC_FCOMI : InstrItinClass;
+def IIC_FNSTSW : InstrItinClass;
+def IIC_FNSTCW : InstrItinClass;
+def IIC_FLDCW : InstrItinClass;
+def IIC_FNINIT : InstrItinClass;
+def IIC_FFREE : InstrItinClass;
+def IIC_FNCLEX : InstrItinClass;
+def IIC_WAIT : InstrItinClass;
+def IIC_FXAM : InstrItinClass;
+def IIC_FNOP : InstrItinClass;
+def IIC_FLDL : InstrItinClass;
+def IIC_F2XM1 : InstrItinClass;
+def IIC_FYL2X : InstrItinClass;
+def IIC_FPTAN : InstrItinClass;
+def IIC_FPATAN : InstrItinClass;
+def IIC_FXTRACT : InstrItinClass;
+def IIC_FPREM1 : InstrItinClass;
+def IIC_FPSTP : InstrItinClass;
+def IIC_FPREM : InstrItinClass;
+def IIC_FYL2XP1 : InstrItinClass;
+def IIC_FSINCOS : InstrItinClass;
+def IIC_FRNDINT : InstrItinClass;
+def IIC_FSCALE : InstrItinClass;
+def IIC_FCOMPP : InstrItinClass;
+def IIC_FXSAVE : InstrItinClass;
+def IIC_FXRSTOR : InstrItinClass;
+
+def IIC_FXCH : InstrItinClass;
+
+// System instructions
+def IIC_CPUID : InstrItinClass;
+def IIC_INT : InstrItinClass;
+def IIC_INT3 : InstrItinClass;
+def IIC_INVD : InstrItinClass;
+def IIC_INVLPG : InstrItinClass;
+def IIC_IRET : InstrItinClass;
+def IIC_HLT : InstrItinClass;
+def IIC_LXS : InstrItinClass;
+def IIC_LTR : InstrItinClass;
+def IIC_RDTSC : InstrItinClass;
+def IIC_RSM : InstrItinClass;
+def IIC_SIDT : InstrItinClass;
+def IIC_SGDT : InstrItinClass;
+def IIC_SLDT : InstrItinClass;
+def IIC_STR : InstrItinClass;
+def IIC_SWAPGS : InstrItinClass;
+def IIC_SYSCALL : InstrItinClass;
+def IIC_SYS_ENTER_EXIT : InstrItinClass;
+def IIC_IN_RR : InstrItinClass;
+def IIC_IN_RI : InstrItinClass;
+def IIC_OUT_RR : InstrItinClass;
+def IIC_OUT_IR : InstrItinClass;
+def IIC_INS : InstrItinClass;
+def IIC_MOV_REG_DR : InstrItinClass;
+def IIC_MOV_DR_REG : InstrItinClass;
+def IIC_MOV_REG_CR : InstrItinClass;
+def IIC_MOV_CR_REG : InstrItinClass;
+def IIC_MOV_REG_SR : InstrItinClass;
+def IIC_MOV_MEM_SR : InstrItinClass;
+def IIC_MOV_SR_REG : InstrItinClass;
+def IIC_MOV_SR_MEM : InstrItinClass;
+def IIC_LAR_RM : InstrItinClass;
+def IIC_LAR_RR : InstrItinClass;
+def IIC_LSL_RM : InstrItinClass;
+def IIC_LSL_RR : InstrItinClass;
+def IIC_LGDT : InstrItinClass;
+def IIC_LIDT : InstrItinClass;
+def IIC_LLDT_REG : InstrItinClass;
+def IIC_LLDT_MEM : InstrItinClass;
+def IIC_PUSH_CS : InstrItinClass;
+def IIC_PUSH_SR : InstrItinClass;
+def IIC_POP_SR : InstrItinClass;
+def IIC_POP_SR_SS : InstrItinClass;
+def IIC_VERR : InstrItinClass;
+def IIC_VERW_REG : InstrItinClass;
+def IIC_VERW_MEM : InstrItinClass;
+def IIC_WRMSR : InstrItinClass;
+def IIC_RDMSR : InstrItinClass;
+def IIC_RDPMC : InstrItinClass;
+def IIC_SMSW : InstrItinClass;
+def IIC_LMSW_REG : InstrItinClass;
+def IIC_LMSW_MEM : InstrItinClass;
+def IIC_ENTER : InstrItinClass;
+def IIC_LEAVE : InstrItinClass;
+def IIC_POP_MEM : InstrItinClass;
+def IIC_POP_REG16 : InstrItinClass;
+def IIC_POP_REG : InstrItinClass;
+def IIC_POP_F : InstrItinClass;
+def IIC_POP_FD : InstrItinClass;
+def IIC_POP_A : InstrItinClass;
+def IIC_PUSH_IMM : InstrItinClass;
+def IIC_PUSH_MEM : InstrItinClass;
+def IIC_PUSH_REG : InstrItinClass;
+def IIC_PUSH_F : InstrItinClass;
+def IIC_PUSH_A : InstrItinClass;
+def IIC_BSWAP : InstrItinClass;
+def IIC_BIT_SCAN_MEM : InstrItinClass;
+def IIC_BIT_SCAN_REG : InstrItinClass;
+def IIC_MOVS : InstrItinClass;
+def IIC_STOS : InstrItinClass;
+def IIC_SCAS : InstrItinClass;
+def IIC_CMPS : InstrItinClass;
+def IIC_MOV : InstrItinClass;
+def IIC_MOV_MEM : InstrItinClass;
+def IIC_AHF : InstrItinClass;
+def IIC_BT_MI : InstrItinClass;
+def IIC_BT_MR : InstrItinClass;
+def IIC_BT_RI : InstrItinClass;
+def IIC_BT_RR : InstrItinClass;
+def IIC_BTX_MI : InstrItinClass;
+def IIC_BTX_MR : InstrItinClass;
+def IIC_BTX_RI : InstrItinClass;
+def IIC_BTX_RR : InstrItinClass;
+def IIC_XCHG_REG : InstrItinClass;
+def IIC_XCHG_MEM : InstrItinClass;
+def IIC_XADD_REG : InstrItinClass;
+def IIC_XADD_MEM : InstrItinClass;
+def IIC_CMPXCHG_MEM : InstrItinClass;
+def IIC_CMPXCHG_REG : InstrItinClass;
+def IIC_CMPXCHG_MEM8 : InstrItinClass;
+def IIC_CMPXCHG_REG8 : InstrItinClass;
+def IIC_CMPXCHG_8B : InstrItinClass;
+def IIC_CMPXCHG_16B : InstrItinClass;
+def IIC_LODS : InstrItinClass;
+def IIC_OUTS : InstrItinClass;
+def IIC_CLC : InstrItinClass;
+def IIC_CLD : InstrItinClass;
+def IIC_CLI : InstrItinClass;
+def IIC_CMC : InstrItinClass;
+def IIC_CLTS : InstrItinClass;
+def IIC_STC : InstrItinClass;
+def IIC_STI : InstrItinClass;
+def IIC_STD : InstrItinClass;
+def IIC_XLAT : InstrItinClass;
+def IIC_AAA : InstrItinClass;
+def IIC_AAD : InstrItinClass;
+def IIC_AAM : InstrItinClass;
+def IIC_AAS : InstrItinClass;
+def IIC_DAA : InstrItinClass;
+def IIC_DAS : InstrItinClass;
+def IIC_BOUND : InstrItinClass;
+def IIC_ARPL_REG : InstrItinClass;
+def IIC_ARPL_MEM : InstrItinClass;
+def IIC_MOVBE : InstrItinClass;
+def IIC_AES : InstrItinClass;
+def IIC_BLEND_MEM : InstrItinClass;
+def IIC_BLEND_NOMEM : InstrItinClass;
+def IIC_CBW : InstrItinClass;
+def IIC_CRC32_REG : InstrItinClass;
+def IIC_CRC32_MEM : InstrItinClass;
+def IIC_SSE_DPPD_RR : InstrItinClass;
+def IIC_SSE_DPPD_RM : InstrItinClass;
+def IIC_SSE_DPPS_RR : InstrItinClass;
+def IIC_SSE_DPPS_RM : InstrItinClass;
+def IIC_MMX_EMMS : InstrItinClass;
+def IIC_SSE_EXTRACTPS_RR : InstrItinClass;
+def IIC_SSE_EXTRACTPS_RM : InstrItinClass;
+def IIC_SSE_INSERTPS_RR : InstrItinClass;
+def IIC_SSE_INSERTPS_RM : InstrItinClass;
+def IIC_SSE_MPSADBW_RR : InstrItinClass;
+def IIC_SSE_MPSADBW_RM : InstrItinClass;
+def IIC_SSE_PMULLD_RR : InstrItinClass;
+def IIC_SSE_PMULLD_RM : InstrItinClass;
+def IIC_SSE_ROUNDPS_REG : InstrItinClass;
+def IIC_SSE_ROUNDPS_MEM : InstrItinClass;
+def IIC_SSE_ROUNDPD_REG : InstrItinClass;
+def IIC_SSE_ROUNDPD_MEM : InstrItinClass;
+def IIC_SSE_POPCNT_RR : InstrItinClass;
+def IIC_SSE_POPCNT_RM : InstrItinClass;
+def IIC_SSE_PCLMULQDQ_RR : InstrItinClass;
+def IIC_SSE_PCLMULQDQ_RM : InstrItinClass;
+
+def IIC_NOP : InstrItinClass;
+
+//===----------------------------------------------------------------------===//
+// Processor instruction itineraries.
+
+// IssueWidth is analogous to the number of decode units. Core and its
+// descendents, including Nehalem and SandyBridge have 4 decoders.
+// Resources beyond the decoder operate on micro-ops and are bufferred
+// so adjacent micro-ops don't directly compete.
+//
+// MicroOpBufferSize > 1 indicates that RAW dependencies can be
+// decoded in the same cycle. The value 32 is a reasonably arbitrary
+// number of in-flight instructions.
+//
+// HighLatency=10 is optimistic. X86InstrInfo::isHighLatencyDef
+// indicates high latency opcodes. Alternatively, InstrItinData
+// entries may be included here to define specific operand
+// latencies. Since these latencies are not used for pipeline hazards,
+// they do not need to be exact.
+//
+// The GenericX86Model contains no instruction itineraries
+// and disables PostRAScheduler.
+class GenericX86Model : SchedMachineModel {
+ let IssueWidth = 4;
+ let MicroOpBufferSize = 32;
+ let LoadLatency = 4;
+ let HighLatency = 10;
+ let PostRAScheduler = 0;
+ let CompleteModel = 0;
+}
+
+def GenericModel : GenericX86Model;
+
+// Define a model with the PostRAScheduler enabled.
+def GenericPostRAModel : GenericX86Model {
+ let PostRAScheduler = 1;
+}
+
+include "X86ScheduleAtom.td"
+include "X86SchedSandyBridge.td"
+include "X86SchedHaswell.td"
+include "X86ScheduleSLM.td"
+include "X86ScheduleBtVer2.td"
+