Implemented a first implementation of the function argument parsing from LLVM IR
authorBenjamin Segovia <segovia.benjamin@gmail.com>
Mon, 27 Feb 2012 20:01:19 +0000 (20:01 +0000)
committerKeith Packard <keithp@keithp.com>
Fri, 10 Aug 2012 23:15:28 +0000 (16:15 -0700)
23 files changed:
backend/kernels/add.cl [new file with mode: 0644]
backend/kernels/add.ll [new file with mode: 0644]
backend/kernels/add.o [new file with mode: 0644]
backend/kernels/add2.cl [new file with mode: 0644]
backend/kernels/add2.ll [new file with mode: 0644]
backend/kernels/add2.o [new file with mode: 0644]
backend/kernels/compile.sh [new file with mode: 0644]
backend/kernels/store.cl [new file with mode: 0644]
backend/kernels/store.ll [new file with mode: 0644]
backend/kernels/store.o [new file with mode: 0644]
backend/src/ir/context.cpp
backend/src/ir/context.hpp
backend/src/ir/function.cpp
backend/src/ir/function.hpp
backend/src/ir/unit.cpp
backend/src/ir/unit.hpp
backend/src/llvm/CMakeLists.txt
backend/src/llvm/GenBackend.cpp [deleted file]
backend/src/llvm/llvm2gen.cpp [deleted file]
backend/src/llvm/llvm_gen_backend.cpp [new file with mode: 0644]
backend/src/llvm/llvm_to_gen.cpp [new file with mode: 0644]
backend/src/llvm/llvm_to_gen.hpp [new file with mode: 0644]
backend/src/utest/utest_llvm.cpp

diff --git a/backend/kernels/add.cl b/backend/kernels/add.cl
new file mode 100644 (file)
index 0000000..7786e87
--- /dev/null
@@ -0,0 +1,5 @@
+__kernel unsigned int add(unsigned int x, unsigned int y)
+{
+  return x + y;
+}
+
diff --git a/backend/kernels/add.ll b/backend/kernels/add.ll
new file mode 100644 (file)
index 0000000..9b2c741
--- /dev/null
@@ -0,0 +1,13 @@
+; ModuleID = 'add.o'
+target datalayout = "e-p:32:32-i64:64:64-f64:64:64-n1:8:16:32:64"
+target triple = "ptx32--"
+
+define ptx_kernel i32 @add(i32 %x, i32 %y) nounwind readnone noinline {
+entry:
+  %add = add i32 %y, %x
+  ret i32 %add
+}
+
+!opencl.kernels = !{!0}
+
+!0 = metadata !{i32 (i32, i32)* @add}
diff --git a/backend/kernels/add.o b/backend/kernels/add.o
new file mode 100644 (file)
index 0000000..fcff924
Binary files /dev/null and b/backend/kernels/add.o differ
diff --git a/backend/kernels/add2.cl b/backend/kernels/add2.cl
new file mode 100644 (file)
index 0000000..c43e2c3
--- /dev/null
@@ -0,0 +1,12 @@
+struct big{
+  unsigned int a, b;
+};
+
+__kernel struct big add(unsigned int x, unsigned int y)
+{
+  struct big p;
+  p.a = x + y;
+  p.b = x - y;
+  return p;
+}
+
diff --git a/backend/kernels/add2.ll b/backend/kernels/add2.ll
new file mode 100644 (file)
index 0000000..37cf7a3
--- /dev/null
@@ -0,0 +1,20 @@
+; ModuleID = 'add2.o'
+target datalayout = "e-p:32:32-i64:64:64-f64:64:64-n1:8:16:32:64"
+target triple = "ptx32--"
+
+%struct.big = type { i32, i32 }
+
+define ptx_kernel void @add(%struct.big* noalias nocapture sret %agg.result, i32 %x, i32 %y) nounwind noinline {
+entry:
+  %add = add i32 %y, %x
+  %sub = sub i32 %x, %y
+  %agg.result.0 = getelementptr inbounds %struct.big* %agg.result, i32 0, i32 0
+  store i32 %add, i32* %agg.result.0, align 4
+  %agg.result.1 = getelementptr inbounds %struct.big* %agg.result, i32 0, i32 1
+  store i32 %sub, i32* %agg.result.1, align 4
+  ret void
+}
+
+!opencl.kernels = !{!0}
+
+!0 = metadata !{void (%struct.big*, i32, i32)* @add}
diff --git a/backend/kernels/add2.o b/backend/kernels/add2.o
new file mode 100644 (file)
index 0000000..1feb035
Binary files /dev/null and b/backend/kernels/add2.o differ
diff --git a/backend/kernels/compile.sh b/backend/kernels/compile.sh
new file mode 100644 (file)
index 0000000..880da2c
--- /dev/null
@@ -0,0 +1,4 @@
+clang -emit-llvm -O3 -ccc-host-triple ptx32 -c $1.cl -o $1.o
+llvm-dis $1.o
+mv $1.o.ll $1.ll
+
diff --git a/backend/kernels/store.cl b/backend/kernels/store.cl
new file mode 100644 (file)
index 0000000..b23b13c
--- /dev/null
@@ -0,0 +1,5 @@
+__kernel void store(__global int *dst, __local int *dst0, int x)
+{
+  dst[0] = 1;
+}
+
diff --git a/backend/kernels/store.ll b/backend/kernels/store.ll
new file mode 100644 (file)
index 0000000..c885d62
--- /dev/null
@@ -0,0 +1,16 @@
+; ModuleID = 'store.o'
+target datalayout = "e-p:32:32-i64:64:64-f64:64:64-n1:8:16:32:64"
+target triple = "ptx32--"
+
+define ptx_kernel void @store(i32* nocapture %dst, i32 addrspace(4)* nocapture %dst0, i32 %x) nounwind noinline {
+entry:
+  store i32 1, i32* %dst, align 4, !tbaa !1
+  ret void
+}
+
+!opencl.kernels = !{!0}
+
+!0 = metadata !{void (i32*, i32 addrspace(4)*, i32)* @store}
+!1 = metadata !{metadata !"int", metadata !2}
+!2 = metadata !{metadata !"omnipotent char", metadata !3}
+!3 = metadata !{metadata !"Simple C/C++ TBAA", null}
diff --git a/backend/kernels/store.o b/backend/kernels/store.o
new file mode 100644 (file)
index 0000000..ea7b34a
Binary files /dev/null and b/backend/kernels/store.o differ
index dcf57e4..d4d1ce8 100644 (file)
@@ -60,6 +60,11 @@ namespace ir {
     usedLabels = elem.usedLabels;
   }
 
+  Function &Context::getFunction(void) {
+    GBE_ASSERTM(fn != NULL, "No function currently defined");
+    return *fn;
+  }
+
   Register Context::reg(RegisterData::Family family) {
     GBE_ASSERTM(fn != NULL, "No function currently defined");
     return fn->file.append(family);
index 70d5c90..39cc727 100644 (file)
@@ -27,6 +27,7 @@
 #include "ir/instruction.hpp"
 #include "ir/function.hpp"
 #include "ir/register.hpp"
+#include "ir/unit.hpp"
 #include "sys/vector.hpp"
 #include <tuple>
 
@@ -58,6 +59,8 @@ namespace ir {
     void input(Register reg);
     /*! Append a new output register for the function */
     void output(Register reg);
+    /*! Get the current processed function */
+    Function &getFunction(void);
     /*! Append a new tuple */
     template <typename... Args> INLINE Tuple tuple(Args...args);
     /*! We just use variadic templates to forward instruction functions */
@@ -65,7 +68,10 @@ namespace ir {
     template <typename... Args> INLINE void NAME(Args...args);
 #include "ir/instruction.hxx"
 #undef DECL_INSN
-
+    /*! Return the pointer size handled by the unit */
+    INLINE PointerSize getPointerSize(void) const {
+      return unit.getPointerSize();
+    }
     /*! MAD with sources directly specified */
     INLINE void MAD(Type type,
                     Register dst,
index a3efbf0..eeb47d6 100644 (file)
@@ -27,7 +27,8 @@
 namespace gbe {
 namespace ir {
 
-  Function::Function(const std::string &name) : name(name) {}
+  Function::Function(const std::string &name) :
+    name(name), structReturned(false) {}
 
   Function::~Function(void) {
     for (auto it = blocks.begin(); it != blocks.end(); ++it)
@@ -64,7 +65,8 @@ namespace ir {
 
   std::ostream &operator<< (std::ostream &out, const Function &fn)
   {
-    out << ".decl_function " << fn.getName() << std::endl << std::endl;
+    out << ".decl_function " << fn.getName() << std::endl;
+    out << ".return_struct " << (fn.isStructReturned() ? "true" : "false") << std::endl;
     out << fn.getRegisterFile();
     out << "## " << fn.inputNum() << " input register"
         << plural(fn.inputNum())  << " ##" << std::endl;
@@ -78,7 +80,7 @@ namespace ir {
         << plural(fn.blockNum()) << " ##" << std::endl;
     for (uint32_t i = 0; i < fn.blockNum(); ++i) {
       const BasicBlock &bb = fn.getBlock(i);
-      bb.map([&out, &fn] (const Instruction &insn) {
+      bb.apply([&out, &fn] (const Instruction &insn) {
         out << insn.proxy(fn) << std::endl;
       });
       out << std::endl;
index 0272dcd..83d7823 100644 (file)
@@ -54,7 +54,7 @@ namespace ir {
     INLINE uint32_t insnNum(void) { return instructions.size(); }
     /*! Apply the given functor on all instructions */
     template <typename T>
-    INLINE void map(const T &functor) const {
+    INLINE void apply(const T &functor) const {
       for (auto it = instructions.begin(); it != instructions.end(); ++it)
         functor(**it);
     }
@@ -114,6 +114,10 @@ namespace ir {
       GBE_ASSERT(blocks[ID] != NULL);
       return *blocks[ID];
     }
+    /*! Function returns a structure by pointer (see ptx32 ABI) */
+    INLINE void setStructReturned(bool isReturned) { structReturned = isReturned; }
+    /*! Indicate if a structure is returned from the function */
+    INLINE bool isStructReturned(void) const { return structReturned; }
     /*! Create a new label (still not bound to a basic block) */
     LabelIndex newLabel(void);
     /*! Number of registers in the register file */
@@ -142,6 +146,7 @@ namespace ir {
     vector<BasicBlock*> blocks;   //!< All chained basic blocks
     RegisterFile file;            //!< RegisterDatas used by the instructions
     GrowingPool<Instruction> insnPool; //!< For fast instruction allocation
+    bool structReturned;               //!< First argument is pointer to struct
     GBE_CLASS(Function);
   };
 
index 0e5cc73..05cc802 100644 (file)
@@ -54,6 +54,11 @@ namespace ir {
     constantSet.append(data, name, size, alignment);
   }
 
+  std::ostream &operator<< (std::ostream &out, const Unit &unit)
+  {
+    unit.apply([&out] (const Function &fn) { out << fn << std::endl; });
+    return out;
+  }
 } /* namespace ir */
 } /* namespace gbe */
 
index accad83..6bc3669 100644 (file)
@@ -57,6 +57,14 @@ namespace ir {
     Function *newFunction(const std::string &name);
     /*! Create a new constant in the constant set */
     void newConstant(const char*, const std::string&, uint32_t size, uint32_t alignment);
+    /*! Apply the given functor on all the functions */
+    template <typename T>
+    INLINE void apply(const T &functor) const {
+      for (auto it = functions.begin(); it != functions.end(); ++it)
+        functor(*it->second);
+    }
+    /*! Return the size of the pointers manipulated */
+    INLINE PointerSize getPointerSize(void) const { return pointerSize; }
   private:
     hash_map<std::string, Function*> functions; //!< All the defined functions
     ConstantSet constantSet; //!< All the constants defined in the unit
@@ -64,6 +72,9 @@ namespace ir {
     GBE_CLASS(Unit);
   };
 
+  /*! Output the unit string in the given stream */
+  std::ostream &operator<< (std::ostream &out, const Unit &unit);
+
 } /* namespace ir */
 } /* namespace gbe */
 
index a6f05bc..63e9825 100644 (file)
@@ -4,7 +4,7 @@ include (${LLVM_DIR}/HandleLLVMOptions.cmake)
 include (${LLVM_DIR}/LLVMProcessSources.cmake)
 include_directories(${LLVM_INCLUDE_DIRS})
 include_directories(../)
-add_llvm_target(GenBackend llvm2gen.cpp GenBackend.cpp)
+add_llvm_target(GenBackend llvm_to_gen.cpp llvm_gen_backend.cpp)
 add_llvm_library_dependencies(LLVMGenBackend
   LLVMAnalysis
   LLVMCodeGen
diff --git a/backend/src/llvm/GenBackend.cpp b/backend/src/llvm/GenBackend.cpp
deleted file mode 100644 (file)
index 2b4a9b8..0000000
+++ /dev/null
@@ -1,3556 +0,0 @@
-/* 
- * Copyright © 2012 Intel Corporation
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library. If not, see <http://www.gnu.org/licenses/>.
- *
- * Author: Benjamin Segovia <benjamin.segovia@intel.com>
- */
-
-#include "llvm/CallingConv.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
-#include "llvm/PassManager.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/ADT/SmallString.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/Analysis/ConstantsScanner.h"
-#include "llvm/Analysis/FindUsedTypes.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/CodeGen/IntrinsicLowering.h"
-#include "llvm/Target/Mangler.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/MC/MCAsmInfo.h"
-#include "llvm/MC/MCContext.h"
-#include "llvm/MC/MCInstrInfo.h"
-#include "llvm/MC/MCObjectFileInfo.h"
-#include "llvm/MC/MCRegisterInfo.h"
-#include "llvm/MC/MCSubtargetInfo.h"
-#include "llvm/MC/MCSymbol.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/FormattedStream.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/InstVisitor.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/TargetRegistry.h"
-#include "llvm/Support/Host.h"
-#include "llvm/Config/config.h"
-
-#include "ir/context.hpp"
-#include <algorithm>
-
-using namespace llvm;
-
-namespace {
-  class CBEMCAsmInfo : public MCAsmInfo {
-  public:
-    CBEMCAsmInfo() {
-      GlobalPrefix = "";
-      PrivateGlobalPrefix = "";
-    }
-  };
-
-  /// GenWriter - This class is the main chunk of code that converts an LLVM
-  /// module to a C translation unit.
-  class GenWriter : public FunctionPass, public InstVisitor<GenWriter> {
-    formatted_raw_ostream &Out;
-    IntrinsicLowering *IL;
-    Mangler *Mang;
-    LoopInfo *LI;
-    const Module *TheModule;
-    const MCAsmInfo* TAsm;
-    const MCRegisterInfo *MRI;
-    const MCObjectFileInfo *MOFI;
-    MCContext *TCtx;
-    const TargetData* TD;
-
-    std::map<const ConstantFP *, unsigned> FPConstantMap;
-    std::set<Function*> intrinsicPrototypesAlreadyGenerated;
-    std::set<const Argument*> ByValParams;
-    unsigned FPCounter;
-    unsigned OpaqueCounter;
-    DenseMap<const Value*, unsigned> AnonValueNumbers;
-    unsigned NextAnonValueNumber;
-
-    /// UnnamedStructIDs - This contains a unique ID for each struct that is
-    /// either anonymous or has no name.
-    DenseMap<StructType*, unsigned> UnnamedStructIDs;
-
-  public:
-    static char ID;
-    explicit GenWriter(formatted_raw_ostream &o)
-      : FunctionPass(ID), Out(o), IL(0), Mang(0), LI(0),
-        TheModule(0), TAsm(0), MRI(0), MOFI(0), TCtx(0), TD(0),
-        OpaqueCounter(0), NextAnonValueNumber(0) {
-      initializeLoopInfoPass(*PassRegistry::getPassRegistry());
-      FPCounter = 0;
-    }
-
-    virtual const char *getPassName() const { return "Gen Back-End"; }
-
-    void getAnalysisUsage(AnalysisUsage &AU) const {
-      AU.addRequired<LoopInfo>();
-      AU.setPreservesAll();
-    }
-
-    virtual bool doInitialization(Module &M);
-
-    bool runOnFunction(Function &F) {
-     // Do not codegen any 'available_externally' functions at all, they have
-     // definitions outside the translation unit.
-     if (F.hasAvailableExternallyLinkage())
-       return false;
-
-      LI = &getAnalysis<LoopInfo>();
-
-      // Get rid of intrinsics we can't handle.
-      lowerIntrinsics(F);
-
-      // Output all floating point constants that cannot be printed accurately.
-      printFloatingPointConstants(F);
-
-      printFunction(F);
-      return false;
-    }
-
-    virtual bool doFinalization(Module &M) {
-      // Free memory...
-      delete IL;
-      delete TD;
-      delete Mang;
-      delete TCtx;
-      delete TAsm;
-      delete MRI;
-      delete MOFI;
-      FPConstantMap.clear();
-      ByValParams.clear();
-      intrinsicPrototypesAlreadyGenerated.clear();
-      UnnamedStructIDs.clear();
-      return false;
-    }
-
-    raw_ostream &printType(raw_ostream &Out, Type *Ty,
-                           bool isSigned = false,
-                           const std::string &VariableName = "",
-                           bool IgnoreName = false,
-                           const AttrListPtr &PAL = AttrListPtr());
-    raw_ostream &printSimpleType(raw_ostream &Out, Type *Ty,
-                                 bool isSigned,
-                                 const std::string &NameSoFar = "");
-
-    void printStructReturnPointerFunctionType(raw_ostream &Out,
-                                              const AttrListPtr &PAL,
-                                              PointerType *Ty);
-
-    std::string getStructName(StructType *ST);
-
-    /// writeOperandDeref - Print the result of dereferencing the specified
-    /// operand with '*'.  This is equivalent to printing '*' then using
-    /// writeOperand, but avoids excess syntax in some cases.
-    void writeOperandDeref(Value *Operand) {
-      if (isAddressExposed(Operand)) {
-        // Already something with an address exposed.
-        writeOperandInternal(Operand);
-      } else {
-        Out << "*(";
-        writeOperand(Operand);
-        Out << ")";
-      }
-    }
-
-    void writeOperand(Value *Operand, bool Static = false);
-    void writeInstComputationInline(Instruction &I);
-    void writeOperandInternal(Value *Operand, bool Static = false);
-    void writeOperandWithCast(Value* Operand, unsigned Opcode);
-    void writeOperandWithCast(Value* Operand, const ICmpInst &I);
-    bool writeInstructionCast(const Instruction &I);
-
-    void writeMemoryAccess(Value *Operand, Type *OperandType,
-                           bool IsVolatile, unsigned Alignment);
-
-  private :
-    std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
-
-    void lowerIntrinsics(Function &F);
-    /// Prints the definition of the intrinsic function F. Supports the 
-    /// intrinsics which need to be explicitly defined in the CBackend.
-    void printIntrinsicDefinition(const Function &F, raw_ostream &Out);
-
-    void printModuleTypes();
-    void printContainedStructs(Type *Ty, SmallPtrSet<Type *, 16> &);
-    void printFloatingPointConstants(Function &F);
-    void printFloatingPointConstants(const Constant *C);
-    void printFunctionSignature(const Function *F, bool Prototype);
-
-    void printFunction(Function &);
-    void printBasicBlock(BasicBlock *BB);
-    void printLoop(Loop *L);
-
-    void printCast(unsigned opcode, Type *SrcTy, Type *DstTy);
-    void printConstant(Constant *CPV, bool Static);
-    void printConstantWithCast(Constant *CPV, unsigned Opcode);
-    bool printConstExprCast(const ConstantExpr *CE, bool Static);
-    void printConstantArray(ConstantArray *CPA, bool Static);
-    void printConstantVector(ConstantVector *CV, bool Static);
-
-    /// isAddressExposed - Return true if the specified value's name needs to
-    /// have its address taken in order to get a C value of the correct type.
-    /// This happens for global variables, byval parameters, and direct allocas.
-    bool isAddressExposed(const Value *V) const {
-      if (const Argument *A = dyn_cast<Argument>(V))
-        return ByValParams.count(A);
-      return isa<GlobalVariable>(V) || isDirectAlloca(V);
-    }
-
-    // isInlinableInst - Attempt to inline instructions into their uses to build
-    // trees as much as possible.  To do this, we have to consistently decide
-    // what is acceptable to inline, so that variable declarations don't get
-    // printed and an extra copy of the expr is not emitted.
-    //
-    static bool isInlinableInst(const Instruction &I) {
-      // Always inline cmp instructions, even if they are shared by multiple
-      // expressions.  GCC generates horrible code if we don't.
-      if (isa<CmpInst>(I))
-        return true;
-
-      // Must be an expression, must be used exactly once.  If it is dead, we
-      // emit it inline where it would go.
-      if (I.getType() == Type::getVoidTy(I.getContext()) || !I.hasOneUse() ||
-          isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
-          isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) ||
-          isa<InsertValueInst>(I))
-        // Don't inline a load across a store or other bad things!
-        return false;
-
-      // Must not be used in inline asm, extractelement, or shufflevector.
-      if (I.hasOneUse()) {
-        const Instruction &User = cast<Instruction>(*I.use_back());
-        if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
-            isa<ShuffleVectorInst>(User))
-          return false;
-      }
-
-      // Only inline instruction it if it's use is in the same BB as the inst.
-      return I.getParent() == cast<Instruction>(I.use_back())->getParent();
-    }
-
-    // isDirectAlloca - Define fixed sized allocas in the entry block as direct
-    // variables which are accessed with the & operator.  This causes GCC to
-    // generate significantly better code than to emit alloca calls directly.
-    //
-    static const AllocaInst *isDirectAlloca(const Value *V) {
-      const AllocaInst *AI = dyn_cast<AllocaInst>(V);
-      if (!AI) return 0;
-      if (AI->isArrayAllocation())
-        return 0;   // FIXME: we can also inline fixed size array allocas!
-      if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
-        return 0;
-      return AI;
-    }
-
-    // isInlineAsm - Check if the instruction is a call to an inline asm chunk.
-    static bool isInlineAsm(const Instruction& I) {
-      if (const CallInst *CI = dyn_cast<CallInst>(&I))
-        return isa<InlineAsm>(CI->getCalledValue());
-      return false;
-    }
-
-    // Instruction visitation functions
-    friend class InstVisitor<GenWriter>;
-
-    void visitReturnInst(ReturnInst &I);
-    void visitBranchInst(BranchInst &I);
-    void visitSwitchInst(SwitchInst &I);
-    void visitIndirectBrInst(IndirectBrInst &I);
-    void visitInvokeInst(InvokeInst &I) {
-      llvm_unreachable("Lowerinvoke pass didn't work!");
-    }
-    void visitUnwindInst(UnwindInst &I) {
-      llvm_unreachable("Lowerinvoke pass didn't work!");
-    }
-    void visitResumeInst(ResumeInst &I) {
-      llvm_unreachable("DwarfEHPrepare pass didn't work!");
-    }
-    void visitUnreachableInst(UnreachableInst &I);
-
-    void visitPHINode(PHINode &I);
-    void visitBinaryOperator(Instruction &I);
-    void visitICmpInst(ICmpInst &I);
-    void visitFCmpInst(FCmpInst &I);
-
-    void visitCastInst (CastInst &I);
-    void visitSelectInst(SelectInst &I);
-    void visitCallInst (CallInst &I);
-    void visitInlineAsm(CallInst &I);
-    bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
-
-    void visitAllocaInst(AllocaInst &I);
-    void visitLoadInst  (LoadInst   &I);
-    void visitStoreInst (StoreInst  &I);
-    void visitGetElementPtrInst(GetElementPtrInst &I);
-    void visitVAArgInst (VAArgInst &I);
-
-    void visitInsertElementInst(InsertElementInst &I);
-    void visitExtractElementInst(ExtractElementInst &I);
-    void visitShuffleVectorInst(ShuffleVectorInst &SVI);
-
-    void visitInsertValueInst(InsertValueInst &I);
-    void visitExtractValueInst(ExtractValueInst &I);
-
-    void visitInstruction(Instruction &I) {
-#ifndef NDEBUG
-      errs() << "C Writer does not know about " << I;
-#endif
-      llvm_unreachable(0);
-    }
-
-    void outputLValue(Instruction *I) {
-      Out << "  " << GetValueName(I) << " = ";
-    }
-
-    bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
-    void printPHICopiesForSuccessor(BasicBlock *CurBlock,
-                                    BasicBlock *Successor, unsigned Indent);
-    void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
-                            unsigned Indent);
-    void printGEPExpression(Value *Ptr, gep_type_iterator I,
-                            gep_type_iterator E, bool Static);
-
-    std::string GetValueName(const Value *Operand);
-  };
-}
-
-char GenWriter::ID = 0;
-
-
-static std::string CBEMangle(const std::string &S) {
-  std::string Result;
-
-  for (unsigned i = 0, e = S.size(); i != e; ++i)
-    if (isalnum(S[i]) || S[i] == '_') {
-      Result += S[i];
-    } else {
-      Result += '_';
-      Result += 'A'+(S[i]&15);
-      Result += 'A'+((S[i]>>4)&15);
-      Result += '_';
-    }
-  return Result;
-}
-
-std::string GenWriter::getStructName(StructType *ST) {
-  if (!ST->isLiteral() && !ST->getName().empty())
-    return CBEMangle("l_"+ST->getName().str());
-  
-  return "l_unnamed_" + utostr(UnnamedStructIDs[ST]);
-}
-
-
-/// printStructReturnPointerFunctionType - This is like printType for a struct
-/// return type, except, instead of printing the type as void (*)(Struct*, ...)
-/// print it as "Struct (*)(...)", for struct return functions.
-void GenWriter::printStructReturnPointerFunctionType(raw_ostream &Out,
-                                                   const AttrListPtr &PAL,
-                                                   PointerType *TheTy) {
-  FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
-  std::string tstr;
-  raw_string_ostream FunctionInnards(tstr);
-  FunctionInnards << " (*) (";
-  bool PrintedType = false;
-
-  FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
-  Type *RetTy = cast<PointerType>(*I)->getElementType();
-  unsigned Idx = 1;
-  for (++I, ++Idx; I != E; ++I, ++Idx) {
-    if (PrintedType)
-      FunctionInnards << ", ";
-    Type *ArgTy = *I;
-    if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
-      assert(ArgTy->isPointerTy());
-      ArgTy = cast<PointerType>(ArgTy)->getElementType();
-    }
-    printType(FunctionInnards, ArgTy,
-        /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
-    PrintedType = true;
-  }
-  if (FTy->isVarArg()) {
-    if (!PrintedType)
-      FunctionInnards << " int"; //dummy argument for empty vararg functs
-    FunctionInnards << ", ...";
-  } else if (!PrintedType) {
-    FunctionInnards << "void";
-  }
-  FunctionInnards << ')';
-  printType(Out, RetTy,
-      /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str());
-}
-
-raw_ostream &
-GenWriter::printSimpleType(raw_ostream &Out, Type *Ty, bool isSigned,
-                         const std::string &NameSoFar) {
-  assert((Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) &&
-         "Invalid type for printSimpleType");
-  switch (Ty->getTypeID()) {
-  case Type::VoidTyID:   return Out << "void " << NameSoFar;
-  case Type::IntegerTyID: {
-    unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
-    if (NumBits == 1)
-      return Out << "bool " << NameSoFar;
-    else if (NumBits <= 8)
-      return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
-    else if (NumBits <= 16)
-      return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
-    else if (NumBits <= 32)
-      return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
-    else if (NumBits <= 64)
-      return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
-    else {
-      assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
-      return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
-    }
-  }
-  case Type::FloatTyID:  return Out << "float "   << NameSoFar;
-  case Type::DoubleTyID: return Out << "double "  << NameSoFar;
-  // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
-  // present matches host 'long double'.
-  case Type::X86_FP80TyID:
-  case Type::PPC_FP128TyID:
-  case Type::FP128TyID:  return Out << "long double " << NameSoFar;
-
-  case Type::X86_MMXTyID:
-    return printSimpleType(Out, Type::getInt32Ty(Ty->getContext()), isSigned,
-                     " __attribute__((vector_size(64))) " + NameSoFar);
-
-  case Type::VectorTyID: {
-    VectorType *VTy = cast<VectorType>(Ty);
-    return printSimpleType(Out, VTy->getElementType(), isSigned,
-                     " __attribute__((vector_size(" +
-                     utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
-  }
-
-  default:
-#ifndef NDEBUG
-    errs() << "Unknown primitive type: " << *Ty << "\n";
-#endif
-    llvm_unreachable(0);
-  }
-}
-
-// Pass the Type* and the variable name and this prints out the variable
-// declaration.
-//
-raw_ostream &GenWriter::printType(raw_ostream &Out, Type *Ty,
-                                bool isSigned, const std::string &NameSoFar,
-                                bool IgnoreName, const AttrListPtr &PAL) {
-  if (Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) {
-    printSimpleType(Out, Ty, isSigned, NameSoFar);
-    return Out;
-  }
-
-  switch (Ty->getTypeID()) {
-  case Type::FunctionTyID: {
-    FunctionType *FTy = cast<FunctionType>(Ty);
-    std::string tstr;
-    raw_string_ostream FunctionInnards(tstr);
-    FunctionInnards << " (" << NameSoFar << ") (";
-    unsigned Idx = 1;
-    for (FunctionType::param_iterator I = FTy->param_begin(),
-           E = FTy->param_end(); I != E; ++I) {
-      Type *ArgTy = *I;
-      if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
-        assert(ArgTy->isPointerTy());
-        ArgTy = cast<PointerType>(ArgTy)->getElementType();
-      }
-      if (I != FTy->param_begin())
-        FunctionInnards << ", ";
-      printType(FunctionInnards, ArgTy,
-        /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
-      ++Idx;
-    }
-    if (FTy->isVarArg()) {
-      if (!FTy->getNumParams())
-        FunctionInnards << " int"; //dummy argument for empty vaarg functs
-      FunctionInnards << ", ...";
-    } else if (!FTy->getNumParams()) {
-      FunctionInnards << "void";
-    }
-    FunctionInnards << ')';
-    printType(Out, FTy->getReturnType(),
-      /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str());
-    return Out;
-  }
-  case Type::StructTyID: {
-    StructType *STy = cast<StructType>(Ty);
-    
-    // Check to see if the type is named.
-    if (!IgnoreName)
-      return Out << getStructName(STy) << ' ' << NameSoFar;
-    
-    Out << NameSoFar + " {\n";
-    unsigned Idx = 0;
-    for (StructType::element_iterator I = STy->element_begin(),
-           E = STy->element_end(); I != E; ++I) {
-      Out << "  ";
-      printType(Out, *I, false, "field" + utostr(Idx++));
-      Out << ";\n";
-    }
-    Out << '}';
-    if (STy->isPacked())
-      Out << " __attribute__ ((packed))";
-    return Out;
-  }
-
-  case Type::PointerTyID: {
-    PointerType *PTy = cast<PointerType>(Ty);
-    std::string ptrName = "*" + NameSoFar;
-
-    if (PTy->getElementType()->isArrayTy() ||
-        PTy->getElementType()->isVectorTy())
-      ptrName = "(" + ptrName + ")";
-
-    if (!PAL.isEmpty())
-      // Must be a function ptr cast!
-      return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
-    return printType(Out, PTy->getElementType(), false, ptrName);
-  }
-
-  case Type::ArrayTyID: {
-    ArrayType *ATy = cast<ArrayType>(Ty);
-    unsigned NumElements = ATy->getNumElements();
-    if (NumElements == 0) NumElements = 1;
-    // Arrays are wrapped in structs to allow them to have normal
-    // value semantics (avoiding the array "decay").
-    Out << NameSoFar << " { ";
-    printType(Out, ATy->getElementType(), false,
-              "array[" + utostr(NumElements) + "]");
-    return Out << "; }";
-  }
-
-  default:
-    llvm_unreachable("Unhandled case in getTypeProps!");
-  }
-
-  return Out;
-}
-
-void GenWriter::printConstantArray(ConstantArray *CPA, bool Static) {
-
-  // As a special case, print the array as a string if it is an array of
-  // ubytes or an array of sbytes with positive values.
-  //
-  Type *ETy = CPA->getType()->getElementType();
-  bool isString = (ETy == Type::getInt8Ty(CPA->getContext()) ||
-                   ETy == Type::getInt8Ty(CPA->getContext()));
-
-  // Make sure the last character is a null char, as automatically added by C
-  if (isString && (CPA->getNumOperands() == 0 ||
-                   !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
-    isString = false;
-
-  if (isString) {
-    Out << '\"';
-    // Keep track of whether the last number was a hexadecimal escape.
-    bool LastWasHex = false;
-
-    // Do not include the last character, which we know is null
-    for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
-      unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
-
-      // Print it out literally if it is a printable character.  The only thing
-      // to be careful about is when the last letter output was a hex escape
-      // code, in which case we have to be careful not to print out hex digits
-      // explicitly (the C compiler thinks it is a continuation of the previous
-      // character, sheesh...)
-      //
-      if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
-        LastWasHex = false;
-        if (C == '"' || C == '\\')
-          Out << "\\" << (char)C;
-        else
-          Out << (char)C;
-      } else {
-        LastWasHex = false;
-        switch (C) {
-        case '\n': Out << "\\n"; break;
-        case '\t': Out << "\\t"; break;
-        case '\r': Out << "\\r"; break;
-        case '\v': Out << "\\v"; break;
-        case '\a': Out << "\\a"; break;
-        case '\"': Out << "\\\""; break;
-        case '\'': Out << "\\\'"; break;
-        default:
-          Out << "\\x";
-          Out << (char)(( C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
-          Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
-          LastWasHex = true;
-          break;
-        }
-      }
-    }
-    Out << '\"';
-  } else {
-    Out << '{';
-    if (CPA->getNumOperands()) {
-      Out << ' ';
-      printConstant(cast<Constant>(CPA->getOperand(0)), Static);
-      for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
-        Out << ", ";
-        printConstant(cast<Constant>(CPA->getOperand(i)), Static);
-      }
-    }
-    Out << " }";
-  }
-}
-
-void GenWriter::printConstantVector(ConstantVector *CP, bool Static) {
-  Out << '{';
-  if (CP->getNumOperands()) {
-    Out << ' ';
-    printConstant(cast<Constant>(CP->getOperand(0)), Static);
-    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
-      Out << ", ";
-      printConstant(cast<Constant>(CP->getOperand(i)), Static);
-    }
-  }
-  Out << " }";
-}
-
-// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
-// textually as a double (rather than as a reference to a stack-allocated
-// variable). We decide this by converting CFP to a string and back into a
-// double, and then checking whether the conversion results in a bit-equal
-// double to the original value of CFP. This depends on us and the target C
-// compiler agreeing on the conversion process (which is pretty likely since we
-// only deal in IEEE FP).
-//
-static bool isFPCSafeToPrint(const ConstantFP *CFP) {
-  bool ignored;
-  // Do long doubles in hex for now.
-  if (CFP->getType() != Type::getFloatTy(CFP->getContext()) &&
-      CFP->getType() != Type::getDoubleTy(CFP->getContext()))
-    return false;
-  APFloat APF = APFloat(CFP->getValueAPF());  // copy
-  if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
-    APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
-#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
-  char Buffer[100];
-  sprintf(Buffer, "%a", APF.convertToDouble());
-  if (!strncmp(Buffer, "0x", 2) ||
-      !strncmp(Buffer, "-0x", 3) ||
-      !strncmp(Buffer, "+0x", 3))
-    return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
-  return false;
-#else
-  std::string StrVal = ftostr(APF);
-
-  while (StrVal[0] == ' ')
-    StrVal.erase(StrVal.begin());
-
-  // Check to make sure that the stringized number is not some string like "Inf"
-  // or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
-  if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
-      ((StrVal[0] == '-' || StrVal[0] == '+') &&
-       (StrVal[1] >= '0' && StrVal[1] <= '9')))
-    // Reparse stringized version!
-    return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
-  return false;
-#endif
-}
-
-/// Print out the casting for a cast operation. This does the double casting
-/// necessary for conversion to the destination type, if necessary.
-/// @brief Print a cast
-void GenWriter::printCast(unsigned opc, Type *SrcTy, Type *DstTy) {
-  // Print the destination type cast
-  switch (opc) {
-    case Instruction::UIToFP:
-    case Instruction::SIToFP:
-    case Instruction::IntToPtr:
-    case Instruction::Trunc:
-    case Instruction::BitCast:
-    case Instruction::FPExt:
-    case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
-      Out << '(';
-      printType(Out, DstTy);
-      Out << ')';
-      break;
-    case Instruction::ZExt:
-    case Instruction::PtrToInt:
-    case Instruction::FPToUI: // For these, make sure we get an unsigned dest
-      Out << '(';
-      printSimpleType(Out, DstTy, false);
-      Out << ')';
-      break;
-    case Instruction::SExt:
-    case Instruction::FPToSI: // For these, make sure we get a signed dest
-      Out << '(';
-      printSimpleType(Out, DstTy, true);
-      Out << ')';
-      break;
-    default:
-      llvm_unreachable("Invalid cast opcode");
-  }
-
-  // Print the source type cast
-  switch (opc) {
-    case Instruction::UIToFP:
-    case Instruction::ZExt:
-      Out << '(';
-      printSimpleType(Out, SrcTy, false);
-      Out << ')';
-      break;
-    case Instruction::SIToFP:
-    case Instruction::SExt:
-      Out << '(';
-      printSimpleType(Out, SrcTy, true);
-      Out << ')';
-      break;
-    case Instruction::IntToPtr:
-    case Instruction::PtrToInt:
-      // Avoid "cast to pointer from integer of different size" warnings
-      Out << "(unsigned long)";
-      break;
-    case Instruction::Trunc:
-    case Instruction::BitCast:
-    case Instruction::FPExt:
-    case Instruction::FPTrunc:
-    case Instruction::FPToSI:
-    case Instruction::FPToUI:
-      break; // These don't need a source cast.
-    default:
-      llvm_unreachable("Invalid cast opcode");
-      break;
-  }
-}
-
-// printConstant - The LLVM Constant to C Constant converter.
-void GenWriter::printConstant(Constant *CPV, bool Static) {
-  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
-    switch (CE->getOpcode()) {
-    case Instruction::Trunc:
-    case Instruction::ZExt:
-    case Instruction::SExt:
-    case Instruction::FPTrunc:
-    case Instruction::FPExt:
-    case Instruction::UIToFP:
-    case Instruction::SIToFP:
-    case Instruction::FPToUI:
-    case Instruction::FPToSI:
-    case Instruction::PtrToInt:
-    case Instruction::IntToPtr:
-    case Instruction::BitCast:
-      Out << "(";
-      printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
-      if (CE->getOpcode() == Instruction::SExt &&
-          CE->getOperand(0)->getType() == Type::getInt1Ty(CPV->getContext())) {
-        // Make sure we really sext from bool here by subtracting from 0
-        Out << "0-";
-      }
-      printConstant(CE->getOperand(0), Static);
-      if (CE->getType() == Type::getInt1Ty(CPV->getContext()) &&
-          (CE->getOpcode() == Instruction::Trunc ||
-           CE->getOpcode() == Instruction::FPToUI ||
-           CE->getOpcode() == Instruction::FPToSI ||
-           CE->getOpcode() == Instruction::PtrToInt)) {
-        // Make sure we really truncate to bool here by anding with 1
-        Out << "&1u";
-      }
-      Out << ')';
-      return;
-
-    case Instruction::GetElementPtr:
-      Out << "(";
-      printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
-                         gep_type_end(CPV), Static);
-      Out << ")";
-      return;
-    case Instruction::Select:
-      Out << '(';
-      printConstant(CE->getOperand(0), Static);
-      Out << '?';
-      printConstant(CE->getOperand(1), Static);
-      Out << ':';
-      printConstant(CE->getOperand(2), Static);
-      Out << ')';
-      return;
-    case Instruction::Add:
-    case Instruction::FAdd:
-    case Instruction::Sub:
-    case Instruction::FSub:
-    case Instruction::Mul:
-    case Instruction::FMul:
-    case Instruction::SDiv:
-    case Instruction::UDiv:
-    case Instruction::FDiv:
-    case Instruction::URem:
-    case Instruction::SRem:
-    case Instruction::FRem:
-    case Instruction::And:
-    case Instruction::Or:
-    case Instruction::Xor:
-    case Instruction::ICmp:
-    case Instruction::Shl:
-    case Instruction::LShr:
-    case Instruction::AShr:
-    {
-      Out << '(';
-      bool NeedsClosingParens = printConstExprCast(CE, Static);
-      printConstantWithCast(CE->getOperand(0), CE->getOpcode());
-      switch (CE->getOpcode()) {
-      case Instruction::Add:
-      case Instruction::FAdd: Out << " + "; break;
-      case Instruction::Sub:
-      case Instruction::FSub: Out << " - "; break;
-      case Instruction::Mul:
-      case Instruction::FMul: Out << " * "; break;
-      case Instruction::URem:
-      case Instruction::SRem:
-      case Instruction::FRem: Out << " % "; break;
-      case Instruction::UDiv:
-      case Instruction::SDiv:
-      case Instruction::FDiv: Out << " / "; break;
-      case Instruction::And: Out << " & "; break;
-      case Instruction::Or:  Out << " | "; break;
-      case Instruction::Xor: Out << " ^ "; break;
-      case Instruction::Shl: Out << " << "; break;
-      case Instruction::LShr:
-      case Instruction::AShr: Out << " >> "; break;
-      case Instruction::ICmp:
-        switch (CE->getPredicate()) {
-          case ICmpInst::ICMP_EQ: Out << " == "; break;
-          case ICmpInst::ICMP_NE: Out << " != "; break;
-          case ICmpInst::ICMP_SLT:
-          case ICmpInst::ICMP_ULT: Out << " < "; break;
-          case ICmpInst::ICMP_SLE:
-          case ICmpInst::ICMP_ULE: Out << " <= "; break;
-          case ICmpInst::ICMP_SGT:
-          case ICmpInst::ICMP_UGT: Out << " > "; break;
-          case ICmpInst::ICMP_SGE:
-          case ICmpInst::ICMP_UGE: Out << " >= "; break;
-          default: llvm_unreachable("Illegal ICmp predicate");
-        }
-        break;
-      default: llvm_unreachable("Illegal opcode here!");
-      }
-      printConstantWithCast(CE->getOperand(1), CE->getOpcode());
-      if (NeedsClosingParens)
-        Out << "))";
-      Out << ')';
-      return;
-    }
-    case Instruction::FCmp: {
-      Out << '(';
-      bool NeedsClosingParens = printConstExprCast(CE, Static);
-      if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
-        Out << "0";
-      else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
-        Out << "1";
-      else {
-        const char* op = 0;
-        switch (CE->getPredicate()) {
-        default: llvm_unreachable("Illegal FCmp predicate");
-        case FCmpInst::FCMP_ORD: op = "ord"; break;
-        case FCmpInst::FCMP_UNO: op = "uno"; break;
-        case FCmpInst::FCMP_UEQ: op = "ueq"; break;
-        case FCmpInst::FCMP_UNE: op = "une"; break;
-        case FCmpInst::FCMP_ULT: op = "ult"; break;
-        case FCmpInst::FCMP_ULE: op = "ule"; break;
-        case FCmpInst::FCMP_UGT: op = "ugt"; break;
-        case FCmpInst::FCMP_UGE: op = "uge"; break;
-        case FCmpInst::FCMP_OEQ: op = "oeq"; break;
-        case FCmpInst::FCMP_ONE: op = "one"; break;
-        case FCmpInst::FCMP_OLT: op = "olt"; break;
-        case FCmpInst::FCMP_OLE: op = "ole"; break;
-        case FCmpInst::FCMP_OGT: op = "ogt"; break;
-        case FCmpInst::FCMP_OGE: op = "oge"; break;
-        }
-        Out << "llvm_fcmp_" << op << "(";
-        printConstantWithCast(CE->getOperand(0), CE->getOpcode());
-        Out << ", ";
-        printConstantWithCast(CE->getOperand(1), CE->getOpcode());
-        Out << ")";
-      }
-      if (NeedsClosingParens)
-        Out << "))";
-      Out << ')';
-      return;
-    }
-    default:
-#ifndef NDEBUG
-      errs() << "GenWriter Error: Unhandled constant expression: "
-           << *CE << "\n";
-#endif
-      llvm_unreachable(0);
-    }
-  } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
-    Out << "((";
-    printType(Out, CPV->getType()); // sign doesn't matter
-    Out << ")/*UNDEF*/";
-    if (!CPV->getType()->isVectorTy()) {
-      Out << "0)";
-    } else {
-      Out << "{})";
-    }
-    return;
-  }
-
-  if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
-    Type* Ty = CI->getType();
-    if (Ty == Type::getInt1Ty(CPV->getContext()))
-      Out << (CI->getZExtValue() ? '1' : '0');
-    else if (Ty == Type::getInt32Ty(CPV->getContext()))
-      Out << CI->getZExtValue() << 'u';
-    else if (Ty->getPrimitiveSizeInBits() > 32)
-      Out << CI->getZExtValue() << "ull";
-    else {
-      Out << "((";
-      printSimpleType(Out, Ty, false) << ')';
-      if (CI->isMinValue(true))
-        Out << CI->getZExtValue() << 'u';
-      else
-        Out << CI->getSExtValue();
-      Out << ')';
-    }
-    return;
-  }
-
-  switch (CPV->getType()->getTypeID()) {
-  case Type::FloatTyID:
-  case Type::DoubleTyID:
-  case Type::X86_FP80TyID:
-  case Type::PPC_FP128TyID:
-  case Type::FP128TyID: {
-    ConstantFP *FPC = cast<ConstantFP>(CPV);
-    std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
-    if (I != FPConstantMap.end()) {
-      // Because of FP precision problems we must load from a stack allocated
-      // value that holds the value in hex.
-      Out << "(*(" << (FPC->getType() == Type::getFloatTy(CPV->getContext()) ?
-                       "float" :
-                       FPC->getType() == Type::getDoubleTy(CPV->getContext()) ?
-                       "double" :
-                       "long double")
-          << "*)&FPConstant" << I->second << ')';
-    } else {
-      double V;
-      if (FPC->getType() == Type::getFloatTy(CPV->getContext()))
-        V = FPC->getValueAPF().convertToFloat();
-      else if (FPC->getType() == Type::getDoubleTy(CPV->getContext()))
-        V = FPC->getValueAPF().convertToDouble();
-      else {
-        // Long double.  Convert the number to double, discarding precision.
-        // This is not awesome, but it at least makes the CBE output somewhat
-        // useful.
-        APFloat Tmp = FPC->getValueAPF();
-        bool LosesInfo;
-        Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo);
-        V = Tmp.convertToDouble();
-      }
-
-      if (IsNAN(V)) {
-        // The value is NaN
-
-        // FIXME the actual NaN bits should be emitted.
-        // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
-        // it's 0x7ff4.
-        const unsigned long QuietNaN = 0x7ff8UL;
-        //const unsigned long SignalNaN = 0x7ff4UL;
-
-        // We need to grab the first part of the FP #
-        char Buffer[100];
-
-        uint64_t ll = DoubleToBits(V);
-        sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
-
-        std::string Num(&Buffer[0], &Buffer[6]);
-        unsigned long Val = strtoul(Num.c_str(), 0, 16);
-
-        if (FPC->getType() == Type::getFloatTy(FPC->getContext()))
-          Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
-              << Buffer << "\") /*nan*/ ";
-        else
-          Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
-              << Buffer << "\") /*nan*/ ";
-      } else if (IsInf(V)) {
-        // The value is Inf
-        if (V < 0) Out << '-';
-        Out << "LLVM_INF" <<
-            (FPC->getType() == Type::getFloatTy(FPC->getContext()) ? "F" : "")
-            << " /*inf*/ ";
-      } else {
-        std::string Num;
-#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
-        // Print out the constant as a floating point number.
-        char Buffer[100];
-        sprintf(Buffer, "%a", V);
-        Num = Buffer;
-#else
-        Num = ftostr(FPC->getValueAPF());
-#endif
-       Out << Num;
-      }
-    }
-    break;
-  }
-
-  case Type::ArrayTyID:
-    // Use C99 compound expression literal initializer syntax.
-    if (!Static) {
-      Out << "(";
-      printType(Out, CPV->getType());
-      Out << ")";
-    }
-    Out << "{ "; // Arrays are wrapped in struct types.
-    if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
-      printConstantArray(CA, Static);
-    } else {
-      assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
-      ArrayType *AT = cast<ArrayType>(CPV->getType());
-      Out << '{';
-      if (AT->getNumElements()) {
-        Out << ' ';
-        Constant *CZ = Constant::getNullValue(AT->getElementType());
-        printConstant(CZ, Static);
-        for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
-          Out << ", ";
-          printConstant(CZ, Static);
-        }
-      }
-      Out << " }";
-    }
-    Out << " }"; // Arrays are wrapped in struct types.
-    break;
-
-  case Type::VectorTyID:
-    // Use C99 compound expression literal initializer syntax.
-    if (!Static) {
-      Out << "(";
-      printType(Out, CPV->getType());
-      Out << ")";
-    }
-    if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
-      printConstantVector(CV, Static);
-    } else {
-      assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
-      VectorType *VT = cast<VectorType>(CPV->getType());
-      Out << "{ ";
-      Constant *CZ = Constant::getNullValue(VT->getElementType());
-      printConstant(CZ, Static);
-      for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
-        Out << ", ";
-        printConstant(CZ, Static);
-      }
-      Out << " }";
-    }
-    break;
-
-  case Type::StructTyID:
-    // Use C99 compound expression literal initializer syntax.
-    if (!Static) {
-      Out << "(";
-      printType(Out, CPV->getType());
-      Out << ")";
-    }
-    if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
-      StructType *ST = cast<StructType>(CPV->getType());
-      Out << '{';
-      if (ST->getNumElements()) {
-        Out << ' ';
-        printConstant(Constant::getNullValue(ST->getElementType(0)), Static);
-        for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
-          Out << ", ";
-          printConstant(Constant::getNullValue(ST->getElementType(i)), Static);
-        }
-      }
-      Out << " }";
-    } else {
-      Out << '{';
-      if (CPV->getNumOperands()) {
-        Out << ' ';
-        printConstant(cast<Constant>(CPV->getOperand(0)), Static);
-        for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
-          Out << ", ";
-          printConstant(cast<Constant>(CPV->getOperand(i)), Static);
-        }
-      }
-      Out << " }";
-    }
-    break;
-
-  case Type::PointerTyID:
-    if (isa<ConstantPointerNull>(CPV)) {
-      Out << "((";
-      printType(Out, CPV->getType()); // sign doesn't matter
-      Out << ")/*NULL*/0)";
-      break;
-    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
-      writeOperand(GV, Static);
-      break;
-    }
-    // FALL THROUGH
-  default:
-#ifndef NDEBUG
-    errs() << "Unknown constant type: " << *CPV << "\n";
-#endif
-    llvm_unreachable(0);
-  }
-}
-
-// Some constant expressions need to be casted back to the original types
-// because their operands were casted to the expected type. This function takes
-// care of detecting that case and printing the cast for the ConstantExpr.
-bool GenWriter::printConstExprCast(const ConstantExpr* CE, bool Static) {
-  bool NeedsExplicitCast = false;
-  Type *Ty = CE->getOperand(0)->getType();
-  bool TypeIsSigned = false;
-  switch (CE->getOpcode()) {
-  case Instruction::Add:
-  case Instruction::Sub:
-  case Instruction::Mul:
-    // We need to cast integer arithmetic so that it is always performed
-    // as unsigned, to avoid undefined behavior on overflow.
-  case Instruction::LShr:
-  case Instruction::URem:
-  case Instruction::UDiv: NeedsExplicitCast = true; break;
-  case Instruction::AShr:
-  case Instruction::SRem:
-  case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
-  case Instruction::SExt:
-    Ty = CE->getType();
-    NeedsExplicitCast = true;
-    TypeIsSigned = true;
-    break;
-  case Instruction::ZExt:
-  case Instruction::Trunc:
-  case Instruction::FPTrunc:
-  case Instruction::FPExt:
-  case Instruction::UIToFP:
-  case Instruction::SIToFP:
-  case Instruction::FPToUI:
-  case Instruction::FPToSI:
-  case Instruction::PtrToInt:
-  case Instruction::IntToPtr:
-  case Instruction::BitCast:
-    Ty = CE->getType();
-    NeedsExplicitCast = true;
-    break;
-  default: break;
-  }
-  if (NeedsExplicitCast) {
-    Out << "((";
-    if (Ty->isIntegerTy() && Ty != Type::getInt1Ty(Ty->getContext()))
-      printSimpleType(Out, Ty, TypeIsSigned);
-    else
-      printType(Out, Ty); // not integer, sign doesn't matter
-    Out << ")(";
-  }
-  return NeedsExplicitCast;
-}
-
-//  Print a constant assuming that it is the operand for a given Opcode. The
-//  opcodes that care about sign need to cast their operands to the expected
-//  type before the operation proceeds. This function does the casting.
-void GenWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
-
-  // Extract the operand's type, we'll need it.
-  Type* OpTy = CPV->getType();
-
-  // Indicate whether to do the cast or not.
-  bool shouldCast = false;
-  bool typeIsSigned = false;
-
-  // Based on the Opcode for which this Constant is being written, determine
-  // the new type to which the operand should be casted by setting the value
-  // of OpTy. If we change OpTy, also set shouldCast to true so it gets
-  // casted below.
-  switch (Opcode) {
-    default:
-      // for most instructions, it doesn't matter
-      break;
-    case Instruction::Add:
-    case Instruction::Sub:
-    case Instruction::Mul:
-      // We need to cast integer arithmetic so that it is always performed
-      // as unsigned, to avoid undefined behavior on overflow.
-    case Instruction::LShr:
-    case Instruction::UDiv:
-    case Instruction::URem:
-      shouldCast = true;
-      break;
-    case Instruction::AShr:
-    case Instruction::SDiv:
-    case Instruction::SRem:
-      shouldCast = true;
-      typeIsSigned = true;
-      break;
-  }
-
-  // Write out the casted constant if we should, otherwise just write the
-  // operand.
-  if (shouldCast) {
-    Out << "((";
-    printSimpleType(Out, OpTy, typeIsSigned);
-    Out << ")";
-    printConstant(CPV, false);
-    Out << ")";
-  } else
-    printConstant(CPV, false);
-}
-
-std::string GenWriter::GetValueName(const Value *Operand) {
-
-  // Resolve potential alias.
-  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Operand)) {
-    if (const Value *V = GA->resolveAliasedGlobal(false))
-      Operand = V;
-  }
-
-  // Mangle globals with the standard mangler interface for LLC compatibility.
-  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand)) {
-    SmallString<128> Str;
-    Mang->getNameWithPrefix(Str, GV, false);
-    return CBEMangle(Str.str().str());
-  }
-
-  std::string Name = Operand->getName();
-
-  if (Name.empty()) { // Assign unique names to local temporaries.
-    unsigned &No = AnonValueNumbers[Operand];
-    if (No == 0)
-      No = ++NextAnonValueNumber;
-    Name = "tmp__" + utostr(No);
-  }
-
-  std::string VarName;
-  VarName.reserve(Name.capacity());
-
-  for (std::string::iterator I = Name.begin(), E = Name.end();
-       I != E; ++I) {
-    char ch = *I;
-
-    if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
-          (ch >= '0' && ch <= '9') || ch == '_')) {
-      char buffer[5];
-      sprintf(buffer, "_%x_", ch);
-      VarName += buffer;
-    } else
-      VarName += ch;
-  }
-
-  return "llvm_cbe_" + VarName;
-}
-
-/// writeInstComputationInline - Emit the computation for the specified
-/// instruction inline, with no destination provided.
-void GenWriter::writeInstComputationInline(Instruction &I) {
-  // We can't currently support integer types other than 1, 8, 16, 32, 64.
-  // Validate this.
-  Type *Ty = I.getType();
-  if (Ty->isIntegerTy() && (Ty!=Type::getInt1Ty(I.getContext()) &&
-        Ty!=Type::getInt8Ty(I.getContext()) &&
-        Ty!=Type::getInt16Ty(I.getContext()) &&
-        Ty!=Type::getInt32Ty(I.getContext()) &&
-        Ty!=Type::getInt64Ty(I.getContext()))) {
-      report_fatal_error("The C backend does not currently support integer "
-                        "types of widths other than 1, 8, 16, 32, 64.\n"
-                        "This is being tracked as PR 4158.");
-  }
-
-  // If this is a non-trivial bool computation, make sure to truncate down to
-  // a 1 bit value.  This is important because we want "add i1 x, y" to return
-  // "0" when x and y are true, not "2" for example.
-  bool NeedBoolTrunc = false;
-  if (I.getType() == Type::getInt1Ty(I.getContext()) &&
-      !isa<ICmpInst>(I) && !isa<FCmpInst>(I))
-    NeedBoolTrunc = true;
-
-  if (NeedBoolTrunc)
-    Out << "((";
-
-  visit(I);
-
-  if (NeedBoolTrunc)
-    Out << ")&1)";
-}
-
-
-void GenWriter::writeOperandInternal(Value *Operand, bool Static) {
-  if (Instruction *I = dyn_cast<Instruction>(Operand))
-    // Should we inline this instruction to build a tree?
-    if (isInlinableInst(*I) && !isDirectAlloca(I)) {
-      Out << '(';
-      writeInstComputationInline(*I);
-      Out << ')';
-      return;
-    }
-
-  Constant* CPV = dyn_cast<Constant>(Operand);
-
-  if (CPV && !isa<GlobalValue>(CPV))
-    printConstant(CPV, Static);
-  else
-    Out << GetValueName(Operand);
-}
-
-void GenWriter::writeOperand(Value *Operand, bool Static) {
-  bool isAddressImplicit = isAddressExposed(Operand);
-  if (isAddressImplicit)
-    Out << "(&";  // Global variables are referenced as their addresses by llvm
-
-  writeOperandInternal(Operand, Static);
-
-  if (isAddressImplicit)
-    Out << ')';
-}
-
-// Some instructions need to have their result value casted back to the
-// original types because their operands were casted to the expected type.
-// This function takes care of detecting that case and printing the cast
-// for the Instruction.
-bool GenWriter::writeInstructionCast(const Instruction &I) {
-  Type *Ty = I.getOperand(0)->getType();
-  switch (I.getOpcode()) {
-  case Instruction::Add:
-  case Instruction::Sub:
-  case Instruction::Mul:
-    // We need to cast integer arithmetic so that it is always performed
-    // as unsigned, to avoid undefined behavior on overflow.
-  case Instruction::LShr:
-  case Instruction::URem:
-  case Instruction::UDiv:
-    Out << "((";
-    printSimpleType(Out, Ty, false);
-    Out << ")(";
-    return true;
-  case Instruction::AShr:
-  case Instruction::SRem:
-  case Instruction::SDiv:
-    Out << "((";
-    printSimpleType(Out, Ty, true);
-    Out << ")(";
-    return true;
-  default: break;
-  }
-  return false;
-}
-
-// Write the operand with a cast to another type based on the Opcode being used.
-// This will be used in cases where an instruction has specific type
-// requirements (usually signedness) for its operands.
-void GenWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
-
-  // Extract the operand's type, we'll need it.
-  Type* OpTy = Operand->getType();
-
-  // Indicate whether to do the cast or not.
-  bool shouldCast = false;
-
-  // Indicate whether the cast should be to a signed type or not.
-  bool castIsSigned = false;
-
-  // Based on the Opcode for which this Operand is being written, determine
-  // the new type to which the operand should be casted by setting the value
-  // of OpTy. If we change OpTy, also set shouldCast to true.
-  switch (Opcode) {
-    default:
-      // for most instructions, it doesn't matter
-      break;
-    case Instruction::Add:
-    case Instruction::Sub:
-    case Instruction::Mul:
-      // We need to cast integer arithmetic so that it is always performed
-      // as unsigned, to avoid undefined behavior on overflow.
-    case Instruction::LShr:
-    case Instruction::UDiv:
-    case Instruction::URem: // Cast to unsigned first
-      shouldCast = true;
-      castIsSigned = false;
-      break;
-    case Instruction::GetElementPtr:
-    case Instruction::AShr:
-    case Instruction::SDiv:
-    case Instruction::SRem: // Cast to signed first
-      shouldCast = true;
-      castIsSigned = true;
-      break;
-  }
-
-  // Write out the casted operand if we should, otherwise just write the
-  // operand.
-  if (shouldCast) {
-    Out << "((";
-    printSimpleType(Out, OpTy, castIsSigned);
-    Out << ")";
-    writeOperand(Operand);
-    Out << ")";
-  } else
-    writeOperand(Operand);
-}
-
-// Write the operand with a cast to another type based on the icmp predicate
-// being used.
-void GenWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
-  // This has to do a cast to ensure the operand has the right signedness.
-  // Also, if the operand is a pointer, we make sure to cast to an integer when
-  // doing the comparison both for signedness and so that the C compiler doesn't
-  // optimize things like "p < NULL" to false (p may contain an integer value
-  // f.e.).
-  bool shouldCast = Cmp.isRelational();
-
-  // Write out the casted operand if we should, otherwise just write the
-  // operand.
-  if (!shouldCast) {
-    writeOperand(Operand);
-    return;
-  }
-
-  // Should this be a signed comparison?  If so, convert to signed.
-  bool castIsSigned = Cmp.isSigned();
-
-  // If the operand was a pointer, convert to a large integer type.
-  Type* OpTy = Operand->getType();
-  if (OpTy->isPointerTy())
-    OpTy = TD->getIntPtrType(Operand->getContext());
-
-  Out << "((";
-  printSimpleType(Out, OpTy, castIsSigned);
-  Out << ")";
-  writeOperand(Operand);
-  Out << ")";
-}
-
-// generateCompilerSpecificCode - This is where we add conditional compilation
-// directives to cater to specific compilers as need be.
-//
-static void generateCompilerSpecificCode(formatted_raw_ostream& Out,
-                                         const TargetData *TD) {
-  // Alloca is hard to get, and we don't want to include stdlib.h here.
-  Out << "/* get a declaration for alloca */\n"
-      << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
-      << "#define  alloca(x) __builtin_alloca((x))\n"
-      << "#define _alloca(x) __builtin_alloca((x))\n"
-      << "#elif defined(__APPLE__)\n"
-      << "extern void *__builtin_alloca(unsigned long);\n"
-      << "#define alloca(x) __builtin_alloca(x)\n"
-      << "#define longjmp _longjmp\n"
-      << "#define setjmp _setjmp\n"
-      << "#elif defined(__sun__)\n"
-      << "#if defined(__sparcv9)\n"
-      << "extern void *__builtin_alloca(unsigned long);\n"
-      << "#else\n"
-      << "extern void *__builtin_alloca(unsigned int);\n"
-      << "#endif\n"
-      << "#define alloca(x) __builtin_alloca(x)\n"
-      << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__arm__)\n"
-      << "#define alloca(x) __builtin_alloca(x)\n"
-      << "#elif defined(_MSC_VER)\n"
-      << "#define inline _inline\n"
-      << "#define alloca(x) _alloca(x)\n"
-      << "#else\n"
-      << "#include <alloca.h>\n"
-      << "#endif\n\n";
-
-  // We output GCC specific attributes to preserve 'linkonce'ness on globals.
-  // If we aren't being compiled with GCC, just drop these attributes.
-  Out << "#ifndef __GNUC__  /* Can only support \"linkonce\" vars with GCC */\n"
-      << "#define __attribute__(X)\n"
-      << "#endif\n\n";
-
-  // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
-  Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
-      << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
-      << "#elif defined(__GNUC__)\n"
-      << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
-      << "#else\n"
-      << "#define __EXTERNAL_WEAK__\n"
-      << "#endif\n\n";
-
-  // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
-  Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
-      << "#define __ATTRIBUTE_WEAK__\n"
-      << "#elif defined(__GNUC__)\n"
-      << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
-      << "#else\n"
-      << "#define __ATTRIBUTE_WEAK__\n"
-      << "#endif\n\n";
-
-  // Add hidden visibility support. FIXME: APPLE_CC?
-  Out << "#if defined(__GNUC__)\n"
-      << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
-      << "#endif\n\n";
-
-  // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
-  // From the GCC documentation:
-  //
-  //   double __builtin_nan (const char *str)
-  //
-  // This is an implementation of the ISO C99 function nan.
-  //
-  // Since ISO C99 defines this function in terms of strtod, which we do
-  // not implement, a description of the parsing is in order. The string is
-  // parsed as by strtol; that is, the base is recognized by leading 0 or
-  // 0x prefixes. The number parsed is placed in the significand such that
-  // the least significant bit of the number is at the least significant
-  // bit of the significand. The number is truncated to fit the significand
-  // field provided. The significand is forced to be a quiet NaN.
-  //
-  // This function, if given a string literal, is evaluated early enough
-  // that it is considered a compile-time constant.
-  //
-  //   float __builtin_nanf (const char *str)
-  //
-  // Similar to __builtin_nan, except the return type is float.
-  //
-  //   double __builtin_inf (void)
-  //
-  // Similar to __builtin_huge_val, except a warning is generated if the
-  // target floating-point format does not support infinities. This
-  // function is suitable for implementing the ISO C99 macro INFINITY.
-  //
-  //   float __builtin_inff (void)
-  //
-  // Similar to __builtin_inf, except the return type is float.
-  Out << "#ifdef __GNUC__\n"
-      << "#define LLVM_NAN(NanStr)   __builtin_nan(NanStr)   /* Double */\n"
-      << "#define LLVM_NANF(NanStr)  __builtin_nanf(NanStr)  /* Float */\n"
-      << "#define LLVM_NANS(NanStr)  __builtin_nans(NanStr)  /* Double */\n"
-      << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
-      << "#define LLVM_INF           __builtin_inf()         /* Double */\n"
-      << "#define LLVM_INFF          __builtin_inff()        /* Float */\n"
-      << "#define LLVM_PREFETCH(addr,rw,locality) "
-                              "__builtin_prefetch(addr,rw,locality)\n"
-      << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
-      << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
-      << "#define LLVM_ASM           __asm__\n"
-      << "#else\n"
-      << "#define LLVM_NAN(NanStr)   ((double)0.0)           /* Double */\n"
-      << "#define LLVM_NANF(NanStr)  0.0F                    /* Float */\n"
-      << "#define LLVM_NANS(NanStr)  ((double)0.0)           /* Double */\n"
-      << "#define LLVM_NANSF(NanStr) 0.0F                    /* Float */\n"
-      << "#define LLVM_INF           ((double)0.0)           /* Double */\n"
-      << "#define LLVM_INFF          0.0F                    /* Float */\n"
-      << "#define LLVM_PREFETCH(addr,rw,locality)            /* PREFETCH */\n"
-      << "#define __ATTRIBUTE_CTOR__\n"
-      << "#define __ATTRIBUTE_DTOR__\n"
-      << "#define LLVM_ASM(X)\n"
-      << "#endif\n\n";
-
-  Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
-      << "#define __builtin_stack_save() 0   /* not implemented */\n"
-      << "#define __builtin_stack_restore(X) /* noop */\n"
-      << "#endif\n\n";
-
-  // Output typedefs for 128-bit integers. If these are needed with a
-  // 32-bit target or with a C compiler that doesn't support mode(TI),
-  // more drastic measures will be needed.
-  Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n"
-      << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
-      << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
-      << "#endif\n\n";
-
-  // Output target-specific code that should be inserted into main.
-  Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
-}
-
-/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
-/// the StaticTors set.
-static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
-  ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
-  if (!InitList) return;
-
-  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
-    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
-      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
-
-      if (CS->getOperand(1)->isNullValue())
-        return;  // Found a null terminator, exit printing.
-      Constant *FP = CS->getOperand(1);
-      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
-        if (CE->isCast())
-          FP = CE->getOperand(0);
-      if (Function *F = dyn_cast<Function>(FP))
-        StaticTors.insert(F);
-    }
-}
-
-enum SpecialGlobalClass {
-  NotSpecial = 0,
-  GlobalCtors, GlobalDtors,
-  NotPrinted
-};
-
-/// getGlobalVariableClass - If this is a global that is specially recognized
-/// by LLVM, return a code that indicates how we should handle it.
-static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
-  // If this is a global ctors/dtors list, handle it now.
-  if (GV->hasAppendingLinkage() && GV->use_empty()) {
-    if (GV->getName() == "llvm.global_ctors")
-      return GlobalCtors;
-    else if (GV->getName() == "llvm.global_dtors")
-      return GlobalDtors;
-  }
-
-  // Otherwise, if it is other metadata, don't print it.  This catches things
-  // like debug information.
-  if (GV->getSection() == "llvm.metadata")
-    return NotPrinted;
-
-  return NotSpecial;
-}
-
-// PrintEscapedString - Print each character of the specified string, escaping
-// it if it is not printable or if it is an escape char.
-static void PrintEscapedString(const char *Str, unsigned Length,
-                               raw_ostream &Out) {
-  for (unsigned i = 0; i != Length; ++i) {
-    unsigned char C = Str[i];
-    if (isprint(C) && C != '\\' && C != '"')
-      Out << C;
-    else if (C == '\\')
-      Out << "\\\\";
-    else if (C == '\"')
-      Out << "\\\"";
-    else if (C == '\t')
-      Out << "\\t";
-    else
-      Out << "\\x" << hexdigit(C >> 4) << hexdigit(C & 0x0F);
-  }
-}
-
-// PrintEscapedString - Print each character of the specified string, escaping
-// it if it is not printable or if it is an escape char.
-static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
-  PrintEscapedString(Str.c_str(), Str.size(), Out);
-}
-
-bool GenWriter::doInitialization(Module &M) {
-  FunctionPass::doInitialization(M);
-
-  // Initialize
-  TheModule = &M;
-
-  TD = new TargetData(&M);
-  IL = new IntrinsicLowering(*TD);
-  IL->AddPrototypes(M);
-
-#if 0
-  std::string Triple = TheModule->getTargetTriple();
-  if (Triple.empty())
-    Triple = llvm::sys::getHostTriple();
-
-  std::string E;
-  if (const Target *Match = TargetRegistry::lookupTarget(Triple, E))
-    TAsm = Match->createMCAsmInfo(Triple);
-#endif
-  TAsm = new CBEMCAsmInfo();
-  MRI  = new MCRegisterInfo();
-  TCtx = new MCContext(*TAsm, *MRI, NULL);
-  Mang = new Mangler(*TCtx, *TD);
-
-  // Keep track of which functions are static ctors/dtors so they can have
-  // an attribute added to their prototypes.
-  std::set<Function*> StaticCtors, StaticDtors;
-  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
-       I != E; ++I) {
-    switch (getGlobalVariableClass(I)) {
-    default: break;
-    case GlobalCtors:
-      FindStaticTors(I, StaticCtors);
-      break;
-    case GlobalDtors:
-      FindStaticTors(I, StaticDtors);
-      break;
-    }
-  }
-
-  // get declaration for alloca
-  Out << "/* Provide Declarations */\n";
-  Out << "#include <stdarg.h>\n";      // Varargs support
-  Out << "#include <setjmp.h>\n";      // Unwind support
-  Out << "#include <limits.h>\n";      // With overflow intrinsics support.
-  generateCompilerSpecificCode(Out, TD);
-
-  // Provide a definition for `bool' if not compiling with a C++ compiler.
-  Out << "\n"
-      << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
-
-      << "\n\n/* Support for floating point constants */\n"
-      << "typedef unsigned long long ConstantDoubleTy;\n"
-      << "typedef unsigned int        ConstantFloatTy;\n"
-      << "typedef struct { unsigned long long f1; unsigned short f2; "
-         "unsigned short pad[3]; } ConstantFP80Ty;\n"
-      // This is used for both kinds of 128-bit long double; meaning differs.
-      << "typedef struct { unsigned long long f1; unsigned long long f2; }"
-         " ConstantFP128Ty;\n"
-      << "\n\n/* Global Declarations */\n";
-
-  // First output all the declarations for the program, because C requires
-  // Functions & globals to be declared before they are used.
-  //
-  if (!M.getModuleInlineAsm().empty()) {
-    Out << "/* Module asm statements */\n"
-        << "asm(";
-
-    // Split the string into lines, to make it easier to read the .ll file.
-    std::string Asm = M.getModuleInlineAsm();
-    size_t CurPos = 0;
-    size_t NewLine = Asm.find_first_of('\n', CurPos);
-    while (NewLine != std::string::npos) {
-      // We found a newline, print the portion of the asm string from the
-      // last newline up to this newline.
-      Out << "\"";
-      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
-                         Out);
-      Out << "\\n\"\n";
-      CurPos = NewLine+1;
-      NewLine = Asm.find_first_of('\n', CurPos);
-    }
-    Out << "\"";
-    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
-    Out << "\");\n"
-        << "/* End Module asm statements */\n";
-  }
-
-  // Loop over the symbol table, emitting all named constants.
-  printModuleTypes();
-
-  // Global variable declarations...
-  if (!M.global_empty()) {
-    Out << "\n/* External Global Variable Declarations */\n";
-    for (Module::global_iterator I = M.global_begin(), E = M.global_end();
-         I != E; ++I) {
-
-      if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() ||
-          I->hasCommonLinkage())
-        Out << "extern ";
-      else if (I->hasDLLImportLinkage())
-        Out << "__declspec(dllimport) ";
-      else
-        continue; // Internal Global
-
-      // Thread Local Storage
-      if (I->isThreadLocal())
-        Out << "__thread ";
-
-      printType(Out, I->getType()->getElementType(), false, GetValueName(I));
-
-      if (I->hasExternalWeakLinkage())
-         Out << " __EXTERNAL_WEAK__";
-      Out << ";\n";
-    }
-  }
-
-  // Function declarations
-  Out << "\n/* Function Declarations */\n";
-  Out << "double fmod(double, double);\n";   // Support for FP rem
-  Out << "float fmodf(float, float);\n";
-  Out << "long double fmodl(long double, long double);\n";
-
-  // Store the intrinsics which will be declared/defined below.
-  SmallVector<const Function*, 8> intrinsicsToDefine;
-
-  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
-    // Don't print declarations for intrinsic functions.
-    // Store the used intrinsics, which need to be explicitly defined.
-    if (I->isIntrinsic()) {
-      switch (I->getIntrinsicID()) {
-        default:
-          break;
-        case Intrinsic::uadd_with_overflow:
-        case Intrinsic::sadd_with_overflow:
-          intrinsicsToDefine.push_back(I);
-          break;
-      }
-      continue;
-    }
-
-    if (I->getName() == "setjmp" ||
-        I->getName() == "longjmp" || I->getName() == "_setjmp")
-      continue;
-
-    if (I->hasExternalWeakLinkage())
-      Out << "extern ";
-    printFunctionSignature(I, true);
-    if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
-      Out << " __ATTRIBUTE_WEAK__";
-    if (I->hasExternalWeakLinkage())
-      Out << " __EXTERNAL_WEAK__";
-    if (StaticCtors.count(I))
-      Out << " __ATTRIBUTE_CTOR__";
-    if (StaticDtors.count(I))
-      Out << " __ATTRIBUTE_DTOR__";
-    if (I->hasHiddenVisibility())
-      Out << " __HIDDEN__";
-
-    if (I->hasName() && I->getName()[0] == 1)
-      Out << " LLVM_ASM(\"" << I->getName().substr(1) << "\")";
-
-    Out << ";\n";
-  }
-
-  // Output the global variable declarations
-  if (!M.global_empty()) {
-    Out << "\n\n/* Global Variable Declarations */\n";
-    for (Module::global_iterator I = M.global_begin(), E = M.global_end();
-         I != E; ++I)
-      if (!I->isDeclaration()) {
-        // Ignore special globals, such as debug info.
-        if (getGlobalVariableClass(I))
-          continue;
-
-        if (I->hasLocalLinkage())
-          Out << "static ";
-        else
-          Out << "extern ";
-
-        // Thread Local Storage
-        if (I->isThreadLocal())
-          Out << "__thread ";
-
-        printType(Out, I->getType()->getElementType(), false,
-                  GetValueName(I));
-
-        if (I->hasLinkOnceLinkage())
-          Out << " __attribute__((common))";
-        else if (I->hasCommonLinkage())     // FIXME is this right?
-          Out << " __ATTRIBUTE_WEAK__";
-        else if (I->hasWeakLinkage())
-          Out << " __ATTRIBUTE_WEAK__";
-        else if (I->hasExternalWeakLinkage())
-          Out << " __EXTERNAL_WEAK__";
-        if (I->hasHiddenVisibility())
-          Out << " __HIDDEN__";
-        Out << ";\n";
-      }
-  }
-
-  // Output the global variable definitions and contents...
-  if (!M.global_empty()) {
-    Out << "\n\n/* Global Variable Definitions and Initialization */\n";
-    for (Module::global_iterator I = M.global_begin(), E = M.global_end();
-         I != E; ++I)
-      if (!I->isDeclaration()) {
-        // Ignore special globals, such as debug info.
-        if (getGlobalVariableClass(I))
-          continue;
-
-        if (I->hasLocalLinkage())
-          Out << "static ";
-        else if (I->hasDLLImportLinkage())
-          Out << "__declspec(dllimport) ";
-        else if (I->hasDLLExportLinkage())
-          Out << "__declspec(dllexport) ";
-
-        // Thread Local Storage
-        if (I->isThreadLocal())
-          Out << "__thread ";
-
-        printType(Out, I->getType()->getElementType(), false,
-                  GetValueName(I));
-        if (I->hasLinkOnceLinkage())
-          Out << " __attribute__((common))";
-        else if (I->hasWeakLinkage())
-          Out << " __ATTRIBUTE_WEAK__";
-        else if (I->hasCommonLinkage())
-          Out << " __ATTRIBUTE_WEAK__";
-
-        if (I->hasHiddenVisibility())
-          Out << " __HIDDEN__";
-
-        // If the initializer is not null, emit the initializer.  If it is null,
-        // we try to avoid emitting large amounts of zeros.  The problem with
-        // this, however, occurs when the variable has weak linkage.  In this
-        // case, the assembler will complain about the variable being both weak
-        // and common, so we disable this optimization.
-        // FIXME common linkage should avoid this problem.
-        if (!I->getInitializer()->isNullValue()) {
-          Out << " = " ;
-          writeOperand(I->getInitializer(), true);
-        } else if (I->hasWeakLinkage()) {
-          // We have to specify an initializer, but it doesn't have to be
-          // complete.  If the value is an aggregate, print out { 0 }, and let
-          // the compiler figure out the rest of the zeros.
-          Out << " = " ;
-          if (I->getInitializer()->getType()->isStructTy() ||
-              I->getInitializer()->getType()->isVectorTy()) {
-            Out << "{ 0 }";
-          } else if (I->getInitializer()->getType()->isArrayTy()) {
-            // As with structs and vectors, but with an extra set of braces
-            // because arrays are wrapped in structs.
-            Out << "{ { 0 } }";
-          } else {
-            // Just print it out normally.
-            writeOperand(I->getInitializer(), true);
-          }
-        }
-        Out << ";\n";
-      }
-  }
-
-  if (!M.empty())
-    Out << "\n\n/* Function Bodies */\n";
-
-  // Emit some helper functions for dealing with FCMP instruction's
-  // predicates
-  Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
-  Out << "return X == X && Y == Y; }\n";
-  Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
-  Out << "return X != X || Y != Y; }\n";
-  Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
-  Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
-  Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
-  Out << "return X != Y; }\n";
-  Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
-  Out << "return X <  Y || llvm_fcmp_uno(X, Y); }\n";
-  Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
-  Out << "return X >  Y || llvm_fcmp_uno(X, Y); }\n";
-  Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
-  Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
-  Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
-  Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
-  Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
-  Out << "return X == Y ; }\n";
-  Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
-  Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
-  Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
-  Out << "return X <  Y ; }\n";
-  Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
-  Out << "return X >  Y ; }\n";
-  Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
-  Out << "return X <= Y ; }\n";
-  Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
-  Out << "return X >= Y ; }\n";
-
-  // Emit definitions of the intrinsics.
-  for (SmallVector<const Function*, 8>::const_iterator
-       I = intrinsicsToDefine.begin(),
-       E = intrinsicsToDefine.end(); I != E; ++I) {
-    printIntrinsicDefinition(**I, Out);
-  }
-
-  return false;
-}
-
-
-/// Output all floating point constants that cannot be printed accurately...
-void GenWriter::printFloatingPointConstants(Function &F) {
-  // Scan the module for floating point constants.  If any FP constant is used
-  // in the function, we want to redirect it here so that we do not depend on
-  // the precision of the printed form, unless the printed form preserves
-  // precision.
-  //
-  for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
-       I != E; ++I)
-    printFloatingPointConstants(*I);
-
-  Out << '\n';
-}
-
-void GenWriter::printFloatingPointConstants(const Constant *C) {
-  // If this is a constant expression, recursively check for constant fp values.
-  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
-    for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
-      printFloatingPointConstants(CE->getOperand(i));
-    return;
-  }
-
-  // Otherwise, check for a FP constant that we need to print.
-  const ConstantFP *FPC = dyn_cast<ConstantFP>(C);
-  if (FPC == 0 ||
-      // Do not put in FPConstantMap if safe.
-      isFPCSafeToPrint(FPC) ||
-      // Already printed this constant?
-      FPConstantMap.count(FPC))
-    return;
-
-  FPConstantMap[FPC] = FPCounter;  // Number the FP constants
-
-  if (FPC->getType() == Type::getDoubleTy(FPC->getContext())) {
-    double Val = FPC->getValueAPF().convertToDouble();
-    uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
-    Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
-    << " = 0x" << utohexstr(i)
-    << "ULL;    /* " << Val << " */\n";
-  } else if (FPC->getType() == Type::getFloatTy(FPC->getContext())) {
-    float Val = FPC->getValueAPF().convertToFloat();
-    uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt().
-    getZExtValue();
-    Out << "static const ConstantFloatTy FPConstant" << FPCounter++
-    << " = 0x" << utohexstr(i)
-    << "U;    /* " << Val << " */\n";
-  } else if (FPC->getType() == Type::getX86_FP80Ty(FPC->getContext())) {
-    // api needed to prevent premature destruction
-    APInt api = FPC->getValueAPF().bitcastToAPInt();
-    const uint64_t *p = api.getRawData();
-    Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
-    << " = { 0x" << utohexstr(p[0])
-    << "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}"
-    << "}; /* Long double constant */\n";
-  } else if (FPC->getType() == Type::getPPC_FP128Ty(FPC->getContext()) ||
-             FPC->getType() == Type::getFP128Ty(FPC->getContext())) {
-    APInt api = FPC->getValueAPF().bitcastToAPInt();
-    const uint64_t *p = api.getRawData();
-    Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
-    << " = { 0x"
-    << utohexstr(p[0]) << ", 0x" << utohexstr(p[1])
-    << "}; /* Long double constant */\n";
-
-  } else {
-    llvm_unreachable("Unknown float type!");
-  }
-}
-
-
-/// printSymbolTable - Run through symbol table looking for type names.  If a
-/// type name is found, emit its declaration...
-///
-void GenWriter::printModuleTypes() {
-  Out << "/* Helper union for bitcasts */\n";
-  Out << "typedef union {\n";
-  Out << "  unsigned int Int32;\n";
-  Out << "  unsigned long long Int64;\n";
-  Out << "  float Float;\n";
-  Out << "  double Double;\n";
-  Out << "} llvmBitCastUnion;\n";
-
-  // Get all of the struct types used in the module.
-  std::vector<StructType*> StructTypes;
-  TheModule->findUsedStructTypes(StructTypes);
-
-  if (StructTypes.empty()) return;
-
-  Out << "/* Structure forward decls */\n";
-
-  unsigned NextTypeID = 0;
-  
-  // If any of them are missing names, add a unique ID to UnnamedStructIDs.
-  // Print out forward declarations for structure types.
-  for (unsigned i = 0, e = StructTypes.size(); i != e; ++i) {
-    StructType *ST = StructTypes[i];
-
-    if (ST->isLiteral() || ST->getName().empty())
-      UnnamedStructIDs[ST] = NextTypeID++;
-
-    std::string Name = getStructName(ST);
-
-    Out << "typedef struct " << Name << ' ' << Name << ";\n";
-  }
-
-  Out << '\n';
-
-  // Keep track of which structures have been printed so far.
-  SmallPtrSet<Type *, 16> StructPrinted;
-
-  // Loop over all structures then push them into the stack so they are
-  // printed in the correct order.
-  //
-  Out << "/* Structure contents */\n";
-  for (unsigned i = 0, e = StructTypes.size(); i != e; ++i)
-    if (StructTypes[i]->isStructTy())
-      // Only print out used types!
-      printContainedStructs(StructTypes[i], StructPrinted);
-}
-
-// Push the struct onto the stack and recursively push all structs
-// this one depends on.
-//
-// TODO:  Make this work properly with vector types
-//
-void GenWriter::printContainedStructs(Type *Ty,
-                                SmallPtrSet<Type *, 16> &StructPrinted) {
-  // Don't walk through pointers.
-  if (Ty->isPointerTy() || Ty->isPrimitiveType() || Ty->isIntegerTy())
-    return;
-
-  // Print all contained types first.
-  for (Type::subtype_iterator I = Ty->subtype_begin(),
-       E = Ty->subtype_end(); I != E; ++I)
-    printContainedStructs(*I, StructPrinted);
-
-  if (StructType *ST = dyn_cast<StructType>(Ty)) {
-    // Check to see if we have already printed this struct.
-    if (!StructPrinted.insert(Ty)) return;
-    
-    // Print structure type out.
-    printType(Out, ST, false, getStructName(ST), true);
-    Out << ";\n\n";
-  }
-}
-
-void GenWriter::printFunctionSignature(const Function *F, bool Prototype) {
-  /// isStructReturn - Should this function actually return a struct by-value?
-  bool isStructReturn = F->hasStructRetAttr();
-
-  if (F->hasLocalLinkage()) Out << "static ";
-  if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
-  if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
-  switch (F->getCallingConv()) {
-   case CallingConv::X86_StdCall:
-    Out << "__attribute__((stdcall)) ";
-    break;
-   case CallingConv::X86_FastCall:
-    Out << "__attribute__((fastcall)) ";
-    break;
-   case CallingConv::X86_ThisCall:
-    Out << "__attribute__((thiscall)) ";
-    break;
-   default:
-    break;
-  }
-
-  // Loop over the arguments, printing them...
-  FunctionType *FT = cast<FunctionType>(F->getFunctionType());
-  const AttrListPtr &PAL = F->getAttributes();
-
-  std::string tstr;
-  raw_string_ostream FunctionInnards(tstr);
-
-  // Print out the name...
-  FunctionInnards << GetValueName(F) << '(';
-
-  bool PrintedArg = false;
-  if (!F->isDeclaration()) {
-    if (!F->arg_empty()) {
-      Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
-      unsigned Idx = 1;
-
-      // If this is a struct-return function, don't print the hidden
-      // struct-return argument.
-      if (isStructReturn) {
-        assert(I != E && "Invalid struct return function!");
-        ++I;
-        ++Idx;
-      }
-
-      std::string ArgName;
-      for (; I != E; ++I) {
-        if (PrintedArg) FunctionInnards << ", ";
-        if (I->hasName() || !Prototype)
-          ArgName = GetValueName(I);
-        else
-          ArgName = "";
-        Type *ArgTy = I->getType();
-        if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
-          ArgTy = cast<PointerType>(ArgTy)->getElementType();
-          ByValParams.insert(I);
-        }
-        printType(FunctionInnards, ArgTy,
-            /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt),
-            ArgName);
-        PrintedArg = true;
-        ++Idx;
-      }
-    }
-  } else {
-    // Loop over the arguments, printing them.
-    FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
-    unsigned Idx = 1;
-
-    // If this is a struct-return function, don't print the hidden
-    // struct-return argument.
-    if (isStructReturn) {
-      assert(I != E && "Invalid struct return function!");
-      ++I;
-      ++Idx;
-    }
-
-    for (; I != E; ++I) {
-      if (PrintedArg) FunctionInnards << ", ";
-      Type *ArgTy = *I;
-      if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
-        assert(ArgTy->isPointerTy());
-        ArgTy = cast<PointerType>(ArgTy)->getElementType();
-      }
-      printType(FunctionInnards, ArgTy,
-             /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt));
-      PrintedArg = true;
-      ++Idx;
-    }
-  }
-
-  if (!PrintedArg && FT->isVarArg()) {
-    FunctionInnards << "int vararg_dummy_arg";
-    PrintedArg = true;
-  }
-
-  // Finish printing arguments... if this is a vararg function, print the ...,
-  // unless there are no known types, in which case, we just emit ().
-  //
-  if (FT->isVarArg() && PrintedArg) {
-    FunctionInnards << ",...";  // Output varargs portion of signature!
-  } else if (!FT->isVarArg() && !PrintedArg) {
-    FunctionInnards << "void"; // ret() -> ret(void) in C.
-  }
-  FunctionInnards << ')';
-
-  // Get the return tpe for the function.
-  Type *RetTy;
-  if (!isStructReturn)
-    RetTy = F->getReturnType();
-  else {
-    // If this is a struct-return function, print the struct-return type.
-    RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
-  }
-
-  // Print out the return type and the signature built above.
-  printType(Out, RetTy,
-            /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt),
-            FunctionInnards.str());
-}
-
-static inline bool isFPIntBitCast(const Instruction &I) {
-  if (!isa<BitCastInst>(I))
-    return false;
-  Type *SrcTy = I.getOperand(0)->getType();
-  Type *DstTy = I.getType();
-  return (SrcTy->isFloatingPointTy() && DstTy->isIntegerTy()) ||
-         (DstTy->isFloatingPointTy() && SrcTy->isIntegerTy());
-}
-
-void GenWriter::printFunction(Function &F) {
-
-  /// isStructReturn - Should this function actually return a struct by-value?
-  bool isStructReturn = F.hasStructRetAttr();
-
-  printFunctionSignature(&F, false);
-  Out << " {\n";
-
-  // If this is a struct return function, handle the result with magic.
-  if (isStructReturn) {
-    Type *StructTy =
-      cast<PointerType>(F.arg_begin()->getType())->getElementType();
-    Out << "  ";
-    printType(Out, StructTy, false, "StructReturn");
-    Out << ";  /* Struct return temporary */\n";
-
-    Out << "  ";
-    printType(Out, F.arg_begin()->getType(), false,
-              GetValueName(F.arg_begin()));
-    Out << " = &StructReturn;\n";
-  }
-
-  bool PrintedVar = false;
-
-  // print local variable information for the function
-  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
-    if (const AllocaInst *AI = isDirectAlloca(&*I)) {
-      Out << "  ";
-      printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
-      Out << ";    /* Address-exposed local */\n";
-      PrintedVar = true;
-    } else if (I->getType() != Type::getVoidTy(F.getContext()) &&
-               !isInlinableInst(*I)) {
-      Out << "  ";
-      printType(Out, I->getType(), false, GetValueName(&*I));
-      Out << ";\n";
-
-      if (isa<PHINode>(*I)) {  // Print out PHI node temporaries as well...
-        Out << "  ";
-        printType(Out, I->getType(), false,
-                  GetValueName(&*I)+"__PHI_TEMPORARY");
-        Out << ";\n";
-      }
-      PrintedVar = true;
-    }
-    // We need a temporary for the BitCast to use so it can pluck a value out
-    // of a union to do the BitCast. This is separate from the need for a
-    // variable to hold the result of the BitCast.
-    if (isFPIntBitCast(*I)) {
-      Out << "  llvmBitCastUnion " << GetValueName(&*I)
-          << "__BITCAST_TEMPORARY;\n";
-      PrintedVar = true;
-    }
-  }
-
-  if (PrintedVar)
-    Out << '\n';
-
-  if (F.hasExternalLinkage() && F.getName() == "main")
-    Out << "  CODE_FOR_MAIN();\n";
-
-  // print the basic blocks
-  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
-    if (Loop *L = LI->getLoopFor(BB)) {
-      if (L->getHeader() == BB && L->getParentLoop() == 0)
-        printLoop(L);
-    } else {
-      printBasicBlock(BB);
-    }
-  }
-
-  Out << "}\n\n";
-}
-
-void GenWriter::printLoop(Loop *L) {
-  Out << "  do {     /* Syntactic loop '" << L->getHeader()->getName()
-      << "' to make GCC happy */\n";
-  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
-    BasicBlock *BB = L->getBlocks()[i];
-    Loop *BBLoop = LI->getLoopFor(BB);
-    if (BBLoop == L)
-      printBasicBlock(BB);
-    else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
-      printLoop(BBLoop);
-  }
-  Out << "  } while (1); /* end of syntactic loop '"
-      << L->getHeader()->getName() << "' */\n";
-}
-
-void GenWriter::printBasicBlock(BasicBlock *BB) {
-
-  // Don't print the label for the basic block if there are no uses, or if
-  // the only terminator use is the predecessor basic block's terminator.
-  // We have to scan the use list because PHI nodes use basic blocks too but
-  // do not require a label to be generated.
-  //
-  bool NeedsLabel = false;
-  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
-    if (isGotoCodeNecessary(*PI, BB)) {
-      NeedsLabel = true;
-      break;
-    }
-
-  if (NeedsLabel) Out << GetValueName(BB) << ":\n";
-
-  // Output all of the instructions in the basic block...
-  for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
-       ++II) {
-    if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
-      if (II->getType() != Type::getVoidTy(BB->getContext()) &&
-          !isInlineAsm(*II))
-        outputLValue(II);
-      else
-        Out << "  ";
-      writeInstComputationInline(*II);
-      Out << ";\n";
-    }
-  }
-
-  // Don't emit prefix or suffix for the terminator.
-  visit(*BB->getTerminator());
-}
-
-
-// Specific Instruction type classes... note that all of the casts are
-// necessary because we use the instruction classes as opaque types...
-//
-void GenWriter::visitReturnInst(ReturnInst &I) {
-  // If this is a struct return function, return the temporary struct.
-  bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
-
-  if (isStructReturn) {
-    Out << "  return StructReturn;\n";
-    return;
-  }
-
-  // Don't output a void return if this is the last basic block in the function
-  if (I.getNumOperands() == 0 &&
-      &*--I.getParent()->getParent()->end() == I.getParent() &&
-      !I.getParent()->size() == 1) {
-    return;
-  }
-
-  Out << "  return";
-  if (I.getNumOperands()) {
-    Out << ' ';
-    writeOperand(I.getOperand(0));
-  }
-  Out << ";\n";
-}
-
-void GenWriter::visitSwitchInst(SwitchInst &SI) {
-
-  Value* Cond = SI.getCondition();
-
-  Out << "  switch (";
-  writeOperand(Cond);
-  Out << ") {\n  default:\n";
-  printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
-  printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
-  Out << ";\n";
-
-  unsigned NumCases = SI.getNumCases();
-  // Skip the first item since that's the default case.
-  for (unsigned i = 1; i < NumCases; ++i) {
-    ConstantInt* CaseVal = SI.getCaseValue(i);
-    BasicBlock* Succ = SI.getSuccessor(i);
-    Out << "  case ";
-    writeOperand(CaseVal);
-    Out << ":\n";
-    printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
-    printBranchToBlock(SI.getParent(), Succ, 2);
-    if (Function::iterator(Succ) == llvm::next(Function::iterator(SI.getParent())))
-      Out << "    break;\n";
-  }
-
-  Out << "  }\n";
-}
-
-void GenWriter::visitIndirectBrInst(IndirectBrInst &IBI) {
-  Out << "  goto *(void*)(";
-  writeOperand(IBI.getOperand(0));
-  Out << ");\n";
-}
-
-void GenWriter::visitUnreachableInst(UnreachableInst &I) {
-  Out << "  /*UNREACHABLE*/;\n";
-}
-
-bool GenWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
-  /// FIXME: This should be reenabled, but loop reordering safe!!
-  return true;
-
-  if (llvm::next(Function::iterator(From)) != Function::iterator(To))
-    return true;  // Not the direct successor, we need a goto.
-
-  //isa<SwitchInst>(From->getTerminator())
-
-  if (LI->getLoopFor(From) != LI->getLoopFor(To))
-    return true;
-  return false;
-}
-
-void GenWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
-                                          BasicBlock *Successor,
-                                          unsigned Indent) {
-  for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
-    PHINode *PN = cast<PHINode>(I);
-    // Now we have to do the printing.
-    Value *IV = PN->getIncomingValueForBlock(CurBlock);
-    if (!isa<UndefValue>(IV)) {
-      Out << std::string(Indent, ' ');
-      Out << "  " << GetValueName(I) << "__PHI_TEMPORARY = ";
-      writeOperand(IV);
-      Out << ";   /* for PHI node */\n";
-    }
-  }
-}
-
-void GenWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
-                                 unsigned Indent) {
-  if (isGotoCodeNecessary(CurBB, Succ)) {
-    Out << std::string(Indent, ' ') << "  goto ";
-    writeOperand(Succ);
-    Out << ";\n";
-  }
-}
-
-// Branch instruction printing - Avoid printing out a branch to a basic block
-// that immediately succeeds the current one.
-//
-void GenWriter::visitBranchInst(BranchInst &I) {
-
-  if (I.isConditional()) {
-    if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
-      Out << "  if (";
-      writeOperand(I.getCondition());
-      Out << ") {\n";
-
-      printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
-      printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
-
-      if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
-        Out << "  } else {\n";
-        printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
-        printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
-      }
-    } else {
-      // First goto not necessary, assume second one is...
-      Out << "  if (!";
-      writeOperand(I.getCondition());
-      Out << ") {\n";
-
-      printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
-      printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
-    }
-
-    Out << "  }\n";
-  } else {
-    printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
-    printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
-  }
-  Out << "\n";
-}
-
-// PHI nodes get copied into temporary values at the end of predecessor basic
-// blocks.  We now need to copy these temporary values into the REAL value for
-// the PHI.
-void GenWriter::visitPHINode(PHINode &I) {
-  writeOperand(&I);
-  Out << "__PHI_TEMPORARY";
-}
-
-
-void GenWriter::visitBinaryOperator(Instruction &I) {
-  // binary instructions, shift instructions, setCond instructions.
-  assert(!I.getType()->isPointerTy());
-
-  // We must cast the results of binary operations which might be promoted.
-  bool needsCast = false;
-  if ((I.getType() == Type::getInt8Ty(I.getContext())) ||
-      (I.getType() == Type::getInt16Ty(I.getContext()))
-      || (I.getType() == Type::getFloatTy(I.getContext()))) {
-    needsCast = true;
-    Out << "((";
-    printType(Out, I.getType(), false);
-    Out << ")(";
-  }
-
-  // If this is a negation operation, print it out as such.  For FP, we don't
-  // want to print "-0.0 - X".
-  if (BinaryOperator::isNeg(&I)) {
-    Out << "-(";
-    writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
-    Out << ")";
-  } else if (BinaryOperator::isFNeg(&I)) {
-    Out << "-(";
-    writeOperand(BinaryOperator::getFNegArgument(cast<BinaryOperator>(&I)));
-    Out << ")";
-  } else if (I.getOpcode() == Instruction::FRem) {
-    // Output a call to fmod/fmodf instead of emitting a%b
-    if (I.getType() == Type::getFloatTy(I.getContext()))
-      Out << "fmodf(";
-    else if (I.getType() == Type::getDoubleTy(I.getContext()))
-      Out << "fmod(";
-    else  // all 3 flavors of long double
-      Out << "fmodl(";
-    writeOperand(I.getOperand(0));
-    Out << ", ";
-    writeOperand(I.getOperand(1));
-    Out << ")";
-  } else {
-
-    // Write out the cast of the instruction's value back to the proper type
-    // if necessary.
-    bool NeedsClosingParens = writeInstructionCast(I);
-
-    // Certain instructions require the operand to be forced to a specific type
-    // so we use writeOperandWithCast here instead of writeOperand. Similarly
-    // below for operand 1
-    writeOperandWithCast(I.getOperand(0), I.getOpcode());
-
-    switch (I.getOpcode()) {
-    case Instruction::Add:
-    case Instruction::FAdd: Out << " + "; break;
-    case Instruction::Sub:
-    case Instruction::FSub: Out << " - "; break;
-    case Instruction::Mul:
-    case Instruction::FMul: Out << " * "; break;
-    case Instruction::URem:
-    case Instruction::SRem:
-    case Instruction::FRem: Out << " % "; break;
-    case Instruction::UDiv:
-    case Instruction::SDiv:
-    case Instruction::FDiv: Out << " / "; break;
-    case Instruction::And:  Out << " & "; break;
-    case Instruction::Or:   Out << " | "; break;
-    case Instruction::Xor:  Out << " ^ "; break;
-    case Instruction::Shl : Out << " << "; break;
-    case Instruction::LShr:
-    case Instruction::AShr: Out << " >> "; break;
-    default:
-#ifndef NDEBUG
-       errs() << "Invalid operator type!" << I;
-#endif
-       llvm_unreachable(0);
-    }
-
-    writeOperandWithCast(I.getOperand(1), I.getOpcode());
-    if (NeedsClosingParens)
-      Out << "))";
-  }
-
-  if (needsCast) {
-    Out << "))";
-  }
-}
-
-void GenWriter::visitICmpInst(ICmpInst &I) {
-  // We must cast the results of icmp which might be promoted.
-  bool needsCast = false;
-
-  // Write out the cast of the instruction's value back to the proper type
-  // if necessary.
-  bool NeedsClosingParens = writeInstructionCast(I);
-
-  // Certain icmp predicate require the operand to be forced to a specific type
-  // so we use writeOperandWithCast here instead of writeOperand. Similarly
-  // below for operand 1
-  writeOperandWithCast(I.getOperand(0), I);
-
-  switch (I.getPredicate()) {
-  case ICmpInst::ICMP_EQ:  Out << " == "; break;
-  case ICmpInst::ICMP_NE:  Out << " != "; break;
-  case ICmpInst::ICMP_ULE:
-  case ICmpInst::ICMP_SLE: Out << " <= "; break;
-  case ICmpInst::ICMP_UGE:
-  case ICmpInst::ICMP_SGE: Out << " >= "; break;
-  case ICmpInst::ICMP_ULT:
-  case ICmpInst::ICMP_SLT: Out << " < "; break;
-  case ICmpInst::ICMP_UGT:
-  case ICmpInst::ICMP_SGT: Out << " > "; break;
-  default:
-#ifndef NDEBUG
-    errs() << "Invalid icmp predicate!" << I;
-#endif
-    llvm_unreachable(0);
-  }
-
-  writeOperandWithCast(I.getOperand(1), I);
-  if (NeedsClosingParens)
-    Out << "))";
-
-  if (needsCast) {
-    Out << "))";
-  }
-}
-
-void GenWriter::visitFCmpInst(FCmpInst &I) {
-  if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
-    Out << "0";
-    return;
-  }
-  if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
-    Out << "1";
-    return;
-  }
-
-  const char* op = 0;
-  switch (I.getPredicate()) {
-  default: llvm_unreachable("Illegal FCmp predicate");
-  case FCmpInst::FCMP_ORD: op = "ord"; break;
-  case FCmpInst::FCMP_UNO: op = "uno"; break;
-  case FCmpInst::FCMP_UEQ: op = "ueq"; break;
-  case FCmpInst::FCMP_UNE: op = "une"; break;
-  case FCmpInst::FCMP_ULT: op = "ult"; break;
-  case FCmpInst::FCMP_ULE: op = "ule"; break;
-  case FCmpInst::FCMP_UGT: op = "ugt"; break;
-  case FCmpInst::FCMP_UGE: op = "uge"; break;
-  case FCmpInst::FCMP_OEQ: op = "oeq"; break;
-  case FCmpInst::FCMP_ONE: op = "one"; break;
-  case FCmpInst::FCMP_OLT: op = "olt"; break;
-  case FCmpInst::FCMP_OLE: op = "ole"; break;
-  case FCmpInst::FCMP_OGT: op = "ogt"; break;
-  case FCmpInst::FCMP_OGE: op = "oge"; break;
-  }
-
-  Out << "llvm_fcmp_" << op << "(";
-  // Write the first operand
-  writeOperand(I.getOperand(0));
-  Out << ", ";
-  // Write the second operand
-  writeOperand(I.getOperand(1));
-  Out << ")";
-}
-
-static const char * getFloatBitCastField(Type *Ty) {
-  switch (Ty->getTypeID()) {
-    default: llvm_unreachable("Invalid Type");
-    case Type::FloatTyID:  return "Float";
-    case Type::DoubleTyID: return "Double";
-    case Type::IntegerTyID: {
-      unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
-      if (NumBits <= 32)
-        return "Int32";
-      else
-        return "Int64";
-    }
-  }
-}
-
-void GenWriter::visitCastInst(CastInst &I) {
-  Type *DstTy = I.getType();
-  Type *SrcTy = I.getOperand(0)->getType();
-  if (isFPIntBitCast(I)) {
-    Out << '(';
-    // These int<->float and long<->double casts need to be handled specially
-    Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
-        << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
-    writeOperand(I.getOperand(0));
-    Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
-        << getFloatBitCastField(I.getType());
-    Out << ')';
-    return;
-  }
-
-  Out << '(';
-  printCast(I.getOpcode(), SrcTy, DstTy);
-
-  // Make a sext from i1 work by subtracting the i1 from 0 (an int).
-  if (SrcTy == Type::getInt1Ty(I.getContext()) &&
-      I.getOpcode() == Instruction::SExt)
-    Out << "0-";
-
-  writeOperand(I.getOperand(0));
-
-  if (DstTy == Type::getInt1Ty(I.getContext()) &&
-      (I.getOpcode() == Instruction::Trunc ||
-       I.getOpcode() == Instruction::FPToUI ||
-       I.getOpcode() == Instruction::FPToSI ||
-       I.getOpcode() == Instruction::PtrToInt)) {
-    // Make sure we really get a trunc to bool by anding the operand with 1
-    Out << "&1u";
-  }
-  Out << ')';
-}
-
-void GenWriter::visitSelectInst(SelectInst &I) {
-  Out << "((";
-  writeOperand(I.getCondition());
-  Out << ") ? (";
-  writeOperand(I.getTrueValue());
-  Out << ") : (";
-  writeOperand(I.getFalseValue());
-  Out << "))";
-}
-
-// Returns the macro name or value of the max or min of an integer type
-// (as defined in limits.h).
-static void printLimitValue(IntegerType &Ty, bool isSigned, bool isMax,
-                            raw_ostream &Out) {
-  const char* type;
-  const char* sprefix = "";
-
-  unsigned NumBits = Ty.getBitWidth();
-  if (NumBits <= 8) {
-    type = "CHAR";
-    sprefix = "S";
-  } else if (NumBits <= 16) {
-    type = "SHRT";
-  } else if (NumBits <= 32) {
-    type = "INT";
-  } else if (NumBits <= 64) {
-    type = "LLONG";
-  } else {
-    llvm_unreachable("Bit widths > 64 not implemented yet");
-  }
-
-  if (isSigned)
-    Out << sprefix << type << (isMax ? "_MAX" : "_MIN");
-  else
-    Out << "U" << type << (isMax ? "_MAX" : "0");
-}
-
-#ifndef NDEBUG
-static bool isSupportedIntegerSize(IntegerType &T) {
-  return T.getBitWidth() == 8 || T.getBitWidth() == 16 ||
-         T.getBitWidth() == 32 || T.getBitWidth() == 64;
-}
-#endif
-
-void GenWriter::printIntrinsicDefinition(const Function &F, raw_ostream &Out) {
-  FunctionType *funT = F.getFunctionType();
-  Type *retT = F.getReturnType();
-  IntegerType *elemT = cast<IntegerType>(funT->getParamType(1));
-
-  assert(isSupportedIntegerSize(*elemT) &&
-         "CBackend does not support arbitrary size integers.");
-  assert(cast<StructType>(retT)->getElementType(0) == elemT &&
-         elemT == funT->getParamType(0) && funT->getNumParams() == 2);
-
-  switch (F.getIntrinsicID()) {
-  default:
-    llvm_unreachable("Unsupported Intrinsic.");
-  }
-}
-
-void GenWriter::lowerIntrinsics(Function &F) {
-  // This is used to keep track of intrinsics that get generated to a lowered
-  // function. We must generate the prototypes before the function body which
-  // will only be expanded on first use (by the loop below).
-  std::vector<Function*> prototypesToGen;
-
-  // Examine all the instructions in this function to find the intrinsics that
-  // need to be lowered.
-  for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
-    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
-      if (CallInst *CI = dyn_cast<CallInst>(I++))
-        if (Function *F = CI->getCalledFunction())
-          switch (F->getIntrinsicID()) {
-          case Intrinsic::not_intrinsic:
-          case Intrinsic::vastart:
-          case Intrinsic::vacopy:
-          case Intrinsic::vaend:
-          case Intrinsic::returnaddress:
-          case Intrinsic::frameaddress:
-          case Intrinsic::setjmp:
-          case Intrinsic::longjmp:
-          case Intrinsic::prefetch:
-          case Intrinsic::powi:
-          case Intrinsic::x86_sse_cmp_ss:
-          case Intrinsic::x86_sse_cmp_ps:
-          case Intrinsic::x86_sse2_cmp_sd:
-          case Intrinsic::x86_sse2_cmp_pd:
-          case Intrinsic::ppc_altivec_lvsl:
-          case Intrinsic::uadd_with_overflow:
-          case Intrinsic::sadd_with_overflow:
-              // We directly implement these intrinsics
-            break;
-          default:
-            // If this is an intrinsic that directly corresponds to a GCC
-            // builtin, we handle it.
-            const char *BuiltinName = "";
-#define GET_GCC_BUILTIN_NAME
-#include "llvm/Intrinsics.gen"
-#undef GET_GCC_BUILTIN_NAME
-            // If we handle it, don't lower it.
-            if (BuiltinName[0]) break;
-
-            // All other intrinsic calls we must lower.
-            Instruction *Before = 0;
-            if (CI != &BB->front())
-              Before = prior(BasicBlock::iterator(CI));
-
-            IL->LowerIntrinsicCall(CI);
-            if (Before) {        // Move iterator to instruction after call
-              I = Before; ++I;
-            } else {
-              I = BB->begin();
-            }
-            // If the intrinsic got lowered to another call, and that call has
-            // a definition then we need to make sure its prototype is emitted
-            // before any calls to it.
-            if (CallInst *Call = dyn_cast<CallInst>(I))
-              if (Function *NewF = Call->getCalledFunction())
-                if (!NewF->isDeclaration())
-                  prototypesToGen.push_back(NewF);
-
-            break;
-          }
-
-  // We may have collected some prototypes to emit in the loop above.
-  // Emit them now, before the function that uses them is emitted. But,
-  // be careful not to emit them twice.
-  std::vector<Function*>::iterator I = prototypesToGen.begin();
-  std::vector<Function*>::iterator E = prototypesToGen.end();
-  for ( ; I != E; ++I) {
-    if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
-      Out << '\n';
-      printFunctionSignature(*I, true);
-      Out << ";\n";
-    }
-  }
-}
-
-void GenWriter::visitCallInst(CallInst &I) {
-  if (isa<InlineAsm>(I.getCalledValue()))
-    return visitInlineAsm(I);
-
-  bool WroteCallee = false;
-
-  // Handle intrinsic function calls first...
-  if (Function *F = I.getCalledFunction())
-    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
-      if (visitBuiltinCall(I, ID, WroteCallee))
-        return;
-
-  Value *Callee = I.getCalledValue();
-
-  PointerType  *PTy   = cast<PointerType>(Callee->getType());
-  FunctionType *FTy   = cast<FunctionType>(PTy->getElementType());
-
-  // If this is a call to a struct-return function, assign to the first
-  // parameter instead of passing it to the call.
-  const AttrListPtr &PAL = I.getAttributes();
-  bool hasByVal = I.hasByValArgument();
-  bool isStructRet = I.hasStructRetAttr();
-  if (isStructRet) {
-    writeOperandDeref(I.getArgOperand(0));
-    Out << " = ";
-  }
-
-  if (I.isTailCall()) Out << " /*tail*/ ";
-
-  if (!WroteCallee) {
-    // If this is an indirect call to a struct return function, we need to cast
-    // the pointer. Ditto for indirect calls with byval arguments.
-    bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
-
-    // GCC is a real PITA.  It does not permit codegening casts of functions to
-    // function pointers if they are in a call (it generates a trap instruction
-    // instead!).  We work around this by inserting a cast to void* in between
-    // the function and the function pointer cast.  Unfortunately, we can't just
-    // form the constant expression here, because the folder will immediately
-    // nuke it.
-    //
-    // Note finally, that this is completely unsafe.  ANSI C does not guarantee
-    // that void* and function pointers have the same size. :( To deal with this
-    // in the common case, we handle casts where the number of arguments passed
-    // match exactly.
-    //
-    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
-      if (CE->isCast())
-        if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
-          NeedsCast = true;
-          Callee = RF;
-        }
-
-    if (NeedsCast) {
-      // Ok, just cast the pointer type.
-      Out << "((";
-      if (isStructRet)
-        printStructReturnPointerFunctionType(Out, PAL,
-                             cast<PointerType>(I.getCalledValue()->getType()));
-      else if (hasByVal)
-        printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
-      else
-        printType(Out, I.getCalledValue()->getType());
-      Out << ")(void*)";
-    }
-    writeOperand(Callee);
-    if (NeedsCast) Out << ')';
-  }
-
-  Out << '(';
-
-  bool PrintedArg = false;
-  if(FTy->isVarArg() && !FTy->getNumParams()) {
-    Out << "0 /*dummy arg*/";
-    PrintedArg = true;
-  }
-
-  unsigned NumDeclaredParams = FTy->getNumParams();
-  CallSite CS(&I);
-  CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
-  unsigned ArgNo = 0;
-  if (isStructRet) {   // Skip struct return argument.
-    ++AI;
-    ++ArgNo;
-  }
-
-
-  for (; AI != AE; ++AI, ++ArgNo) {
-    if (PrintedArg) Out << ", ";
-    if (ArgNo < NumDeclaredParams &&
-        (*AI)->getType() != FTy->getParamType(ArgNo)) {
-      Out << '(';
-      printType(Out, FTy->getParamType(ArgNo),
-            /*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt));
-      Out << ')';
-    }
-    // Check if the argument is expected to be passed by value.
-    if (I.paramHasAttr(ArgNo+1, Attribute::ByVal))
-      writeOperandDeref(*AI);
-    else
-      writeOperand(*AI);
-    PrintedArg = true;
-  }
-  Out << ')';
-}
-
-/// visitBuiltinCall - Handle the call to the specified builtin.  Returns true
-/// if the entire call is handled, return false if it wasn't handled, and
-/// optionally set 'WroteCallee' if the callee has already been printed out.
-bool GenWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee) {
-  switch (ID) {
-  default: {
-    // If this is an intrinsic that directly corresponds to a GCC
-    // builtin, we emit it here.
-    const char *BuiltinName = "";
-    Function *F = I.getCalledFunction();
-#define GET_GCC_BUILTIN_NAME
-#include "llvm/Intrinsics.gen"
-#undef GET_GCC_BUILTIN_NAME
-    assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
-
-    Out << BuiltinName;
-    WroteCallee = true;
-    return false;
-  }
-  case Intrinsic::vastart:
-    Out << "0; ";
-
-    Out << "va_start(*(va_list*)";
-    writeOperand(I.getArgOperand(0));
-    Out << ", ";
-    // Output the last argument to the enclosing function.
-    if (I.getParent()->getParent()->arg_empty())
-      Out << "vararg_dummy_arg";
-    else
-      writeOperand(--I.getParent()->getParent()->arg_end());
-    Out << ')';
-    return true;
-  case Intrinsic::vaend:
-    if (!isa<ConstantPointerNull>(I.getArgOperand(0))) {
-      Out << "0; va_end(*(va_list*)";
-      writeOperand(I.getArgOperand(0));
-      Out << ')';
-    } else {
-      Out << "va_end(*(va_list*)0)";
-    }
-    return true;
-  case Intrinsic::vacopy:
-    Out << "0; ";
-    Out << "va_copy(*(va_list*)";
-    writeOperand(I.getArgOperand(0));
-    Out << ", *(va_list*)";
-    writeOperand(I.getArgOperand(1));
-    Out << ')';
-    return true;
-  case Intrinsic::returnaddress:
-    Out << "__builtin_return_address(";
-    writeOperand(I.getArgOperand(0));
-    Out << ')';
-    return true;
-  case Intrinsic::frameaddress:
-    Out << "__builtin_frame_address(";
-    writeOperand(I.getArgOperand(0));
-    Out << ')';
-    return true;
-  case Intrinsic::powi:
-    Out << "__builtin_powi(";
-    writeOperand(I.getArgOperand(0));
-    Out << ", ";
-    writeOperand(I.getArgOperand(1));
-    Out << ')';
-    return true;
-  case Intrinsic::setjmp:
-    Out << "setjmp(*(jmp_buf*)";
-    writeOperand(I.getArgOperand(0));
-    Out << ')';
-    return true;
-  case Intrinsic::longjmp:
-    Out << "longjmp(*(jmp_buf*)";
-    writeOperand(I.getArgOperand(0));
-    Out << ", ";
-    writeOperand(I.getArgOperand(1));
-    Out << ')';
-    return true;
-  case Intrinsic::prefetch:
-    Out << "LLVM_PREFETCH((const void *)";
-    writeOperand(I.getArgOperand(0));
-    Out << ", ";
-    writeOperand(I.getArgOperand(1));
-    Out << ", ";
-    writeOperand(I.getArgOperand(2));
-    Out << ")";
-    return true;
-  case Intrinsic::stacksave:
-    // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
-    // to work around GCC bugs (see PR1809).
-    Out << "0; *((void**)&" << GetValueName(&I)
-        << ") = __builtin_stack_save()";
-    return true;
-  case Intrinsic::x86_sse_cmp_ss:
-  case Intrinsic::x86_sse_cmp_ps:
-  case Intrinsic::x86_sse2_cmp_sd:
-  case Intrinsic::x86_sse2_cmp_pd:
-    Out << '(';
-    printType(Out, I.getType());
-    Out << ')';
-    // Multiple GCC builtins multiplex onto this intrinsic.
-    switch (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()) {
-    default: llvm_unreachable("Invalid llvm.x86.sse.cmp!");
-    case 0: Out << "__builtin_ia32_cmpeq"; break;
-    case 1: Out << "__builtin_ia32_cmplt"; break;
-    case 2: Out << "__builtin_ia32_cmple"; break;
-    case 3: Out << "__builtin_ia32_cmpunord"; break;
-    case 4: Out << "__builtin_ia32_cmpneq"; break;
-    case 5: Out << "__builtin_ia32_cmpnlt"; break;
-    case 6: Out << "__builtin_ia32_cmpnle"; break;
-    case 7: Out << "__builtin_ia32_cmpord"; break;
-    }
-    if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
-      Out << 'p';
-    else
-      Out << 's';
-    if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
-      Out << 's';
-    else
-      Out << 'd';
-
-    Out << "(";
-    writeOperand(I.getArgOperand(0));
-    Out << ", ";
-    writeOperand(I.getArgOperand(1));
-    Out << ")";
-    return true;
-  case Intrinsic::ppc_altivec_lvsl:
-    Out << '(';
-    printType(Out, I.getType());
-    Out << ')';
-    Out << "__builtin_altivec_lvsl(0, (void*)";
-    writeOperand(I.getArgOperand(0));
-    Out << ")";
-    return true;
-  case Intrinsic::uadd_with_overflow:
-  case Intrinsic::sadd_with_overflow:
-    Out << GetValueName(I.getCalledFunction()) << "(";
-    writeOperand(I.getArgOperand(0));
-    Out << ", ";
-    writeOperand(I.getArgOperand(1));
-    Out << ")";
-    return true;
-  }
-}
-
-//This converts the llvm constraint string to something gcc is expecting.
-//TODO: work out platform independent constraints and factor those out
-//      of the per target tables
-//      handle multiple constraint codes
-std::string GenWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
-  assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
-
-  // Grab the translation table from MCAsmInfo if it exists.
-  const MCAsmInfo *TargetAsm;
-  std::string Triple = TheModule->getTargetTriple();
-  if (Triple.empty())
-    Triple = llvm::sys::getHostTriple();
-
-  std::string E;
-  if (const Target *Match = TargetRegistry::lookupTarget(Triple, E))
-    TargetAsm = Match->createMCAsmInfo(Triple);
-  else
-    return c.Codes[0];
-
-  const char *const *table = TargetAsm->getAsmCBE();
-
-  // Search the translation table if it exists.
-  for (int i = 0; table && table[i]; i += 2)
-    if (c.Codes[0] == table[i]) {
-      delete TargetAsm;
-      return table[i+1];
-    }
-
-  // Default is identity.
-  delete TargetAsm;
-  return c.Codes[0];
-}
-
-//TODO: import logic from AsmPrinter.cpp
-static std::string gccifyAsm(std::string asmstr) {
-  for (std::string::size_type i = 0; i != asmstr.size(); ++i)
-    if (asmstr[i] == '\n')
-      asmstr.replace(i, 1, "\\n");
-    else if (asmstr[i] == '\t')
-      asmstr.replace(i, 1, "\\t");
-    else if (asmstr[i] == '$') {
-      if (asmstr[i + 1] == '{') {
-        std::string::size_type a = asmstr.find_first_of(':', i + 1);
-        std::string::size_type b = asmstr.find_first_of('}', i + 1);
-        std::string n = "%" +
-          asmstr.substr(a + 1, b - a - 1) +
-          asmstr.substr(i + 2, a - i - 2);
-        asmstr.replace(i, b - i + 1, n);
-        i += n.size() - 1;
-      } else
-        asmstr.replace(i, 1, "%");
-    }
-    else if (asmstr[i] == '%')//grr
-      { asmstr.replace(i, 1, "%%"); ++i;}
-
-  return asmstr;
-}
-
-//TODO: assumptions about what consume arguments from the call are likely wrong
-//      handle communitivity
-void GenWriter::visitInlineAsm(CallInst &CI) {
-  InlineAsm* as = cast<InlineAsm>(CI.getCalledValue());
-  InlineAsm::ConstraintInfoVector Constraints = as->ParseConstraints();
-
-  std::vector<std::pair<Value*, int> > ResultVals;
-  if (CI.getType() == Type::getVoidTy(CI.getContext()))
-    ;
-  else if (StructType *ST = dyn_cast<StructType>(CI.getType())) {
-    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
-      ResultVals.push_back(std::make_pair(&CI, (int)i));
-  } else {
-    ResultVals.push_back(std::make_pair(&CI, -1));
-  }
-
-  // Fix up the asm string for gcc and emit it.
-  Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n";
-  Out << "        :";
-
-  unsigned ValueCount = 0;
-  bool IsFirst = true;
-
-  // Convert over all the output constraints.
-  for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
-       E = Constraints.end(); I != E; ++I) {
-
-    if (I->Type != InlineAsm::isOutput) {
-      ++ValueCount;
-      continue;  // Ignore non-output constraints.
-    }
-
-    assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
-    std::string C = InterpretASMConstraint(*I);
-    if (C.empty()) continue;
-
-    if (!IsFirst) {
-      Out << ", ";
-      IsFirst = false;
-    }
-
-    // Unpack the dest.
-    Value *DestVal;
-    int DestValNo = -1;
-
-    if (ValueCount < ResultVals.size()) {
-      DestVal = ResultVals[ValueCount].first;
-      DestValNo = ResultVals[ValueCount].second;
-    } else
-      DestVal = CI.getArgOperand(ValueCount-ResultVals.size());
-
-    if (I->isEarlyClobber)
-      C = "&"+C;
-
-    Out << "\"=" << C << "\"(" << GetValueName(DestVal);
-    if (DestValNo != -1)
-      Out << ".field" << DestValNo; // Multiple retvals.
-    Out << ")";
-    ++ValueCount;
-  }
-
-
-  // Convert over all the input constraints.
-  Out << "\n        :";
-  IsFirst = true;
-  ValueCount = 0;
-  for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
-       E = Constraints.end(); I != E; ++I) {
-    if (I->Type != InlineAsm::isInput) {
-      ++ValueCount;
-      continue;  // Ignore non-input constraints.
-    }
-
-    assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
-    std::string C = InterpretASMConstraint(*I);
-    if (C.empty()) continue;
-
-    if (!IsFirst) {
-      Out << ", ";
-      IsFirst = false;
-    }
-
-    assert(ValueCount >= ResultVals.size() && "Input can't refer to result");
-    Value *SrcVal = CI.getArgOperand(ValueCount-ResultVals.size());
-
-    Out << "\"" << C << "\"(";
-    if (!I->isIndirect)
-      writeOperand(SrcVal);
-    else
-      writeOperandDeref(SrcVal);
-    Out << ")";
-  }
-
-  // Convert over the clobber constraints.
-  IsFirst = true;
-  for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
-       E = Constraints.end(); I != E; ++I) {
-    if (I->Type != InlineAsm::isClobber)
-      continue;  // Ignore non-input constraints.
-
-    assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
-    std::string C = InterpretASMConstraint(*I);
-    if (C.empty()) continue;
-
-    if (!IsFirst) {
-      Out << ", ";
-      IsFirst = false;
-    }
-
-    Out << '\"' << C << '"';
-  }
-
-  Out << ")";
-}
-
-void GenWriter::visitAllocaInst(AllocaInst &I) {
-  Out << '(';
-  printType(Out, I.getType());
-  Out << ") alloca(sizeof(";
-  printType(Out, I.getType()->getElementType());
-  Out << ')';
-  if (I.isArrayAllocation()) {
-    Out << " * " ;
-    writeOperand(I.getOperand(0));
-  }
-  Out << ')';
-}
-
-void GenWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
-                                 gep_type_iterator E, bool Static) {
-
-  // If there are no indices, just print out the pointer.
-  if (I == E) {
-    writeOperand(Ptr);
-    return;
-  }
-
-  // Find out if the last index is into a vector.  If so, we have to print this
-  // specially.  Since vectors can't have elements of indexable type, only the
-  // last index could possibly be of a vector element.
-  VectorType *LastIndexIsVector = 0;
-  {
-    for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
-      LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
-  }
-
-  Out << "(";
-
-  // If the last index is into a vector, we can't print it as &a[i][j] because
-  // we can't index into a vector with j in GCC.  Instead, emit this as
-  // (((float*)&a[i])+j)
-  if (LastIndexIsVector) {
-    Out << "((";
-    printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
-    Out << ")(";
-  }
-
-  Out << '&';
-
-  // If the first index is 0 (very typical) we can do a number of
-  // simplifications to clean up the code.
-  Value *FirstOp = I.getOperand();
-  if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
-    // First index isn't simple, print it the hard way.
-    writeOperand(Ptr);
-  } else {
-    ++I;  // Skip the zero index.
-
-    // Okay, emit the first operand. If Ptr is something that is already address
-    // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
-    if (isAddressExposed(Ptr)) {
-      writeOperandInternal(Ptr, Static);
-    } else if (I != E && (*I)->isStructTy()) {
-      // If we didn't already emit the first operand, see if we can print it as
-      // P->f instead of "P[0].f"
-      writeOperand(Ptr);
-      Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
-      ++I;  // eat the struct index as well.
-    } else {
-      // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
-      Out << "(*";
-      writeOperand(Ptr);
-      Out << ")";
-    }
-  }
-
-  for (; I != E; ++I) {
-    if ((*I)->isStructTy()) {
-      Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
-    } else if ((*I)->isArrayTy()) {
-      Out << ".array[";
-      writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
-      Out << ']';
-    } else if (!(*I)->isVectorTy()) {
-      Out << '[';
-      writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
-      Out << ']';
-    } else {
-      // If the last index is into a vector, then print it out as "+j)".  This
-      // works with the 'LastIndexIsVector' code above.
-      if (isa<Constant>(I.getOperand()) &&
-          cast<Constant>(I.getOperand())->isNullValue()) {
-        Out << "))";  // avoid "+0".
-      } else {
-        Out << ")+(";
-        writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
-        Out << "))";
-      }
-    }
-  }
-  Out << ")";
-}
-
-void GenWriter::writeMemoryAccess(Value *Operand, Type *OperandType,
-                                bool IsVolatile, unsigned Alignment) {
-
-  bool IsUnaligned = Alignment &&
-    Alignment < TD->getABITypeAlignment(OperandType);
-
-  if (!IsUnaligned)
-    Out << '*';
-  if (IsVolatile || IsUnaligned) {
-    Out << "((";
-    if (IsUnaligned)
-      Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
-    printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
-    if (IsUnaligned) {
-      Out << "; } ";
-      if (IsVolatile) Out << "volatile ";
-      Out << "*";
-    }
-    Out << ")";
-  }
-
-  writeOperand(Operand);
-
-  if (IsVolatile || IsUnaligned) {
-    Out << ')';
-    if (IsUnaligned)
-      Out << "->data";
-  }
-}
-
-void GenWriter::visitLoadInst(LoadInst &I) {
-  writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
-                    I.getAlignment());
-
-}
-
-void GenWriter::visitStoreInst(StoreInst &I) {
-  writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
-                    I.isVolatile(), I.getAlignment());
-  Out << " = ";
-  Value *Operand = I.getOperand(0);
-  Constant *BitMask = 0;
-  if (IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
-    if (!ITy->isPowerOf2ByteWidth())
-      // We have a bit width that doesn't match an even power-of-2 byte
-      // size. Consequently we must & the value with the type's bit mask
-      BitMask = ConstantInt::get(ITy, ITy->getBitMask());
-  if (BitMask)
-    Out << "((";
-  writeOperand(Operand);
-  if (BitMask) {
-    Out << ") & ";
-    printConstant(BitMask, false);
-    Out << ")";
-  }
-}
-
-void GenWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
-  printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
-                     gep_type_end(I), false);
-}
-
-void GenWriter::visitVAArgInst(VAArgInst &I) {
-  Out << "va_arg(*(va_list*)";
-  writeOperand(I.getOperand(0));
-  Out << ", ";
-  printType(Out, I.getType());
-  Out << ");\n ";
-}
-
-void GenWriter::visitInsertElementInst(InsertElementInst &I) {
-  Type *EltTy = I.getType()->getElementType();
-  writeOperand(I.getOperand(0));
-  Out << ";\n  ";
-  Out << "((";
-  printType(Out, PointerType::getUnqual(EltTy));
-  Out << ")(&" << GetValueName(&I) << "))[";
-  writeOperand(I.getOperand(2));
-  Out << "] = (";
-  writeOperand(I.getOperand(1));
-  Out << ")";
-}
-
-void GenWriter::visitExtractElementInst(ExtractElementInst &I) {
-  // We know that our operand is not inlined.
-  Out << "((";
-  Type *EltTy =
-    cast<VectorType>(I.getOperand(0)->getType())->getElementType();
-  printType(Out, PointerType::getUnqual(EltTy));
-  Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
-  writeOperand(I.getOperand(1));
-  Out << "]";
-}
-
-void GenWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
-  Out << "(";
-  printType(Out, SVI.getType());
-  Out << "){ ";
-  VectorType *VT = SVI.getType();
-  unsigned NumElts = VT->getNumElements();
-  Type *EltTy = VT->getElementType();
-
-  for (unsigned i = 0; i != NumElts; ++i) {
-    if (i) Out << ", ";
-    int SrcVal = SVI.getMaskValue(i);
-    if ((unsigned)SrcVal >= NumElts*2) {
-      Out << " 0/*undef*/ ";
-    } else {
-      Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
-      if (isa<Instruction>(Op)) {
-        // Do an extractelement of this value from the appropriate input.
-        Out << "((";
-        printType(Out, PointerType::getUnqual(EltTy));
-        Out << ")(&" << GetValueName(Op)
-            << "))[" << (SrcVal & (NumElts-1)) << "]";
-      } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
-        Out << "0";
-      } else {
-        printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal &
-                                                           (NumElts-1)),
-                      false);
-      }
-    }
-  }
-  Out << "}";
-}
-
-void GenWriter::visitInsertValueInst(InsertValueInst &IVI) {
-  // Start by copying the entire aggregate value into the result variable.
-  writeOperand(IVI.getOperand(0));
-  Out << ";\n  ";
-
-  // Then do the insert to update the field.
-  Out << GetValueName(&IVI);
-  for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end();
-       i != e; ++i) {
-    Type *IndexedTy =
-      ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(),
-                                       makeArrayRef(b, i+1));
-    if (IndexedTy->isArrayTy())
-      Out << ".array[" << *i << "]";
-    else
-      Out << ".field" << *i;
-  }
-  Out << " = ";
-  writeOperand(IVI.getOperand(1));
-}
-
-void GenWriter::visitExtractValueInst(ExtractValueInst &EVI) {
-  Out << "(";
-  if (isa<UndefValue>(EVI.getOperand(0))) {
-    Out << "(";
-    printType(Out, EVI.getType());
-    Out << ") 0/*UNDEF*/";
-  } else {
-    Out << GetValueName(EVI.getOperand(0));
-    for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end();
-         i != e; ++i) {
-      Type *IndexedTy =
-        ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(),
-                                         makeArrayRef(b, i+1));
-      if (IndexedTy->isArrayTy())
-        Out << ".array[" << *i << "]";
-      else
-        Out << ".field" << *i;
-    }
-  }
-  Out << ")";
-}
-
-//===----------------------------------------------------------------------===//
-//                       External Interface declaration
-//===----------------------------------------------------------------------===//
-llvm::FunctionPass *createGenPass(formatted_raw_ostream &o) {
-  return new GenWriter(o);
-}
-
-
diff --git a/backend/src/llvm/llvm2gen.cpp b/backend/src/llvm/llvm2gen.cpp
deleted file mode 100644 (file)
index c49af52..0000000
+++ /dev/null
@@ -1,93 +0,0 @@
-/* 
- * Copyright © 2012 Intel Corporation
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library. If not, see <http://www.gnu.org/licenses/>.
- *
- * Author: Benjamin Segovia <benjamin.segovia@intel.com>
- */
-
-//===-- llc.cpp - Implement the LLVM Native Code Generator ----------------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This is the llc code generator driver. It provides a convenient
-// command-line interface for generating native assembly-language code
-// or C code, given LLVM bitcode.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/PassManager.h"
-#include "llvm/Pass.h"
-#include "llvm/ADT/Triple.h"
-#include "llvm/Support/IRReader.h"
-#include "llvm/CodeGen/LinkAllAsmWriterComponents.h"
-#include "llvm/CodeGen/LinkAllCodegenComponents.h"
-#include "llvm/Config/config.h"
-#include "llvm/Assembly/PrintModulePass.h"
-#include "llvm/MC/SubtargetFeature.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/FormattedStream.h"
-#include "llvm/Support/ManagedStatic.h"
-#include "llvm/Support/PluginLoader.h"
-#include "llvm/Support/PrettyStackTrace.h"
-#include "llvm/Support/ToolOutputFile.h"
-#include "llvm/Support/Host.h"
-#include "llvm/Support/Signals.h"
-#include "llvm/Support/TargetRegistry.h"
-#include "llvm/Support/TargetSelect.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetMachine.h"
-#include <memory>
-#include <iostream>
-
-using namespace llvm;
-
-extern llvm::FunctionPass *createGenPass(formatted_raw_ostream &o);
-extern "C" int llvmToGen(const char *fileName)
-{
-  // Get the global LLVM context
-  llvm::LLVMContext& c = llvm::getGlobalContext();
-
-  // Get the module from its file
-  SMDiagnostic Err;
-  std::auto_ptr<Module> M;
-  M.reset(ParseIRFile(fileName, Err, c));
-  if (M.get() == 0) {
-    Err.Print(fileName, errs());
-    return 1;
-  }
-  Module &mod = *M.get();
-
-  llvm::PassManager passes;
-  std::string error;
-
-  llvm::tool_output_file *FDOut = new llvm::tool_output_file("hop.ll", error, 0);
-  llvm::formatted_raw_ostream outstream(FDOut->os());
-
-//  passes.add(llvm::createPrintModulePass(&outstream));
-  passes.add(createGenPass(outstream));
-  passes.run(mod);
-
-  FDOut->keep();
-  return 0;
-}
-
diff --git a/backend/src/llvm/llvm_gen_backend.cpp b/backend/src/llvm/llvm_gen_backend.cpp
new file mode 100644 (file)
index 0000000..ab2d858
--- /dev/null
@@ -0,0 +1,3125 @@
+/* 
+ * Copyright © 2012 Intel Corporation
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library. If not, see <http://www.gnu.org/licenses/>.
+ *
+ * Author: Benjamin Segovia <benjamin.segovia@intel.com>
+ */
+
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/Instructions.h"
+#include "llvm/Pass.h"
+#include "llvm/PassManager.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Analysis/ConstantsScanner.h"
+#include "llvm/Analysis/FindUsedTypes.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/Target/Mangler.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCObjectFileInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/InstVisitor.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/ToolOutputFile.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Config/config.h"
+
+#include "ir/context.hpp"
+#include "ir/unit.hpp"
+#include "sys/hash_map.hpp"
+#include <algorithm>
+
+using namespace llvm;
+
+namespace gbe
+{
+  class CBEMCAsmInfo : public MCAsmInfo {
+  public:
+    CBEMCAsmInfo() {
+      GlobalPrefix = "";
+      PrivateGlobalPrefix = "";
+    }
+  };
+
+  /// GenWriter - This class is the main chunk of code that converts an LLVM
+  /// module to a C translation unit.
+  class GenWriter : public FunctionPass, public InstVisitor<GenWriter>
+  {
+    ir::Unit &unit;
+    ir::Context ctx;
+    std::string FDOutErr;
+    tool_output_file *FDOut;
+    formatted_raw_ostream Out;
+    IntrinsicLowering *IL;
+    Mangler *Mang;
+    LoopInfo *LI;
+    const Module *TheModule;
+    const MCAsmInfo* TAsm;
+    const MCRegisterInfo *MRI;
+    const MCObjectFileInfo *MOFI;
+    MCContext *TCtx;
+    const TargetData* TD;
+
+    /*! Map value name to ir::Register*/
+    hash_map<std::string, ir::Register> registerMap;
+
+    std::map<const ConstantFP *, unsigned> FPConstantMap;
+    std::set<Function*> intrinsicPrototypesAlreadyGenerated;
+    std::set<const Argument*> ByValParams;
+    unsigned FPCounter;
+    unsigned OpaqueCounter;
+    DenseMap<const Value*, unsigned> AnonValueNumbers;
+    unsigned NextAnonValueNumber;
+
+    /// UnnamedStructIDs - This contains a unique ID for each struct that is
+    /// either anonymous or has no name.
+    DenseMap<StructType*, unsigned> UnnamedStructIDs;
+
+  public:
+    static char ID;
+    explicit GenWriter(ir::Unit &unit)
+      : FunctionPass(ID),
+        unit(unit),
+        ctx(unit),
+        FDOut(new llvm::tool_output_file("-", FDOutErr, 0)),
+        Out(FDOut->os()),
+        IL(0), Mang(0), LI(0),
+        TheModule(0), TAsm(0), MRI(0), MOFI(0), TCtx(0), TD(0),
+        OpaqueCounter(0), NextAnonValueNumber(0)
+    {
+      initializeLoopInfoPass(*PassRegistry::getPassRegistry());
+      FPCounter = 0;
+    }
+
+    virtual const char *getPassName() const { return "Gen Back-End"; }
+
+    void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.addRequired<LoopInfo>();
+      AU.setPreservesAll();
+    }
+
+    virtual bool doInitialization(Module &M);
+
+    bool runOnFunction(Function &F) {
+     // Do not codegen any 'available_externally' functions at all, they have
+     // definitions outside the translation unit.
+     if (F.hasAvailableExternallyLinkage())
+       return false;
+
+      LI = &getAnalysis<LoopInfo>();
+
+      // Get rid of intrinsics we can't handle.
+      lowerIntrinsics(F);
+
+      // Output all floating point constants that cannot be printed accurately.
+      printFloatingPointConstants(F);
+
+      emitFunction(F);
+      return false;
+    }
+
+    virtual bool doFinalization(Module &M) {
+      // Free memory...
+      delete IL;
+      delete TD;
+      delete Mang;
+      delete TCtx;
+      delete TAsm;
+      delete MRI;
+      delete MOFI;
+      FPConstantMap.clear();
+      ByValParams.clear();
+      intrinsicPrototypesAlreadyGenerated.clear();
+      UnnamedStructIDs.clear();
+      FDOut->keep();
+      return false;
+    }
+
+    raw_ostream &printType(raw_ostream &Out, Type *Ty,
+                           bool isSigned = false,
+                           const std::string &VariableName = "",
+                           bool IgnoreName = false,
+                           const AttrListPtr &PAL = AttrListPtr());
+    raw_ostream &printSimpleType(raw_ostream &Out, Type *Ty,
+                                 bool isSigned,
+                                 const std::string &NameSoFar = "");
+
+    void printStructReturnPointerFunctionType(raw_ostream &Out,
+                                              const AttrListPtr &PAL,
+                                              PointerType *Ty);
+
+    std::string getStructName(StructType *ST);
+
+    /// writeOperandDeref - Print the result of dereferencing the specified
+    /// operand with '*'.  This is equivalent to printing '*' then using
+    /// writeOperand, but avoids excess syntax in some cases.
+    void writeOperandDeref(Value *Operand) {
+      if (isAddressExposed(Operand)) {
+        // Already something with an address exposed.
+        writeOperandInternal(Operand);
+      } else {
+        Out << "*(";
+        writeOperand(Operand);
+        Out << ")";
+      }
+    }
+
+    void writeOperand(Value *Operand, bool Static = false);
+    void writeInstComputationInline(Instruction &I);
+    void writeOperandInternal(Value *Operand, bool Static = false);
+    void writeOperandWithCast(Value* Operand, unsigned Opcode);
+    void writeOperandWithCast(Value* Operand, const ICmpInst &I);
+    bool writeInstructionCast(const Instruction &I);
+
+    void writeMemoryAccess(Value *Operand, Type *OperandType,
+                           bool IsVolatile, unsigned Alignment);
+
+  private :
+    std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
+
+    void lowerIntrinsics(Function &F);
+    /// Prints the definition of the intrinsic function F. Supports the 
+    /// intrinsics which need to be explicitly defined in the CBackend.
+    void printIntrinsicDefinition(const Function &F, raw_ostream &Out);
+
+    void printModuleTypes();
+    void printContainedStructs(Type *Ty, SmallPtrSet<Type *, 16> &);
+    void printFloatingPointConstants(Function &F);
+    void printFloatingPointConstants(const Constant *C);
+    void emitFunctionSignature(const Function *F, bool Prototype);
+
+    /*! Handle input and output function parameters */
+    void emitFunctionPrototype(const Function *F);
+
+    /*! Get the register family from the given type */
+    INLINE ir::RegisterData::Family getArgumentFamily(const Type*) const;
+
+    void emitFunction(Function &);
+    void printBasicBlock(BasicBlock *BB);
+    void printLoop(Loop *L);
+
+    void printCast(unsigned opcode, Type *SrcTy, Type *DstTy);
+    void printConstant(Constant *CPV, bool Static);
+    void printConstantWithCast(Constant *CPV, unsigned Opcode);
+    bool printConstExprCast(const ConstantExpr *CE, bool Static);
+    void printConstantArray(ConstantArray *CPA, bool Static);
+    void printConstantVector(ConstantVector *CV, bool Static);
+
+    /// isAddressExposed - Return true if the specified value's name needs to
+    /// have its address taken in order to get a C value of the correct type.
+    /// This happens for global variables, byval parameters, and direct allocas.
+    bool isAddressExposed(const Value *V) const {
+      if (const Argument *A = dyn_cast<Argument>(V))
+        return ByValParams.count(A);
+      return isa<GlobalVariable>(V) || isDirectAlloca(V);
+    }
+
+    // isInlinableInst - Attempt to inline instructions into their uses to build
+    // trees as much as possible.  To do this, we have to consistently decide
+    // what is acceptable to inline, so that variable declarations don't get
+    // printed and an extra copy of the expr is not emitted.
+    //
+    static bool isInlinableInst(const Instruction &I) {
+      // Always inline cmp instructions, even if they are shared by multiple
+      // expressions.  GCC generates horrible code if we don't.
+      if (isa<CmpInst>(I))
+        return true;
+
+      // Must be an expression, must be used exactly once.  If it is dead, we
+      // emit it inline where it would go.
+      if (I.getType() == Type::getVoidTy(I.getContext()) || !I.hasOneUse() ||
+          isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
+          isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) ||
+          isa<InsertValueInst>(I))
+        // Don't inline a load across a store or other bad things!
+        return false;
+
+      // Must not be used in inline asm, extractelement, or shufflevector.
+      if (I.hasOneUse()) {
+        const Instruction &User = cast<Instruction>(*I.use_back());
+        if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
+            isa<ShuffleVectorInst>(User))
+          return false;
+      }
+
+      // Only inline instruction it if it's use is in the same BB as the inst.
+      return I.getParent() == cast<Instruction>(I.use_back())->getParent();
+    }
+
+    // isDirectAlloca - Define fixed sized allocas in the entry block as direct
+    // variables which are accessed with the & operator.  This causes GCC to
+    // generate significantly better code than to emit alloca calls directly.
+    //
+    static const AllocaInst *isDirectAlloca(const Value *V) {
+      const AllocaInst *AI = dyn_cast<AllocaInst>(V);
+      if (!AI) return 0;
+      if (AI->isArrayAllocation())
+        return 0;   // FIXME: we can also inline fixed size array allocas!
+      if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
+        return 0;
+      return AI;
+    }
+
+    // isInlineAsm - Check if the instruction is a call to an inline asm chunk.
+    static bool isInlineAsm(const Instruction& I) {
+      if (const CallInst *CI = dyn_cast<CallInst>(&I))
+        return isa<InlineAsm>(CI->getCalledValue());
+      return false;
+    }
+
+    // Instruction visitation functions
+    friend class InstVisitor<GenWriter>;
+
+    void visitReturnInst(ReturnInst &I);
+    void visitBranchInst(BranchInst &I);
+    void visitSwitchInst(SwitchInst &I);
+    void visitIndirectBrInst(IndirectBrInst &I);
+    void visitInvokeInst(InvokeInst &I) {
+      llvm_unreachable("Lowerinvoke pass didn't work!");
+    }
+    void visitUnwindInst(UnwindInst &I) {
+      llvm_unreachable("Lowerinvoke pass didn't work!");
+    }
+    void visitResumeInst(ResumeInst &I) {
+      llvm_unreachable("DwarfEHPrepare pass didn't work!");
+    }
+    void visitUnreachableInst(UnreachableInst &I);
+
+    void visitPHINode(PHINode &I);
+    void visitBinaryOperator(Instruction &I);
+    void visitICmpInst(ICmpInst &I);
+    void visitFCmpInst(FCmpInst &I);
+
+    void visitCastInst (CastInst &I);
+    void visitSelectInst(SelectInst &I);
+    void visitCallInst (CallInst &I);
+    void visitInlineAsm(CallInst &I);
+    bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
+
+    void visitAllocaInst(AllocaInst &I);
+    void visitLoadInst  (LoadInst   &I);
+    void visitStoreInst (StoreInst  &I);
+    void visitGetElementPtrInst(GetElementPtrInst &I);
+    void visitVAArgInst (VAArgInst &I);
+
+    void visitInsertElementInst(InsertElementInst &I);
+    void visitExtractElementInst(ExtractElementInst &I);
+    void visitShuffleVectorInst(ShuffleVectorInst &SVI);
+
+    void visitInsertValueInst(InsertValueInst &I);
+    void visitExtractValueInst(ExtractValueInst &I);
+
+    void visitInstruction(Instruction &I) {
+#ifndef NDEBUG
+      errs() << "C Writer does not know about " << I;
+#endif
+      llvm_unreachable(0);
+    }
+
+    void outputLValue(Instruction *I) {
+      Out << "  " << GetValueName(I) << " = ";
+    }
+
+    bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
+    void printPHICopiesForSuccessor(BasicBlock *CurBlock,
+                                    BasicBlock *Successor, unsigned Indent);
+    void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
+                            unsigned Indent);
+    void printGEPExpression(Value *Ptr, gep_type_iterator I,
+                            gep_type_iterator E, bool Static);
+
+    std::string GetValueName(const Value *Operand);
+  };
+
+char GenWriter::ID = 0;
+
+static std::string CBEMangle(const std::string &S) {
+  std::string Result;
+
+  for (unsigned i = 0, e = S.size(); i != e; ++i)
+    if (isalnum(S[i]) || S[i] == '_') {
+      Result += S[i];
+    } else {
+      Result += '_';
+      Result += 'A'+(S[i]&15);
+      Result += 'A'+((S[i]>>4)&15);
+      Result += '_';
+    }
+  return Result;
+}
+
+  std::string GenWriter::getStructName(StructType *ST) {
+    if (!ST->isLiteral() && !ST->getName().empty())
+      return CBEMangle("l_"+ST->getName().str());
+    return "l_unnamed_" + utostr(UnnamedStructIDs[ST]);
+  }
+
+
+  /// printStructReturnPointerFunctionType - This is like printType for a struct
+  /// return type, except, instead of printing the type as void (*)(Struct*, ...)
+  /// print it as "Struct (*)(...)", for struct return functions.
+  void GenWriter::printStructReturnPointerFunctionType(raw_ostream &Out,
+                                                     const AttrListPtr &PAL,
+                                                     PointerType *TheTy) {
+    FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
+    std::string tstr;
+    raw_string_ostream FunctionInnards(tstr);
+    FunctionInnards << " (*) (";
+    bool PrintedType = false;
+
+    FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
+    Type *RetTy = cast<PointerType>(*I)->getElementType();
+    unsigned Idx = 1;
+    for (++I, ++Idx; I != E; ++I, ++Idx) {
+      if (PrintedType)
+        FunctionInnards << ", ";
+      Type *ArgTy = *I;
+      if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
+        assert(ArgTy->isPointerTy());
+        ArgTy = cast<PointerType>(ArgTy)->getElementType();
+      }
+      printType(FunctionInnards, ArgTy,
+          /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
+      PrintedType = true;
+    }
+    if (FTy->isVarArg()) {
+      if (!PrintedType)
+        FunctionInnards << " int"; //dummy argument for empty vararg functs
+      FunctionInnards << ", ...";
+    } else if (!PrintedType) {
+      FunctionInnards << "void";
+    }
+    FunctionInnards << ')';
+    printType(Out, RetTy,
+        /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str());
+  }
+
+  raw_ostream &
+  GenWriter::printSimpleType(raw_ostream &Out, Type *Ty, bool isSigned,
+                             const std::string &NameSoFar) {
+    assert((Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) &&
+           "Invalid type for printSimpleType");
+    switch (Ty->getTypeID()) {
+    case Type::VoidTyID:   return Out << "void " << NameSoFar;
+    case Type::IntegerTyID: {
+      unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
+      if (NumBits == 1)
+        return Out << "bool " << NameSoFar;
+      else if (NumBits <= 8)
+        return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
+      else if (NumBits <= 16)
+        return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
+      else if (NumBits <= 32)
+        return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
+      else if (NumBits <= 64)
+        return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
+      else {
+        assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
+        return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
+      }
+    }
+    case Type::FloatTyID:  return Out << "float "   << NameSoFar;
+    case Type::DoubleTyID: return Out << "double "  << NameSoFar;
+    // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
+    // present matches host 'long double'.
+    case Type::X86_FP80TyID:
+    case Type::PPC_FP128TyID:
+    case Type::FP128TyID:  return Out << "long double " << NameSoFar;
+
+    case Type::X86_MMXTyID:
+      return printSimpleType(Out, Type::getInt32Ty(Ty->getContext()), isSigned,
+                       " __attribute__((vector_size(64))) " + NameSoFar);
+
+    case Type::VectorTyID: {
+      VectorType *VTy = cast<VectorType>(Ty);
+      return printSimpleType(Out, VTy->getElementType(), isSigned,
+                       " __attribute__((vector_size(" +
+                       utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
+    }
+
+    default:
+#ifndef NDEBUG
+      errs() << "Unknown primitive type: " << *Ty << "\n";
+#endif
+      llvm_unreachable(0);
+    }
+  }
+
+  // Pass the Type* and the variable name and this prints out the variable
+  // declaration.
+  //
+  raw_ostream &GenWriter::printType(raw_ostream &Out, Type *Ty,
+                                  bool isSigned, const std::string &NameSoFar,
+                                  bool IgnoreName, const AttrListPtr &PAL) {
+    if (Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) {
+      printSimpleType(Out, Ty, isSigned, NameSoFar);
+      return Out;
+    }
+
+    switch (Ty->getTypeID()) {
+    case Type::FunctionTyID: {
+      FunctionType *FTy = cast<FunctionType>(Ty);
+      std::string tstr;
+      raw_string_ostream FunctionInnards(tstr);
+      FunctionInnards << " (" << NameSoFar << ") (";
+      unsigned Idx = 1;
+      for (FunctionType::param_iterator I = FTy->param_begin(),
+             E = FTy->param_end(); I != E; ++I) {
+        Type *ArgTy = *I;
+        if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
+          assert(ArgTy->isPointerTy());
+          ArgTy = cast<PointerType>(ArgTy)->getElementType();
+        }
+        if (I != FTy->param_begin())
+          FunctionInnards << ", ";
+        printType(FunctionInnards, ArgTy,
+          /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
+        ++Idx;
+      }
+      if (FTy->isVarArg()) {
+        if (!FTy->getNumParams())
+          FunctionInnards << " int"; //dummy argument for empty vaarg functs
+        FunctionInnards << ", ...";
+      } else if (!FTy->getNumParams()) {
+        FunctionInnards << "void";
+      }
+      FunctionInnards << ')';
+      printType(Out, FTy->getReturnType(),
+        /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str());
+      return Out;
+    }
+    case Type::StructTyID: {
+      StructType *STy = cast<StructType>(Ty);
+      
+      // Check to see if the type is named.
+      if (!IgnoreName)
+        return Out << getStructName(STy) << ' ' << NameSoFar;
+      
+      Out << NameSoFar + " {\n";
+      unsigned Idx = 0;
+      for (StructType::element_iterator I = STy->element_begin(),
+             E = STy->element_end(); I != E; ++I) {
+        Out << "  ";
+        printType(Out, *I, false, "field" + utostr(Idx++));
+        Out << ";\n";
+      }
+      Out << '}';
+      if (STy->isPacked())
+        Out << " __attribute__ ((packed))";
+      return Out;
+    }
+
+    case Type::PointerTyID: {
+      PointerType *PTy = cast<PointerType>(Ty);
+      std::string ptrName = "*" + NameSoFar;
+
+      if (PTy->getElementType()->isArrayTy() ||
+          PTy->getElementType()->isVectorTy())
+        ptrName = "(" + ptrName + ")";
+
+      if (!PAL.isEmpty())
+        // Must be a function ptr cast!
+        return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
+      return printType(Out, PTy->getElementType(), false, ptrName);
+    }
+
+    case Type::ArrayTyID: {
+      ArrayType *ATy = cast<ArrayType>(Ty);
+      unsigned NumElements = ATy->getNumElements();
+      if (NumElements == 0) NumElements = 1;
+      // Arrays are wrapped in structs to allow them to have normal
+      // value semantics (avoiding the array "decay").
+      Out << NameSoFar << " { ";
+      printType(Out, ATy->getElementType(), false,
+                "array[" + utostr(NumElements) + "]");
+      return Out << "; }";
+    }
+
+    default:
+      llvm_unreachable("Unhandled case in getTypeProps!");
+    }
+
+    return Out;
+  }
+
+  void GenWriter::printConstantArray(ConstantArray *CPA, bool Static) {
+
+    // As a special case, print the array as a string if it is an array of
+    // ubytes or an array of sbytes with positive values.
+    //
+    Type *ETy = CPA->getType()->getElementType();
+    bool isString = (ETy == Type::getInt8Ty(CPA->getContext()) ||
+                     ETy == Type::getInt8Ty(CPA->getContext()));
+
+    // Make sure the last character is a null char, as automatically added by C
+    if (isString && (CPA->getNumOperands() == 0 ||
+                     !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
+      isString = false;
+
+    if (isString) {
+      Out << '\"';
+      // Keep track of whether the last number was a hexadecimal escape.
+      bool LastWasHex = false;
+
+      // Do not include the last character, which we know is null
+      for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
+        unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
+
+        // Print it out literally if it is a printable character.  The only thing
+        // to be careful about is when the last letter output was a hex escape
+        // code, in which case we have to be careful not to print out hex digits
+        // explicitly (the C compiler thinks it is a continuation of the previous
+        // character, sheesh...)
+        //
+        if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
+          LastWasHex = false;
+          if (C == '"' || C == '\\')
+            Out << "\\" << (char)C;
+          else
+            Out << (char)C;
+        } else {
+          LastWasHex = false;
+          switch (C) {
+          case '\n': Out << "\\n"; break;
+          case '\t': Out << "\\t"; break;
+          case '\r': Out << "\\r"; break;
+          case '\v': Out << "\\v"; break;
+          case '\a': Out << "\\a"; break;
+          case '\"': Out << "\\\""; break;
+          case '\'': Out << "\\\'"; break;
+          default:
+            Out << "\\x";
+            Out << (char)(( C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
+            Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
+            LastWasHex = true;
+            break;
+          }
+        }
+      }
+      Out << '\"';
+    } else {
+      Out << '{';
+      if (CPA->getNumOperands()) {
+        Out << ' ';
+        printConstant(cast<Constant>(CPA->getOperand(0)), Static);
+        for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
+          Out << ", ";
+          printConstant(cast<Constant>(CPA->getOperand(i)), Static);
+        }
+      }
+      Out << " }";
+    }
+  }
+
+  void GenWriter::printConstantVector(ConstantVector *CP, bool Static) {
+    Out << '{';
+    if (CP->getNumOperands()) {
+      Out << ' ';
+      printConstant(cast<Constant>(CP->getOperand(0)), Static);
+      for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
+        Out << ", ";
+        printConstant(cast<Constant>(CP->getOperand(i)), Static);
+      }
+    }
+    Out << " }";
+  }
+
+  // isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
+  // textually as a double (rather than as a reference to a stack-allocated
+  // variable). We decide this by converting CFP to a string and back into a
+  // double, and then checking whether the conversion results in a bit-equal
+  // double to the original value of CFP. This depends on us and the target C
+  // compiler agreeing on the conversion process (which is pretty likely since we
+  // only deal in IEEE FP).
+  //
+  static bool isFPCSafeToPrint(const ConstantFP *CFP) {
+    bool ignored;
+    // Do long doubles in hex for now.
+    if (CFP->getType() != Type::getFloatTy(CFP->getContext()) &&
+        CFP->getType() != Type::getDoubleTy(CFP->getContext()))
+      return false;
+    APFloat APF = APFloat(CFP->getValueAPF());  // copy
+    if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
+      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
+#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
+    char Buffer[100];
+    sprintf(Buffer, "%a", APF.convertToDouble());
+    if (!strncmp(Buffer, "0x", 2) ||
+        !strncmp(Buffer, "-0x", 3) ||
+        !strncmp(Buffer, "+0x", 3))
+      return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
+    return false;
+#else
+    std::string StrVal = ftostr(APF);
+
+    while (StrVal[0] == ' ')
+      StrVal.erase(StrVal.begin());
+
+    // Check to make sure that the stringized number is not some string like "Inf"
+    // or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
+    if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
+        ((StrVal[0] == '-' || StrVal[0] == '+') &&
+         (StrVal[1] >= '0' && StrVal[1] <= '9')))
+      // Reparse stringized version!
+      return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
+    return false;
+#endif
+  }
+
+  /// Print out the casting for a cast operation. This does the double casting
+  /// necessary for conversion to the destination type, if necessary.
+  /// @brief Print a cast
+  void GenWriter::printCast(unsigned opc, Type *SrcTy, Type *DstTy) {
+    // Print the destination type cast
+    switch (opc) {
+      case Instruction::UIToFP:
+      case Instruction::SIToFP:
+      case Instruction::IntToPtr:
+      case Instruction::Trunc:
+      case Instruction::BitCast:
+      case Instruction::FPExt:
+      case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
+        Out << '(';
+        printType(Out, DstTy);
+        Out << ')';
+        break;
+      case Instruction::ZExt:
+      case Instruction::PtrToInt:
+      case Instruction::FPToUI: // For these, make sure we get an unsigned dest
+        Out << '(';
+        printSimpleType(Out, DstTy, false);
+        Out << ')';
+        break;
+      case Instruction::SExt:
+      case Instruction::FPToSI: // For these, make sure we get a signed dest
+        Out << '(';
+        printSimpleType(Out, DstTy, true);
+        Out << ')';
+        break;
+      default:
+        llvm_unreachable("Invalid cast opcode");
+    }
+
+    // Print the source type cast
+    switch (opc) {
+      case Instruction::UIToFP:
+      case Instruction::ZExt:
+        Out << '(';
+        printSimpleType(Out, SrcTy, false);
+        Out << ')';
+        break;
+      case Instruction::SIToFP:
+      case Instruction::SExt:
+        Out << '(';
+        printSimpleType(Out, SrcTy, true);
+        Out << ')';
+        break;
+      case Instruction::IntToPtr:
+      case Instruction::PtrToInt:
+        // Avoid "cast to pointer from integer of different size" warnings
+        Out << "(unsigned long)";
+        break;
+      case Instruction::Trunc:
+      case Instruction::BitCast:
+      case Instruction::FPExt:
+      case Instruction::FPTrunc:
+      case Instruction::FPToSI:
+      case Instruction::FPToUI:
+        break; // These don't need a source cast.
+      default:
+        llvm_unreachable("Invalid cast opcode");
+        break;
+    }
+  }
+
+  // printConstant - The LLVM Constant to C Constant converter.
+  void GenWriter::printConstant(Constant *CPV, bool Static) {
+    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
+      switch (CE->getOpcode()) {
+      case Instruction::Trunc:
+      case Instruction::ZExt:
+      case Instruction::SExt:
+      case Instruction::FPTrunc:
+      case Instruction::FPExt:
+      case Instruction::UIToFP:
+      case Instruction::SIToFP:
+      case Instruction::FPToUI:
+      case Instruction::FPToSI:
+      case Instruction::PtrToInt:
+      case Instruction::IntToPtr:
+      case Instruction::BitCast:
+        Out << "(";
+        printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
+        if (CE->getOpcode() == Instruction::SExt &&
+            CE->getOperand(0)->getType() == Type::getInt1Ty(CPV->getContext())) {
+          // Make sure we really sext from bool here by subtracting from 0
+          Out << "0-";
+        }
+        printConstant(CE->getOperand(0), Static);
+        if (CE->getType() == Type::getInt1Ty(CPV->getContext()) &&
+            (CE->getOpcode() == Instruction::Trunc ||
+             CE->getOpcode() == Instruction::FPToUI ||
+             CE->getOpcode() == Instruction::FPToSI ||
+             CE->getOpcode() == Instruction::PtrToInt)) {
+          // Make sure we really truncate to bool here by anding with 1
+          Out << "&1u";
+        }
+        Out << ')';
+        return;
+
+      case Instruction::GetElementPtr:
+        Out << "(";
+        printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
+                           gep_type_end(CPV), Static);
+        Out << ")";
+        return;
+      case Instruction::Select:
+        Out << '(';
+        printConstant(CE->getOperand(0), Static);
+        Out << '?';
+        printConstant(CE->getOperand(1), Static);
+        Out << ':';
+        printConstant(CE->getOperand(2), Static);
+        Out << ')';
+        return;
+      case Instruction::Add:
+      case Instruction::FAdd:
+      case Instruction::Sub:
+      case Instruction::FSub:
+      case Instruction::Mul:
+      case Instruction::FMul:
+      case Instruction::SDiv:
+      case Instruction::UDiv:
+      case Instruction::FDiv:
+      case Instruction::URem:
+      case Instruction::SRem:
+      case Instruction::FRem:
+      case Instruction::And:
+      case Instruction::Or:
+      case Instruction::Xor:
+      case Instruction::ICmp:
+      case Instruction::Shl:
+      case Instruction::LShr:
+      case Instruction::AShr:
+      {
+        Out << '(';
+        bool NeedsClosingParens = printConstExprCast(CE, Static);
+        printConstantWithCast(CE->getOperand(0), CE->getOpcode());
+        switch (CE->getOpcode()) {
+        case Instruction::Add:
+        case Instruction::FAdd: Out << " + "; break;
+        case Instruction::Sub:
+        case Instruction::FSub: Out << " - "; break;
+        case Instruction::Mul:
+        case Instruction::FMul: Out << " * "; break;
+        case Instruction::URem:
+        case Instruction::SRem:
+        case Instruction::FRem: Out << " % "; break;
+        case Instruction::UDiv:
+        case Instruction::SDiv:
+        case Instruction::FDiv: Out << " / "; break;
+        case Instruction::And: Out << " & "; break;
+        case Instruction::Or:  Out << " | "; break;
+        case Instruction::Xor: Out << " ^ "; break;
+        case Instruction::Shl: Out << " << "; break;
+        case Instruction::LShr:
+        case Instruction::AShr: Out << " >> "; break;
+        case Instruction::ICmp:
+          switch (CE->getPredicate()) {
+            case ICmpInst::ICMP_EQ: Out << " == "; break;
+            case ICmpInst::ICMP_NE: Out << " != "; break;
+            case ICmpInst::ICMP_SLT:
+            case ICmpInst::ICMP_ULT: Out << " < "; break;
+            case ICmpInst::ICMP_SLE:
+            case ICmpInst::ICMP_ULE: Out << " <= "; break;
+            case ICmpInst::ICMP_SGT:
+            case ICmpInst::ICMP_UGT: Out << " > "; break;
+            case ICmpInst::ICMP_SGE:
+            case ICmpInst::ICMP_UGE: Out << " >= "; break;
+            default: llvm_unreachable("Illegal ICmp predicate");
+          }
+          break;
+        default: llvm_unreachable("Illegal opcode here!");
+        }
+        printConstantWithCast(CE->getOperand(1), CE->getOpcode());
+        if (NeedsClosingParens)
+          Out << "))";
+        Out << ')';
+        return;
+      }
+      case Instruction::FCmp: {
+        Out << '(';
+        bool NeedsClosingParens = printConstExprCast(CE, Static);
+        if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
+          Out << "0";
+        else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
+          Out << "1";
+        else {
+          const char* op = 0;
+          switch (CE->getPredicate()) {
+          default: llvm_unreachable("Illegal FCmp predicate");
+          case FCmpInst::FCMP_ORD: op = "ord"; break;
+          case FCmpInst::FCMP_UNO: op = "uno"; break;
+          case FCmpInst::FCMP_UEQ: op = "ueq"; break;
+          case FCmpInst::FCMP_UNE: op = "une"; break;
+          case FCmpInst::FCMP_ULT: op = "ult"; break;
+          case FCmpInst::FCMP_ULE: op = "ule"; break;
+          case FCmpInst::FCMP_UGT: op = "ugt"; break;
+          case FCmpInst::FCMP_UGE: op = "uge"; break;
+          case FCmpInst::FCMP_OEQ: op = "oeq"; break;
+          case FCmpInst::FCMP_ONE: op = "one"; break;
+          case FCmpInst::FCMP_OLT: op = "olt"; break;
+          case FCmpInst::FCMP_OLE: op = "ole"; break;
+          case FCmpInst::FCMP_OGT: op = "ogt"; break;
+          case FCmpInst::FCMP_OGE: op = "oge"; break;
+          }
+          Out << "llvm_fcmp_" << op << "(";
+          printConstantWithCast(CE->getOperand(0), CE->getOpcode());
+          Out << ", ";
+          printConstantWithCast(CE->getOperand(1), CE->getOpcode());
+          Out << ")";
+        }
+        if (NeedsClosingParens)
+          Out << "))";
+        Out << ')';
+        return;
+      }
+      default:
+#ifndef NDEBUG
+        errs() << "GenWriter Error: Unhandled constant expression: "
+             << *CE << "\n";
+#endif
+        llvm_unreachable(0);
+      }
+    } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
+      Out << "((";
+      printType(Out, CPV->getType()); // sign doesn't matter
+      Out << ")/*UNDEF*/";
+      if (!CPV->getType()->isVectorTy()) {
+        Out << "0)";
+      } else {
+        Out << "{})";
+      }
+      return;
+    }
+
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
+      Type* Ty = CI->getType();
+      if (Ty == Type::getInt1Ty(CPV->getContext()))
+        Out << (CI->getZExtValue() ? '1' : '0');
+      else if (Ty == Type::getInt32Ty(CPV->getContext()))
+        Out << CI->getZExtValue() << 'u';
+      else if (Ty->getPrimitiveSizeInBits() > 32)
+        Out << CI->getZExtValue() << "ull";
+      else {
+        Out << "((";
+        printSimpleType(Out, Ty, false) << ')';
+        if (CI->isMinValue(true))
+          Out << CI->getZExtValue() << 'u';
+        else
+          Out << CI->getSExtValue();
+        Out << ')';
+      }
+      return;
+    }
+
+    switch (CPV->getType()->getTypeID()) {
+    case Type::FloatTyID:
+    case Type::DoubleTyID:
+    case Type::X86_FP80TyID:
+    case Type::PPC_FP128TyID:
+    case Type::FP128TyID: {
+      ConstantFP *FPC = cast<ConstantFP>(CPV);
+      std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
+      if (I != FPConstantMap.end()) {
+        // Because of FP precision problems we must load from a stack allocated
+        // value that holds the value in hex.
+        Out << "(*(" << (FPC->getType() == Type::getFloatTy(CPV->getContext()) ?
+                         "float" :
+                         FPC->getType() == Type::getDoubleTy(CPV->getContext()) ?
+                         "double" :
+                         "long double")
+            << "*)&FPConstant" << I->second << ')';
+      } else {
+        double V;
+        if (FPC->getType() == Type::getFloatTy(CPV->getContext()))
+          V = FPC->getValueAPF().convertToFloat();
+        else if (FPC->getType() == Type::getDoubleTy(CPV->getContext()))
+          V = FPC->getValueAPF().convertToDouble();
+        else {
+          // Long double.  Convert the number to double, discarding precision.
+          // This is not awesome, but it at least makes the CBE output somewhat
+          // useful.
+          APFloat Tmp = FPC->getValueAPF();
+          bool LosesInfo;
+          Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo);
+          V = Tmp.convertToDouble();
+        }
+
+        if (IsNAN(V)) {
+          // The value is NaN
+
+          // FIXME the actual NaN bits should be emitted.
+          // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
+          // it's 0x7ff4.
+          const unsigned long QuietNaN = 0x7ff8UL;
+          //const unsigned long SignalNaN = 0x7ff4UL;
+
+          // We need to grab the first part of the FP #
+          char Buffer[100];
+
+          uint64_t ll = DoubleToBits(V);
+          sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
+
+          std::string Num(&Buffer[0], &Buffer[6]);
+          unsigned long Val = strtoul(Num.c_str(), 0, 16);
+
+          if (FPC->getType() == Type::getFloatTy(FPC->getContext()))
+            Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
+                << Buffer << "\") /*nan*/ ";
+          else
+            Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
+                << Buffer << "\") /*nan*/ ";
+        } else if (IsInf(V)) {
+          // The value is Inf
+          if (V < 0) Out << '-';
+          Out << "LLVM_INF" <<
+              (FPC->getType() == Type::getFloatTy(FPC->getContext()) ? "F" : "")
+              << " /*inf*/ ";
+        } else {
+          std::string Num;
+#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
+          // Print out the constant as a floating point number.
+          char Buffer[100];
+          sprintf(Buffer, "%a", V);
+          Num = Buffer;
+#else
+          Num = ftostr(FPC->getValueAPF());
+#endif
+         Out << Num;
+        }
+      }
+      break;
+    }
+
+    case Type::ArrayTyID:
+      // Use C99 compound expression literal initializer syntax.
+      if (!Static) {
+        Out << "(";
+        printType(Out, CPV->getType());
+        Out << ")";
+      }
+      Out << "{ "; // Arrays are wrapped in struct types.
+      if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
+        printConstantArray(CA, Static);
+      } else {
+        assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
+        ArrayType *AT = cast<ArrayType>(CPV->getType());
+        Out << '{';
+        if (AT->getNumElements()) {
+          Out << ' ';
+          Constant *CZ = Constant::getNullValue(AT->getElementType());
+          printConstant(CZ, Static);
+          for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
+            Out << ", ";
+            printConstant(CZ, Static);
+          }
+        }
+        Out << " }";
+      }
+      Out << " }"; // Arrays are wrapped in struct types.
+      break;
+
+    case Type::VectorTyID:
+      // Use C99 compound expression literal initializer syntax.
+      if (!Static) {
+        Out << "(";
+        printType(Out, CPV->getType());
+        Out << ")";
+      }
+      if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
+        printConstantVector(CV, Static);
+      } else {
+        assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
+        VectorType *VT = cast<VectorType>(CPV->getType());
+        Out << "{ ";
+        Constant *CZ = Constant::getNullValue(VT->getElementType());
+        printConstant(CZ, Static);
+        for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
+          Out << ", ";
+          printConstant(CZ, Static);
+        }
+        Out << " }";
+      }
+      break;
+
+    case Type::StructTyID:
+      // Use C99 compound expression literal initializer syntax.
+      if (!Static) {
+        Out << "(";
+        printType(Out, CPV->getType());
+        Out << ")";
+      }
+      if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
+        StructType *ST = cast<StructType>(CPV->getType());
+        Out << '{';
+        if (ST->getNumElements()) {
+          Out << ' ';
+          printConstant(Constant::getNullValue(ST->getElementType(0)), Static);
+          for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
+            Out << ", ";
+            printConstant(Constant::getNullValue(ST->getElementType(i)), Static);
+          }
+        }
+        Out << " }";
+      } else {
+        Out << '{';
+        if (CPV->getNumOperands()) {
+          Out << ' ';
+          printConstant(cast<Constant>(CPV->getOperand(0)), Static);
+          for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
+            Out << ", ";
+            printConstant(cast<Constant>(CPV->getOperand(i)), Static);
+          }
+        }
+        Out << " }";
+      }
+      break;
+
+    case Type::PointerTyID:
+      if (isa<ConstantPointerNull>(CPV)) {
+        Out << "((";
+        printType(Out, CPV->getType()); // sign doesn't matter
+        Out << ")/*NULL*/0)";
+        break;
+      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
+        writeOperand(GV, Static);
+        break;
+      }
+      // FALL THROUGH
+    default:
+#ifndef NDEBUG
+      errs() << "Unknown constant type: " << *CPV << "\n";
+#endif
+      llvm_unreachable(0);
+    }
+  }
+
+  // Some constant expressions need to be casted back to the original types
+  // because their operands were casted to the expected type. This function takes
+  // care of detecting that case and printing the cast for the ConstantExpr.
+  bool GenWriter::printConstExprCast(const ConstantExpr* CE, bool Static) {
+    bool NeedsExplicitCast = false;
+    Type *Ty = CE->getOperand(0)->getType();
+    bool TypeIsSigned = false;
+    switch (CE->getOpcode()) {
+    case Instruction::Add:
+    case Instruction::Sub:
+    case Instruction::Mul:
+      // We need to cast integer arithmetic so that it is always performed
+      // as unsigned, to avoid undefined behavior on overflow.
+    case Instruction::LShr:
+    case Instruction::URem:
+    case Instruction::UDiv: NeedsExplicitCast = true; break;
+    case Instruction::AShr:
+    case Instruction::SRem:
+    case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
+    case Instruction::SExt:
+      Ty = CE->getType();
+      NeedsExplicitCast = true;
+      TypeIsSigned = true;
+      break;
+    case Instruction::ZExt:
+    case Instruction::Trunc:
+    case Instruction::FPTrunc:
+    case Instruction::FPExt:
+    case Instruction::UIToFP:
+    case Instruction::SIToFP:
+    case Instruction::FPToUI:
+    case Instruction::FPToSI:
+    case Instruction::PtrToInt:
+    case Instruction::IntToPtr:
+    case Instruction::BitCast:
+      Ty = CE->getType();
+      NeedsExplicitCast = true;
+      break;
+    default: break;
+    }
+    if (NeedsExplicitCast) {
+      Out << "((";
+      if (Ty->isIntegerTy() && Ty != Type::getInt1Ty(Ty->getContext()))
+        printSimpleType(Out, Ty, TypeIsSigned);
+      else
+        printType(Out, Ty); // not integer, sign doesn't matter
+      Out << ")(";
+    }
+    return NeedsExplicitCast;
+  }
+
+  //  Print a constant assuming that it is the operand for a given Opcode. The
+  //  opcodes that care about sign need to cast their operands to the expected
+  //  type before the operation proceeds. This function does the casting.
+  void GenWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
+
+    // Extract the operand's type, we'll need it.
+    Type* OpTy = CPV->getType();
+
+    // Indicate whether to do the cast or not.
+    bool shouldCast = false;
+    bool typeIsSigned = false;
+
+    // Based on the Opcode for which this Constant is being written, determine
+    // the new type to which the operand should be casted by setting the value
+    // of OpTy. If we change OpTy, also set shouldCast to true so it gets
+    // casted below.
+    switch (Opcode) {
+      default:
+        // for most instructions, it doesn't matter
+        break;
+      case Instruction::Add:
+      case Instruction::Sub:
+      case Instruction::Mul:
+        // We need to cast integer arithmetic so that it is always performed
+        // as unsigned, to avoid undefined behavior on overflow.
+      case Instruction::LShr:
+      case Instruction::UDiv:
+      case Instruction::URem:
+        shouldCast = true;
+        break;
+      case Instruction::AShr:
+      case Instruction::SDiv:
+      case Instruction::SRem:
+        shouldCast = true;
+        typeIsSigned = true;
+        break;
+    }
+
+    // Write out the casted constant if we should, otherwise just write the
+    // operand.
+    if (shouldCast) {
+      Out << "((";
+      printSimpleType(Out, OpTy, typeIsSigned);
+      Out << ")";
+      printConstant(CPV, false);
+      Out << ")";
+    } else
+      printConstant(CPV, false);
+  }
+
+  std::string GenWriter::GetValueName(const Value *Operand) {
+
+    // Resolve potential alias.
+    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Operand)) {
+      if (const Value *V = GA->resolveAliasedGlobal(false))
+        Operand = V;
+    }
+
+    // Mangle globals with the standard mangler interface for LLC compatibility.
+    if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand)) {
+      SmallString<128> Str;
+      Mang->getNameWithPrefix(Str, GV, false);
+      return CBEMangle(Str.str().str());
+    }
+
+    std::string Name = Operand->getName();
+
+    if (Name.empty()) { // Assign unique names to local temporaries.
+      unsigned &No = AnonValueNumbers[Operand];
+      if (No == 0)
+        No = ++NextAnonValueNumber;
+      Name = "tmp__" + utostr(No);
+    }
+
+    std::string VarName;
+    VarName.reserve(Name.capacity());
+
+    for (std::string::iterator I = Name.begin(), E = Name.end();
+         I != E; ++I) {
+      char ch = *I;
+
+      if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
+            (ch >= '0' && ch <= '9') || ch == '_')) {
+        char buffer[5];
+        sprintf(buffer, "_%x_", ch);
+        VarName += buffer;
+      } else
+        VarName += ch;
+    }
+
+    return "llvm_gen_" + VarName;
+  }
+
+  /// writeInstComputationInline - Emit the computation for the specified
+  /// instruction inline, with no destination provided.
+  void GenWriter::writeInstComputationInline(Instruction &I) {
+    // We can't currently support integer types other than 1, 8, 16, 32, 64.
+    // Validate this.
+    Type *Ty = I.getType();
+    if (Ty->isIntegerTy() && (Ty!=Type::getInt1Ty(I.getContext()) &&
+          Ty!=Type::getInt8Ty(I.getContext()) &&
+          Ty!=Type::getInt16Ty(I.getContext()) &&
+          Ty!=Type::getInt32Ty(I.getContext()) &&
+          Ty!=Type::getInt64Ty(I.getContext()))) {
+        report_fatal_error("The C backend does not currently support integer "
+                          "types of widths other than 1, 8, 16, 32, 64.\n"
+                          "This is being tracked as PR 4158.");
+    }
+
+    // If this is a non-trivial bool computation, make sure to truncate down to
+    // a 1 bit value.  This is important because we want "add i1 x, y" to return
+    // "0" when x and y are true, not "2" for example.
+    bool NeedBoolTrunc = false;
+    if (I.getType() == Type::getInt1Ty(I.getContext()) &&
+        !isa<ICmpInst>(I) && !isa<FCmpInst>(I))
+      NeedBoolTrunc = true;
+
+    if (NeedBoolTrunc)
+      Out << "((";
+
+    visit(I);
+
+    if (NeedBoolTrunc)
+      Out << ")&1)";
+  }
+
+
+  void GenWriter::writeOperandInternal(Value *Operand, bool Static) {
+    if (Instruction *I = dyn_cast<Instruction>(Operand))
+      // Should we inline this instruction to build a tree?
+      if (isInlinableInst(*I) && !isDirectAlloca(I)) {
+        Out << '(';
+        writeInstComputationInline(*I);
+        Out << ')';
+        return;
+      }
+
+    Constant* CPV = dyn_cast<Constant>(Operand);
+
+    if (CPV && !isa<GlobalValue>(CPV))
+      printConstant(CPV, Static);
+    else
+      Out << GetValueName(Operand);
+  }
+
+  void GenWriter::writeOperand(Value *Operand, bool Static) {
+    bool isAddressImplicit = isAddressExposed(Operand);
+    if (isAddressImplicit)
+      Out << "(&";  // Global variables are referenced as their addresses by llvm
+
+    writeOperandInternal(Operand, Static);
+
+    if (isAddressImplicit)
+      Out << ')';
+  }
+
+  // Some instructions need to have their result value casted back to the
+  // original types because their operands were casted to the expected type.
+  // This function takes care of detecting that case and printing the cast
+  // for the Instruction.
+  bool GenWriter::writeInstructionCast(const Instruction &I) {
+    Type *Ty = I.getOperand(0)->getType();
+    switch (I.getOpcode()) {
+    case Instruction::Add:
+    case Instruction::Sub:
+    case Instruction::Mul:
+      // We need to cast integer arithmetic so that it is always performed
+      // as unsigned, to avoid undefined behavior on overflow.
+    case Instruction::LShr:
+    case Instruction::URem:
+    case Instruction::UDiv:
+      Out << "((";
+      printSimpleType(Out, Ty, false);
+      Out << ")(";
+      return true;
+    case Instruction::AShr:
+    case Instruction::SRem:
+    case Instruction::SDiv:
+      Out << "((";
+      printSimpleType(Out, Ty, true);
+      Out << ")(";
+      return true;
+    default: break;
+    }
+    return false;
+  }
+
+  // Write the operand with a cast to another type based on the Opcode being used.
+  // This will be used in cases where an instruction has specific type
+  // requirements (usually signedness) for its operands.
+  void GenWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
+
+    // Extract the operand's type, we'll need it.
+    Type* OpTy = Operand->getType();
+
+    // Indicate whether to do the cast or not.
+    bool shouldCast = false;
+
+    // Indicate whether the cast should be to a signed type or not.
+    bool castIsSigned = false;
+
+    // Based on the Opcode for which this Operand is being written, determine
+    // the new type to which the operand should be casted by setting the value
+    // of OpTy. If we change OpTy, also set shouldCast to true.
+    switch (Opcode) {
+      default:
+        // for most instructions, it doesn't matter
+        break;
+      case Instruction::Add:
+      case Instruction::Sub:
+      case Instruction::Mul:
+        // We need to cast integer arithmetic so that it is always performed
+        // as unsigned, to avoid undefined behavior on overflow.
+      case Instruction::LShr:
+      case Instruction::UDiv:
+      case Instruction::URem: // Cast to unsigned first
+        shouldCast = true;
+        castIsSigned = false;
+        break;
+      case Instruction::GetElementPtr:
+      case Instruction::AShr:
+      case Instruction::SDiv:
+      case Instruction::SRem: // Cast to signed first
+        shouldCast = true;
+        castIsSigned = true;
+        break;
+    }
+
+    // Write out the casted operand if we should, otherwise just write the
+    // operand.
+    if (shouldCast) {
+      Out << "((";
+      printSimpleType(Out, OpTy, castIsSigned);
+      Out << ")";
+      writeOperand(Operand);
+      Out << ")";
+    } else
+      writeOperand(Operand);
+  }
+
+  // Write the operand with a cast to another type based on the icmp predicate
+  // being used.
+  void GenWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
+    // This has to do a cast to ensure the operand has the right signedness.
+    // Also, if the operand is a pointer, we make sure to cast to an integer when
+    // doing the comparison both for signedness and so that the C compiler doesn't
+    // optimize things like "p < NULL" to false (p may contain an integer value
+    // f.e.).
+    bool shouldCast = Cmp.isRelational();
+
+    // Write out the casted operand if we should, otherwise just write the
+    // operand.
+    if (!shouldCast) {
+      writeOperand(Operand);
+      return;
+    }
+
+    // Should this be a signed comparison?  If so, convert to signed.
+    bool castIsSigned = Cmp.isSigned();
+
+    // If the operand was a pointer, convert to a large integer type.
+    Type* OpTy = Operand->getType();
+    if (OpTy->isPointerTy())
+      OpTy = TD->getIntPtrType(Operand->getContext());
+
+    Out << "((";
+    printSimpleType(Out, OpTy, castIsSigned);
+    Out << ")";
+    writeOperand(Operand);
+    Out << ")";
+  }
+
+  enum SpecialGlobalClass {
+    NotSpecial = 0,
+    GlobalCtors, GlobalDtors,
+    NotPrinted
+  };
+
+  bool GenWriter::doInitialization(Module &M) {
+    FunctionPass::doInitialization(M);
+
+    // Initialize
+    TheModule = &M;
+
+    TD = new TargetData(&M);
+    IL = new IntrinsicLowering(*TD);
+    IL->AddPrototypes(M);
+
+    TAsm = new CBEMCAsmInfo();
+    MRI  = new MCRegisterInfo();
+    TCtx = new MCContext(*TAsm, *MRI, NULL);
+    Mang = new Mangler(*TCtx, *TD);
+    return false;
+  }
+
+  /// Output all floating point constants that cannot be printed accurately...
+  void GenWriter::printFloatingPointConstants(Function &F) {
+    // Scan the module for floating point constants.  If any FP constant is used
+    // in the function, we want to redirect it here so that we do not depend on
+    // the precision of the printed form, unless the printed form preserves
+    // precision.
+    //
+    for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
+         I != E; ++I)
+      printFloatingPointConstants(*I);
+
+    Out << '\n';
+  }
+
+  void GenWriter::printFloatingPointConstants(const Constant *C) {
+    // If this is a constant expression, recursively check for constant fp values.
+    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+      for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
+        printFloatingPointConstants(CE->getOperand(i));
+      return;
+    }
+
+    // Otherwise, check for a FP constant that we need to print.
+    const ConstantFP *FPC = dyn_cast<ConstantFP>(C);
+    if (FPC == 0 ||
+        // Do not put in FPConstantMap if safe.
+        isFPCSafeToPrint(FPC) ||
+        // Already printed this constant?
+        FPConstantMap.count(FPC))
+      return;
+
+    FPConstantMap[FPC] = FPCounter;  // Number the FP constants
+
+    if (FPC->getType() == Type::getDoubleTy(FPC->getContext())) {
+      double Val = FPC->getValueAPF().convertToDouble();
+      uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
+      Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
+      << " = 0x" << utohexstr(i)
+      << "ULL;    /* " << Val << " */\n";
+    } else if (FPC->getType() == Type::getFloatTy(FPC->getContext())) {
+      float Val = FPC->getValueAPF().convertToFloat();
+      uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt().
+      getZExtValue();
+      Out << "static const ConstantFloatTy FPConstant" << FPCounter++
+      << " = 0x" << utohexstr(i)
+      << "U;    /* " << Val << " */\n";
+    } else if (FPC->getType() == Type::getX86_FP80Ty(FPC->getContext())) {
+      // api needed to prevent premature destruction
+      APInt api = FPC->getValueAPF().bitcastToAPInt();
+      const uint64_t *p = api.getRawData();
+      Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
+      << " = { 0x" << utohexstr(p[0])
+      << "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}"
+      << "}; /* Long double constant */\n";
+    } else if (FPC->getType() == Type::getPPC_FP128Ty(FPC->getContext()) ||
+               FPC->getType() == Type::getFP128Ty(FPC->getContext())) {
+      APInt api = FPC->getValueAPF().bitcastToAPInt();
+      const uint64_t *p = api.getRawData();
+      Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
+      << " = { 0x"
+      << utohexstr(p[0]) << ", 0x" << utohexstr(p[1])
+      << "}; /* Long double constant */\n";
+
+    } else {
+      llvm_unreachable("Unknown float type!");
+    }
+  }
+
+
+  /// printSymbolTable - Run through symbol table looking for type names.  If a
+  /// type name is found, emit its declaration...
+  ///
+  void GenWriter::printModuleTypes() {
+    Out << "/* Helper union for bitcasts */\n";
+    Out << "typedef union {\n";
+    Out << "  unsigned int Int32;\n";
+    Out << "  unsigned long long Int64;\n";
+    Out << "  float Float;\n";
+    Out << "  double Double;\n";
+    Out << "} llvmBitCastUnion;\n";
+
+    // Get all of the struct types used in the module.
+    std::vector<StructType*> StructTypes;
+    TheModule->findUsedStructTypes(StructTypes);
+
+    if (StructTypes.empty()) return;
+
+    Out << "/* Structure forward decls */\n";
+
+    unsigned NextTypeID = 0;
+    
+    // If any of them are missing names, add a unique ID to UnnamedStructIDs.
+    // Print out forward declarations for structure types.
+    for (unsigned i = 0, e = StructTypes.size(); i != e; ++i) {
+      StructType *ST = StructTypes[i];
+
+      if (ST->isLiteral() || ST->getName().empty())
+        UnnamedStructIDs[ST] = NextTypeID++;
+
+      std::string Name = getStructName(ST);
+
+      Out << "typedef struct " << Name << ' ' << Name << ";\n";
+    }
+
+    Out << '\n';
+
+    // Keep track of which structures have been printed so far.
+    SmallPtrSet<Type *, 16> StructPrinted;
+
+    // Loop over all structures then push them into the stack so they are
+    // printed in the correct order.
+    //
+    Out << "/* Structure contents */\n";
+    for (unsigned i = 0, e = StructTypes.size(); i != e; ++i)
+      if (StructTypes[i]->isStructTy())
+        // Only print out used types!
+        printContainedStructs(StructTypes[i], StructPrinted);
+  }
+
+  // Push the struct onto the stack and recursively push all structs
+  // this one depends on.
+  //
+  // TODO:  Make this work properly with vector types
+  //
+  void GenWriter::printContainedStructs(Type *Ty,
+                                  SmallPtrSet<Type *, 16> &StructPrinted) {
+    // Don't walk through pointers.
+    if (Ty->isPointerTy() || Ty->isPrimitiveType() || Ty->isIntegerTy())
+      return;
+
+    // Print all contained types first.
+    for (Type::subtype_iterator I = Ty->subtype_begin(),
+         E = Ty->subtype_end(); I != E; ++I)
+      printContainedStructs(*I, StructPrinted);
+
+    if (StructType *ST = dyn_cast<StructType>(Ty)) {
+      // Check to see if we have already printed this struct.
+      if (!StructPrinted.insert(Ty)) return;
+      
+      // Print structure type out.
+      printType(Out, ST, false, getStructName(ST), true);
+      Out << ";\n\n";
+    }
+  }
+
+  INLINE ir::RegisterData::Family GenWriter::getArgumentFamily(const Type *type) const
+  {
+    GBE_ASSERT(type->isFloatTy()   ||
+               type->isIntegerTy() ||
+               type->isDoubleTy()  ||
+               type->isPointerTy());
+
+    if (type == Type::getInt1Ty(type->getContext()))
+      return ir::RegisterData::BOOL;
+    if (type == Type::getInt8Ty(type->getContext()))
+      return ir::RegisterData::BYTE;
+    if (type == Type::getInt16Ty(type->getContext()))
+      return ir::RegisterData::WORD;
+    if (type == Type::getInt32Ty(type->getContext()) || type->isFloatTy())
+      return ir::RegisterData::DWORD;
+    if (type == Type::getInt64Ty(type->getContext()) || type->isDoubleTy())
+      return ir::RegisterData::QWORD;
+    if (type->isPointerTy() && ctx.getPointerSize() == ir::POINTER_32_BITS)
+      return ir::RegisterData::DWORD;
+    if (type->isPointerTy() && ctx.getPointerSize() == ir::POINTER_64_BITS)
+      return ir::RegisterData::QWORD;
+    GBE_ASSERT(0);
+    return ir::RegisterData::BOOL;
+  }
+
+  void GenWriter::emitFunctionPrototype(const Function *F)
+  {
+    const bool returnStruct = F->hasStructRetAttr();
+
+    // Loop over the arguments and output registers for them
+    if (!F->arg_empty()) {
+      Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+
+      // When a struct is returned, first argument is pointer to the structure
+      if (returnStruct) {
+        ir::Function &fn = ctx.getFunction();
+        fn.setStructReturned(true);
+      }
+
+      std::string ArgName;
+      for (; I != E; ++I) {
+        ArgName = GetValueName(I);
+
+        // Insert a new register if we need to
+        if (registerMap.find(ArgName) == registerMap.end()) {
+          const Type *type = I->getType();
+          const ir::RegisterData::Family family = getArgumentFamily(type);
+          const ir::Register reg = ctx.reg(family);
+          ctx.input(reg);
+          registerMap[ArgName] = reg;
+        }
+      }
+    }
+
+    // When returning a structure, first input register is the pointer to the
+    // structure
+    if (!returnStruct) {
+      const Type *type = F->getReturnType();
+      const ir::RegisterData::Family family = getArgumentFamily(type);
+      const ir::Register reg = ctx.reg(family);
+      ctx.output(reg);
+    }
+
+#if GBE_DEBUG
+    // Variable number of arguments is not supported
+    FunctionType *FT = cast<FunctionType>(F->getFunctionType());
+    GBE_ASSERT(FT->isVarArg() == false);
+#endif /* GBE_DEBUG */
+  }
+
+  void GenWriter::emitFunctionSignature(const Function *F, bool Prototype)
+  {
+    /// isStructReturn - Should this function actually return a struct by-value?
+    bool isStructReturn = F->hasStructRetAttr();
+
+    // Loop over the arguments, printing them...
+    FunctionType *FT = cast<FunctionType>(F->getFunctionType());
+    const AttrListPtr &PAL = F->getAttributes();
+
+    std::string tstr;
+    raw_string_ostream FunctionInnards(tstr);
+
+    // Print out the name...
+    FunctionInnards << GetValueName(F) << '(';
+
+    bool PrintedArg = false;
+    if (!F->isDeclaration()) {
+      if (!F->arg_empty()) {
+        Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+        unsigned Idx = 1;
+
+        // If this is a struct-return function, don't print the hidden
+        // struct-return argument.
+        if (isStructReturn) {
+          assert(I != E && "Invalid struct return function!");
+          ++I;
+          ++Idx;
+        }
+
+        std::string ArgName;
+        for (; I != E; ++I) {
+          if (PrintedArg) FunctionInnards << ", ";
+          if (I->hasName() || !Prototype) {
+            ArgName = GetValueName(I);
+          } else {
+            GBE_ASSERT(0);
+            ArgName = "";
+          }
+          Type *ArgTy = I->getType();
+          if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
+            ArgTy = cast<PointerType>(ArgTy)->getElementType();
+            ByValParams.insert(I);
+          }
+          printType(FunctionInnards, ArgTy,
+              /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt),
+              ArgName);
+          PrintedArg = true;
+          ++Idx;
+        }
+      }
+    } else {
+      GBE_ASSERT(0);
+
+      // Loop over the arguments, printing them.
+      FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
+      unsigned Idx = 1;
+
+      // If this is a struct-return function, don't print the hidden
+      // struct-return argument.
+      if (isStructReturn) {
+        assert(I != E && "Invalid struct return function!");
+        ++I;
+        ++Idx;
+      }
+
+      for (; I != E; ++I) {
+        if (PrintedArg) FunctionInnards << ", ";
+        Type *ArgTy = *I;
+        if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
+          assert(ArgTy->isPointerTy());
+          ArgTy = cast<PointerType>(ArgTy)->getElementType();
+        }
+        printType(FunctionInnards, ArgTy,
+               /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt));
+        PrintedArg = true;
+        ++Idx;
+      }
+    }
+
+    if (!PrintedArg && FT->isVarArg()) {
+      FunctionInnards << "int vararg_dummy_arg";
+      PrintedArg = true;
+    }
+
+    // Finish printing arguments... if this is a vararg function, print the ...,
+    // unless there are no known types, in which case, we just emit ().
+    //
+    if (FT->isVarArg() && PrintedArg) {
+      FunctionInnards << ",...";  // Output varargs portion of signature!
+    } else if (!FT->isVarArg() && !PrintedArg) {
+      FunctionInnards << "void"; // ret() -> ret(void) in C.
+    }
+    FunctionInnards << ')';
+
+    // Get the return tpe for the function.
+    Type *RetTy;
+    if (!isStructReturn)
+      RetTy = F->getReturnType();
+    else {
+      // If this is a struct-return function, print the struct-return type.
+      RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
+    }
+
+    // Print out the return type and the signature built above.
+    printType(Out, RetTy,
+              /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt),
+              FunctionInnards.str());
+  }
+
+  static inline bool isFPIntBitCast(const Instruction &I) {
+    if (!isa<BitCastInst>(I))
+      return false;
+    Type *SrcTy = I.getOperand(0)->getType();
+    Type *DstTy = I.getType();
+    return (SrcTy->isFloatingPointTy() && DstTy->isIntegerTy()) ||
+           (DstTy->isFloatingPointTy() && SrcTy->isIntegerTy());
+  }
+
+  void GenWriter::emitFunction(Function &F)
+  {
+    ctx.startFunction(GetValueName(&F));
+    this->registerMap.clear();
+    this->emitFunctionPrototype(&F);
+
+    /// isStructReturn - Should this function actually return a struct by-value?
+    bool isStructReturn = F.hasStructRetAttr();
+
+    emitFunctionSignature(&F, false);
+    Out << " {\n";
+
+    // If this is a struct return function, handle the result with magic.
+    if (isStructReturn) {
+      Type *StructTy =
+        cast<PointerType>(F.arg_begin()->getType())->getElementType();
+      Out << "  ";
+      printType(Out, StructTy, false, "StructReturn");
+      Out << ";  /* Struct return temporary */\n";
+
+      Out << "  ";
+      printType(Out, F.arg_begin()->getType(), false,
+                GetValueName(F.arg_begin()));
+      Out << " = &StructReturn;\n";
+    }
+
+    bool PrintedVar = false;
+
+    // print local variable information for the function
+    for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
+      if (const AllocaInst *AI = isDirectAlloca(&*I)) {
+        Out << "  ";
+        printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
+        Out << ";    /* Address-exposed local */\n";
+        PrintedVar = true;
+      } else if (I->getType() != Type::getVoidTy(F.getContext()) &&
+                 !isInlinableInst(*I)) {
+        Out << "  ";
+        printType(Out, I->getType(), false, GetValueName(&*I));
+        Out << ";\n";
+
+        if (isa<PHINode>(*I)) {  // Print out PHI node temporaries as well...
+          Out << "  ";
+          printType(Out, I->getType(), false,
+                    GetValueName(&*I)+"__PHI_TEMPORARY");
+          Out << ";\n";
+        }
+        PrintedVar = true;
+      }
+      // We need a temporary for the BitCast to use so it can pluck a value out
+      // of a union to do the BitCast. This is separate from the need for a
+      // variable to hold the result of the BitCast.
+      if (isFPIntBitCast(*I)) {
+        Out << "  llvmBitCastUnion " << GetValueName(&*I)
+            << "__BITCAST_TEMPORARY;\n";
+        PrintedVar = true;
+      }
+    }
+
+    if (PrintedVar)
+      Out << '\n';
+
+    if (F.hasExternalLinkage() && F.getName() == "main")
+      Out << "  CODE_FOR_MAIN();\n";
+
+    // print the basic blocks
+    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+      if (Loop *L = LI->getLoopFor(BB)) {
+        if (L->getHeader() == BB && L->getParentLoop() == 0)
+          printLoop(L);
+      } else {
+        printBasicBlock(BB);
+      }
+    }
+
+    Out << "}\n\n";
+
+    ctx.endFunction();
+  }
+
+  void GenWriter::printLoop(Loop *L) {
+    Out << "  do {     /* Syntactic loop '" << L->getHeader()->getName()
+        << "' to make GCC happy */\n";
+    for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
+      BasicBlock *BB = L->getBlocks()[i];
+      Loop *BBLoop = LI->getLoopFor(BB);
+      if (BBLoop == L)
+        printBasicBlock(BB);
+      else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
+        printLoop(BBLoop);
+    }
+    Out << "  } while (1); /* end of syntactic loop '"
+        << L->getHeader()->getName() << "' */\n";
+  }
+
+  void GenWriter::printBasicBlock(BasicBlock *BB) {
+
+    // Don't print the label for the basic block if there are no uses, or if
+    // the only terminator use is the predecessor basic block's terminator.
+    // We have to scan the use list because PHI nodes use basic blocks too but
+    // do not require a label to be generated.
+    //
+    bool NeedsLabel = false;
+    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+      if (isGotoCodeNecessary(*PI, BB)) {
+        NeedsLabel = true;
+        break;
+      }
+
+    if (NeedsLabel) Out << GetValueName(BB) << ":\n";
+
+    // Output all of the instructions in the basic block...
+    for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
+         ++II) {
+      if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
+        if (II->getType() != Type::getVoidTy(BB->getContext()) &&
+            !isInlineAsm(*II))
+          outputLValue(II);
+        else
+          Out << "  ";
+        writeInstComputationInline(*II);
+        Out << ";\n";
+      }
+    }
+
+    // Don't emit prefix or suffix for the terminator.
+    visit(*BB->getTerminator());
+  }
+
+
+  // Specific Instruction type classes... note that all of the casts are
+  // necessary because we use the instruction classes as opaque types...
+  //
+  void GenWriter::visitReturnInst(ReturnInst &I) {
+    // If this is a struct return function, return the temporary struct.
+    bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
+
+    if (isStructReturn) {
+      Out << "  return StructReturn;\n";
+      return;
+    }
+
+    // Don't output a void return if this is the last basic block in the function
+    if (I.getNumOperands() == 0 &&
+        &*--I.getParent()->getParent()->end() == I.getParent() &&
+        !I.getParent()->size() == 1) {
+      return;
+    }
+
+    Out << "  return";
+    if (I.getNumOperands()) {
+      Out << ' ';
+      writeOperand(I.getOperand(0));
+    }
+    Out << ";\n";
+  }
+
+  void GenWriter::visitSwitchInst(SwitchInst &SI) {
+
+    Value* Cond = SI.getCondition();
+
+    Out << "  switch (";
+    writeOperand(Cond);
+    Out << ") {\n  default:\n";
+    printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
+    printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
+    Out << ";\n";
+
+    unsigned NumCases = SI.getNumCases();
+    // Skip the first item since that's the default case.
+    for (unsigned i = 1; i < NumCases; ++i) {
+      ConstantInt* CaseVal = SI.getCaseValue(i);
+      BasicBlock* Succ = SI.getSuccessor(i);
+      Out << "  case ";
+      writeOperand(CaseVal);
+      Out << ":\n";
+      printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
+      printBranchToBlock(SI.getParent(), Succ, 2);
+      if (Function::iterator(Succ) == llvm::next(Function::iterator(SI.getParent())))
+        Out << "    break;\n";
+    }
+
+    Out << "  }\n";
+  }
+
+  void GenWriter::visitIndirectBrInst(IndirectBrInst &IBI) {
+    Out << "  goto *(void*)(";
+    writeOperand(IBI.getOperand(0));
+    Out << ");\n";
+  }
+
+  void GenWriter::visitUnreachableInst(UnreachableInst &I) {
+    Out << "  /*UNREACHABLE*/;\n";
+  }
+
+  bool GenWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
+    /// FIXME: This should be reenabled, but loop reordering safe!!
+    return true;
+
+    if (llvm::next(Function::iterator(From)) != Function::iterator(To))
+      return true;  // Not the direct successor, we need a goto.
+
+    //isa<SwitchInst>(From->getTerminator())
+
+    if (LI->getLoopFor(From) != LI->getLoopFor(To))
+      return true;
+    return false;
+  }
+
+  void GenWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
+                                            BasicBlock *Successor,
+                                            unsigned Indent) {
+    for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
+      PHINode *PN = cast<PHINode>(I);
+      // Now we have to do the printing.
+      Value *IV = PN->getIncomingValueForBlock(CurBlock);
+      if (!isa<UndefValue>(IV)) {
+        Out << std::string(Indent, ' ');
+        Out << "  " << GetValueName(I) << "__PHI_TEMPORARY = ";
+        writeOperand(IV);
+        Out << ";   /* for PHI node */\n";
+      }
+    }
+  }
+
+  void GenWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
+                                   unsigned Indent) {
+    if (isGotoCodeNecessary(CurBB, Succ)) {
+      Out << std::string(Indent, ' ') << "  goto ";
+      writeOperand(Succ);
+      Out << ";\n";
+    }
+  }
+
+  // Branch instruction printing - Avoid printing out a branch to a basic block
+  // that immediately succeeds the current one.
+  //
+  void GenWriter::visitBranchInst(BranchInst &I) {
+
+    if (I.isConditional()) {
+      if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
+        Out << "  if (";
+        writeOperand(I.getCondition());
+        Out << ") {\n";
+
+        printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
+        printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
+
+        if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
+          Out << "  } else {\n";
+          printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
+          printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
+        }
+      } else {
+        // First goto not necessary, assume second one is...
+        Out << "  if (!";
+        writeOperand(I.getCondition());
+        Out << ") {\n";
+
+        printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
+        printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
+      }
+
+      Out << "  }\n";
+    } else {
+      printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
+      printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
+    }
+    Out << "\n";
+  }
+
+  // PHI nodes get copied into temporary values at the end of predecessor basic
+  // blocks.  We now need to copy these temporary values into the REAL value for
+  // the PHI.
+  void GenWriter::visitPHINode(PHINode &I) {
+    writeOperand(&I);
+    Out << "__PHI_TEMPORARY";
+  }
+
+
+  void GenWriter::visitBinaryOperator(Instruction &I) {
+    // binary instructions, shift instructions, setCond instructions.
+    assert(!I.getType()->isPointerTy());
+
+    // We must cast the results of binary operations which might be promoted.
+    bool needsCast = false;
+    if ((I.getType() == Type::getInt8Ty(I.getContext())) ||
+        (I.getType() == Type::getInt16Ty(I.getContext()))
+        || (I.getType() == Type::getFloatTy(I.getContext()))) {
+      needsCast = true;
+      Out << "((";
+      printType(Out, I.getType(), false);
+      Out << ")(";
+    }
+
+    // If this is a negation operation, print it out as such.  For FP, we don't
+    // want to print "-0.0 - X".
+    if (BinaryOperator::isNeg(&I)) {
+      Out << "-(";
+      writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
+      Out << ")";
+    } else if (BinaryOperator::isFNeg(&I)) {
+      Out << "-(";
+      writeOperand(BinaryOperator::getFNegArgument(cast<BinaryOperator>(&I)));
+      Out << ")";
+    } else if (I.getOpcode() == Instruction::FRem) {
+      // Output a call to fmod/fmodf instead of emitting a%b
+      if (I.getType() == Type::getFloatTy(I.getContext()))
+        Out << "fmodf(";
+      else if (I.getType() == Type::getDoubleTy(I.getContext()))
+        Out << "fmod(";
+      else  // all 3 flavors of long double
+        Out << "fmodl(";
+      writeOperand(I.getOperand(0));
+      Out << ", ";
+      writeOperand(I.getOperand(1));
+      Out << ")";
+    } else {
+
+      // Write out the cast of the instruction's value back to the proper type
+      // if necessary.
+      bool NeedsClosingParens = writeInstructionCast(I);
+
+      // Certain instructions require the operand to be forced to a specific type
+      // so we use writeOperandWithCast here instead of writeOperand. Similarly
+      // below for operand 1
+      writeOperandWithCast(I.getOperand(0), I.getOpcode());
+
+      switch (I.getOpcode()) {
+      case Instruction::Add:
+      case Instruction::FAdd: Out << " + "; break;
+      case Instruction::Sub:
+      case Instruction::FSub: Out << " - "; break;
+      case Instruction::Mul:
+      case Instruction::FMul: Out << " * "; break;
+      case Instruction::URem:
+      case Instruction::SRem:
+      case Instruction::FRem: Out << " % "; break;
+      case Instruction::UDiv:
+      case Instruction::SDiv:
+      case Instruction::FDiv: Out << " / "; break;
+      case Instruction::And:  Out << " & "; break;
+      case Instruction::Or:   Out << " | "; break;
+      case Instruction::Xor:  Out << " ^ "; break;
+      case Instruction::Shl : Out << " << "; break;
+      case Instruction::LShr:
+      case Instruction::AShr: Out << " >> "; break;
+      default:
+#ifndef NDEBUG
+         errs() << "Invalid operator type!" << I;
+#endif
+         llvm_unreachable(0);
+      }
+
+      writeOperandWithCast(I.getOperand(1), I.getOpcode());
+      if (NeedsClosingParens)
+        Out << "))";
+    }
+
+    if (needsCast) {
+      Out << "))";
+    }
+  }
+
+  void GenWriter::visitICmpInst(ICmpInst &I) {
+    // We must cast the results of icmp which might be promoted.
+    bool needsCast = false;
+
+    // Write out the cast of the instruction's value back to the proper type
+    // if necessary.
+    bool NeedsClosingParens = writeInstructionCast(I);
+
+    // Certain icmp predicate require the operand to be forced to a specific type
+    // so we use writeOperandWithCast here instead of writeOperand. Similarly
+    // below for operand 1
+    writeOperandWithCast(I.getOperand(0), I);
+
+    switch (I.getPredicate()) {
+    case ICmpInst::ICMP_EQ:  Out << " == "; break;
+    case ICmpInst::ICMP_NE:  Out << " != "; break;
+    case ICmpInst::ICMP_ULE:
+    case ICmpInst::ICMP_SLE: Out << " <= "; break;
+    case ICmpInst::ICMP_UGE:
+    case ICmpInst::ICMP_SGE: Out << " >= "; break;
+    case ICmpInst::ICMP_ULT:
+    case ICmpInst::ICMP_SLT: Out << " < "; break;
+    case ICmpInst::ICMP_UGT:
+    case ICmpInst::ICMP_SGT: Out << " > "; break;
+    default:
+#ifndef NDEBUG
+      errs() << "Invalid icmp predicate!" << I;
+#endif
+      llvm_unreachable(0);
+    }
+
+    writeOperandWithCast(I.getOperand(1), I);
+    if (NeedsClosingParens)
+      Out << "))";
+
+    if (needsCast) {
+      Out << "))";
+    }
+  }
+
+  void GenWriter::visitFCmpInst(FCmpInst &I) {
+    if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
+      Out << "0";
+      return;
+    }
+    if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
+      Out << "1";
+      return;
+    }
+
+    const char* op = 0;
+    switch (I.getPredicate()) {
+    default: llvm_unreachable("Illegal FCmp predicate");
+    case FCmpInst::FCMP_ORD: op = "ord"; break;
+    case FCmpInst::FCMP_UNO: op = "uno"; break;
+    case FCmpInst::FCMP_UEQ: op = "ueq"; break;
+    case FCmpInst::FCMP_UNE: op = "une"; break;
+    case FCmpInst::FCMP_ULT: op = "ult"; break;
+    case FCmpInst::FCMP_ULE: op = "ule"; break;
+    case FCmpInst::FCMP_UGT: op = "ugt"; break;
+    case FCmpInst::FCMP_UGE: op = "uge"; break;
+    case FCmpInst::FCMP_OEQ: op = "oeq"; break;
+    case FCmpInst::FCMP_ONE: op = "one"; break;
+    case FCmpInst::FCMP_OLT: op = "olt"; break;
+    case FCmpInst::FCMP_OLE: op = "ole"; break;
+    case FCmpInst::FCMP_OGT: op = "ogt"; break;
+    case FCmpInst::FCMP_OGE: op = "oge"; break;
+    }
+
+    Out << "llvm_fcmp_" << op << "(";
+    // Write the first operand
+    writeOperand(I.getOperand(0));
+    Out << ", ";
+    // Write the second operand
+    writeOperand(I.getOperand(1));
+    Out << ")";
+  }
+
+  static const char * getFloatBitCastField(Type *Ty) {
+    switch (Ty->getTypeID()) {
+      default: llvm_unreachable("Invalid Type");
+      case Type::FloatTyID:  return "Float";
+      case Type::DoubleTyID: return "Double";
+      case Type::IntegerTyID: {
+        unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
+        if (NumBits <= 32)
+          return "Int32";
+        else
+          return "Int64";
+      }
+    }
+  }
+
+  void GenWriter::visitCastInst(CastInst &I) {
+    Type *DstTy = I.getType();
+    Type *SrcTy = I.getOperand(0)->getType();
+    if (isFPIntBitCast(I)) {
+      Out << '(';
+      // These int<->float and long<->double casts need to be handled specially
+      Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
+          << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
+      writeOperand(I.getOperand(0));
+      Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
+          << getFloatBitCastField(I.getType());
+      Out << ')';
+      return;
+    }
+
+    Out << '(';
+    printCast(I.getOpcode(), SrcTy, DstTy);
+
+    // Make a sext from i1 work by subtracting the i1 from 0 (an int).
+    if (SrcTy == Type::getInt1Ty(I.getContext()) &&
+        I.getOpcode() == Instruction::SExt)
+      Out << "0-";
+
+    writeOperand(I.getOperand(0));
+
+    if (DstTy == Type::getInt1Ty(I.getContext()) &&
+        (I.getOpcode() == Instruction::Trunc ||
+         I.getOpcode() == Instruction::FPToUI ||
+         I.getOpcode() == Instruction::FPToSI ||
+         I.getOpcode() == Instruction::PtrToInt)) {
+      // Make sure we really get a trunc to bool by anding the operand with 1
+      Out << "&1u";
+    }
+    Out << ')';
+  }
+
+  void GenWriter::visitSelectInst(SelectInst &I) {
+    Out << "((";
+    writeOperand(I.getCondition());
+    Out << ") ? (";
+    writeOperand(I.getTrueValue());
+    Out << ") : (";
+    writeOperand(I.getFalseValue());
+    Out << "))";
+  }
+
+#ifndef NDEBUG
+  static bool isSupportedIntegerSize(IntegerType &T) {
+    return T.getBitWidth() == 8 || T.getBitWidth() == 16 ||
+           T.getBitWidth() == 32 || T.getBitWidth() == 64;
+  }
+#endif
+
+  void GenWriter::printIntrinsicDefinition(const Function &F, raw_ostream &Out) {
+#ifndef NDEBUG
+    FunctionType *funT = F.getFunctionType();
+    Type *retT = F.getReturnType();
+    IntegerType *elemT = cast<IntegerType>(funT->getParamType(1));
+
+    assert(isSupportedIntegerSize(*elemT) &&
+           "CBackend does not support arbitrary size integers.");
+    assert(cast<StructType>(retT)->getElementType(0) == elemT &&
+           elemT == funT->getParamType(0) && funT->getNumParams() == 2);
+
+    switch (F.getIntrinsicID()) {
+    default:
+      llvm_unreachable("Unsupported Intrinsic.");
+    }
+#endif
+  }
+
+  void GenWriter::lowerIntrinsics(Function &F) {
+    // This is used to keep track of intrinsics that get generated to a lowered
+    // function. We must generate the prototypes before the function body which
+    // will only be expanded on first use (by the loop below).
+    std::vector<Function*> prototypesToGen;
+
+    // Examine all the instructions in this function to find the intrinsics that
+    // need to be lowered.
+    for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
+      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
+        if (CallInst *CI = dyn_cast<CallInst>(I++))
+          if (Function *F = CI->getCalledFunction())
+            switch (F->getIntrinsicID()) {
+            case Intrinsic::not_intrinsic:
+            case Intrinsic::vastart:
+            case Intrinsic::vacopy:
+            case Intrinsic::vaend:
+            case Intrinsic::returnaddress:
+            case Intrinsic::frameaddress:
+            case Intrinsic::setjmp:
+            case Intrinsic::longjmp:
+            case Intrinsic::prefetch:
+            case Intrinsic::powi:
+            case Intrinsic::x86_sse_cmp_ss:
+            case Intrinsic::x86_sse_cmp_ps:
+            case Intrinsic::x86_sse2_cmp_sd:
+            case Intrinsic::x86_sse2_cmp_pd:
+            case Intrinsic::ppc_altivec_lvsl:
+            case Intrinsic::uadd_with_overflow:
+            case Intrinsic::sadd_with_overflow:
+                // We directly implement these intrinsics
+              break;
+            default:
+              // If this is an intrinsic that directly corresponds to a GCC
+              // builtin, we handle it.
+              const char *BuiltinName = "";
+#define GET_GCC_BUILTIN_NAME
+#include "llvm/Intrinsics.gen"
+#undef GET_GCC_BUILTIN_NAME
+              // If we handle it, don't lower it.
+              if (BuiltinName[0]) break;
+
+              // All other intrinsic calls we must lower.
+              Instruction *Before = 0;
+              if (CI != &BB->front())
+                Before = prior(BasicBlock::iterator(CI));
+
+              IL->LowerIntrinsicCall(CI);
+              if (Before) {        // Move iterator to instruction after call
+                I = Before; ++I;
+              } else {
+                I = BB->begin();
+              }
+              // If the intrinsic got lowered to another call, and that call has
+              // a definition then we need to make sure its prototype is emitted
+              // before any calls to it.
+              if (CallInst *Call = dyn_cast<CallInst>(I))
+                if (Function *NewF = Call->getCalledFunction())
+                  if (!NewF->isDeclaration())
+                    prototypesToGen.push_back(NewF);
+
+              break;
+            }
+
+    // We may have collected some prototypes to emit in the loop above.
+    // Emit them now, before the function that uses them is emitted. But,
+    // be careful not to emit them twice.
+    std::vector<Function*>::iterator I = prototypesToGen.begin();
+    std::vector<Function*>::iterator E = prototypesToGen.end();
+    for ( ; I != E; ++I) {
+      if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
+        Out << '\n';
+        emitFunctionSignature(*I, true);
+        Out << ";\n";
+      }
+    }
+  }
+
+  void GenWriter::visitCallInst(CallInst &I) {
+    if (isa<InlineAsm>(I.getCalledValue()))
+      return visitInlineAsm(I);
+
+    bool WroteCallee = false;
+
+    // Handle intrinsic function calls first...
+    if (Function *F = I.getCalledFunction())
+      if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
+        if (visitBuiltinCall(I, ID, WroteCallee))
+          return;
+
+    Value *Callee = I.getCalledValue();
+
+    PointerType  *PTy   = cast<PointerType>(Callee->getType());
+    FunctionType *FTy   = cast<FunctionType>(PTy->getElementType());
+
+    // If this is a call to a struct-return function, assign to the first
+    // parameter instead of passing it to the call.
+    const AttrListPtr &PAL = I.getAttributes();
+    bool hasByVal = I.hasByValArgument();
+    bool isStructRet = I.hasStructRetAttr();
+    if (isStructRet) {
+      writeOperandDeref(I.getArgOperand(0));
+      Out << " = ";
+    }
+
+    if (I.isTailCall()) Out << " /*tail*/ ";
+
+    if (!WroteCallee) {
+      // If this is an indirect call to a struct return function, we need to cast
+      // the pointer. Ditto for indirect calls with byval arguments.
+      bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
+
+      // GCC is a real PITA.  It does not permit codegening casts of functions to
+      // function pointers if they are in a call (it generates a trap instruction
+      // instead!).  We work around this by inserting a cast to void* in between
+      // the function and the function pointer cast.  Unfortunately, we can't just
+      // form the constant expression here, because the folder will immediately
+      // nuke it.
+      //
+      // Note finally, that this is completely unsafe.  ANSI C does not guarantee
+      // that void* and function pointers have the same size. :( To deal with this
+      // in the common case, we handle casts where the number of arguments passed
+      // match exactly.
+      //
+      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
+        if (CE->isCast())
+          if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
+            NeedsCast = true;
+            Callee = RF;
+          }
+
+      if (NeedsCast) {
+        // Ok, just cast the pointer type.
+        Out << "((";
+        if (isStructRet)
+          printStructReturnPointerFunctionType(Out, PAL,
+                               cast<PointerType>(I.getCalledValue()->getType()));
+        else if (hasByVal)
+          printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
+        else
+          printType(Out, I.getCalledValue()->getType());
+        Out << ")(void*)";
+      }
+      writeOperand(Callee);
+      if (NeedsCast) Out << ')';
+    }
+
+    Out << '(';
+
+    bool PrintedArg = false;
+    if(FTy->isVarArg() && !FTy->getNumParams()) {
+      Out << "0 /*dummy arg*/";
+      PrintedArg = true;
+    }
+
+    unsigned NumDeclaredParams = FTy->getNumParams();
+    CallSite CS(&I);
+    CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
+    unsigned ArgNo = 0;
+    if (isStructRet) {   // Skip struct return argument.
+      ++AI;
+      ++ArgNo;
+    }
+
+
+    for (; AI != AE; ++AI, ++ArgNo) {
+      if (PrintedArg) Out << ", ";
+      if (ArgNo < NumDeclaredParams &&
+          (*AI)->getType() != FTy->getParamType(ArgNo)) {
+        Out << '(';
+        printType(Out, FTy->getParamType(ArgNo),
+              /*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt));
+        Out << ')';
+      }
+      // Check if the argument is expected to be passed by value.
+      if (I.paramHasAttr(ArgNo+1, Attribute::ByVal))
+        writeOperandDeref(*AI);
+      else
+        writeOperand(*AI);
+      PrintedArg = true;
+    }
+    Out << ')';
+  }
+
+  /// visitBuiltinCall - Handle the call to the specified builtin.  Returns true
+  /// if the entire call is handled, return false if it wasn't handled, and
+  /// optionally set 'WroteCallee' if the callee has already been printed out.
+  bool GenWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee) {
+    switch (ID) {
+    default: {
+      // If this is an intrinsic that directly corresponds to a GCC
+      // builtin, we emit it here.
+      const char *BuiltinName = "";
+      Function *F = I.getCalledFunction();
+#define GET_GCC_BUILTIN_NAME
+#include "llvm/Intrinsics.gen"
+#undef GET_GCC_BUILTIN_NAME
+      assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
+
+      Out << BuiltinName;
+      WroteCallee = true;
+      return false;
+    }
+    case Intrinsic::vastart:
+      Out << "0; ";
+
+      Out << "va_start(*(va_list*)";
+      writeOperand(I.getArgOperand(0));
+      Out << ", ";
+      // Output the last argument to the enclosing function.
+      if (I.getParent()->getParent()->arg_empty())
+        Out << "vararg_dummy_arg";
+      else
+        writeOperand(--I.getParent()->getParent()->arg_end());
+      Out << ')';
+      return true;
+    case Intrinsic::vaend:
+      if (!isa<ConstantPointerNull>(I.getArgOperand(0))) {
+        Out << "0; va_end(*(va_list*)";
+        writeOperand(I.getArgOperand(0));
+        Out << ')';
+      } else {
+        Out << "va_end(*(va_list*)0)";
+      }
+      return true;
+    case Intrinsic::vacopy:
+      Out << "0; ";
+      Out << "va_copy(*(va_list*)";
+      writeOperand(I.getArgOperand(0));
+      Out << ", *(va_list*)";
+      writeOperand(I.getArgOperand(1));
+      Out << ')';
+      return true;
+    case Intrinsic::returnaddress:
+      Out << "__builtin_return_address(";
+      writeOperand(I.getArgOperand(0));
+      Out << ')';
+      return true;
+    case Intrinsic::frameaddress:
+      Out << "__builtin_frame_address(";
+      writeOperand(I.getArgOperand(0));
+      Out << ')';
+      return true;
+    case Intrinsic::powi:
+      Out << "__builtin_powi(";
+      writeOperand(I.getArgOperand(0));
+      Out << ", ";
+      writeOperand(I.getArgOperand(1));
+      Out << ')';
+      return true;
+    case Intrinsic::setjmp:
+      Out << "setjmp(*(jmp_buf*)";
+      writeOperand(I.getArgOperand(0));
+      Out << ')';
+      return true;
+    case Intrinsic::longjmp:
+      Out << "longjmp(*(jmp_buf*)";
+      writeOperand(I.getArgOperand(0));
+      Out << ", ";
+      writeOperand(I.getArgOperand(1));
+      Out << ')';
+      return true;
+    case Intrinsic::prefetch:
+      Out << "LLVM_PREFETCH((const void *)";
+      writeOperand(I.getArgOperand(0));
+      Out << ", ";
+      writeOperand(I.getArgOperand(1));
+      Out << ", ";
+      writeOperand(I.getArgOperand(2));
+      Out << ")";
+      return true;
+    case Intrinsic::stacksave:
+      // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
+      // to work around GCC bugs (see PR1809).
+      Out << "0; *((void**)&" << GetValueName(&I)
+          << ") = __builtin_stack_save()";
+      return true;
+    case Intrinsic::x86_sse_cmp_ss:
+    case Intrinsic::x86_sse_cmp_ps:
+    case Intrinsic::x86_sse2_cmp_sd:
+    case Intrinsic::x86_sse2_cmp_pd:
+      Out << '(';
+      printType(Out, I.getType());
+      Out << ')';
+      // Multiple GCC builtins multiplex onto this intrinsic.
+      switch (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()) {
+      default: llvm_unreachable("Invalid llvm.x86.sse.cmp!");
+      case 0: Out << "__builtin_ia32_cmpeq"; break;
+      case 1: Out << "__builtin_ia32_cmplt"; break;
+      case 2: Out << "__builtin_ia32_cmple"; break;
+      case 3: Out << "__builtin_ia32_cmpunord"; break;
+      case 4: Out << "__builtin_ia32_cmpneq"; break;
+      case 5: Out << "__builtin_ia32_cmpnlt"; break;
+      case 6: Out << "__builtin_ia32_cmpnle"; break;
+      case 7: Out << "__builtin_ia32_cmpord"; break;
+      }
+      if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
+        Out << 'p';
+      else
+        Out << 's';
+      if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
+        Out << 's';
+      else
+        Out << 'd';
+
+      Out << "(";
+      writeOperand(I.getArgOperand(0));
+      Out << ", ";
+      writeOperand(I.getArgOperand(1));
+      Out << ")";
+      return true;
+    case Intrinsic::ppc_altivec_lvsl:
+      Out << '(';
+      printType(Out, I.getType());
+      Out << ')';
+      Out << "__builtin_altivec_lvsl(0, (void*)";
+      writeOperand(I.getArgOperand(0));
+      Out << ")";
+      return true;
+    case Intrinsic::uadd_with_overflow:
+    case Intrinsic::sadd_with_overflow:
+      Out << GetValueName(I.getCalledFunction()) << "(";
+      writeOperand(I.getArgOperand(0));
+      Out << ", ";
+      writeOperand(I.getArgOperand(1));
+      Out << ")";
+      return true;
+    }
+  }
+
+  //This converts the llvm constraint string to something gcc is expecting.
+  //TODO: work out platform independent constraints and factor those out
+  //      of the per target tables
+  //      handle multiple constraint codes
+  std::string GenWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
+    assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
+
+    // Grab the translation table from MCAsmInfo if it exists.
+    const MCAsmInfo *TargetAsm;
+    std::string Triple = TheModule->getTargetTriple();
+    if (Triple.empty())
+      Triple = llvm::sys::getHostTriple();
+
+    std::string E;
+    if (const Target *Match = TargetRegistry::lookupTarget(Triple, E))
+      TargetAsm = Match->createMCAsmInfo(Triple);
+    else
+      return c.Codes[0];
+
+    const char *const *table = TargetAsm->getAsmCBE();
+
+    // Search the translation table if it exists.
+    for (int i = 0; table && table[i]; i += 2)
+      if (c.Codes[0] == table[i]) {
+        delete TargetAsm;
+        return table[i+1];
+      }
+
+    // Default is identity.
+    delete TargetAsm;
+    return c.Codes[0];
+  }
+
+  //TODO: import logic from AsmPrinter.cpp
+  static std::string gccifyAsm(std::string asmstr) {
+    for (std::string::size_type i = 0; i != asmstr.size(); ++i)
+      if (asmstr[i] == '\n')
+        asmstr.replace(i, 1, "\\n");
+      else if (asmstr[i] == '\t')
+        asmstr.replace(i, 1, "\\t");
+      else if (asmstr[i] == '$') {
+        if (asmstr[i + 1] == '{') {
+          std::string::size_type a = asmstr.find_first_of(':', i + 1);
+          std::string::size_type b = asmstr.find_first_of('}', i + 1);
+          std::string n = "%" +
+            asmstr.substr(a + 1, b - a - 1) +
+            asmstr.substr(i + 2, a - i - 2);
+          asmstr.replace(i, b - i + 1, n);
+          i += n.size() - 1;
+        } else
+          asmstr.replace(i, 1, "%");
+      }
+      else if (asmstr[i] == '%')//grr
+        { asmstr.replace(i, 1, "%%"); ++i;}
+
+    return asmstr;
+  }
+
+  //TODO: assumptions about what consume arguments from the call are likely wrong
+  //      handle communitivity
+  void GenWriter::visitInlineAsm(CallInst &CI) {
+    InlineAsm* as = cast<InlineAsm>(CI.getCalledValue());
+    InlineAsm::ConstraintInfoVector Constraints = as->ParseConstraints();
+
+    std::vector<std::pair<Value*, int> > ResultVals;
+    if (CI.getType() == Type::getVoidTy(CI.getContext()))
+      ;
+    else if (StructType *ST = dyn_cast<StructType>(CI.getType())) {
+      for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
+        ResultVals.push_back(std::make_pair(&CI, (int)i));
+    } else {
+      ResultVals.push_back(std::make_pair(&CI, -1));
+    }
+
+    // Fix up the asm string for gcc and emit it.
+    Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n";
+    Out << "        :";
+
+    unsigned ValueCount = 0;
+    bool IsFirst = true;
+
+    // Convert over all the output constraints.
+    for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
+         E = Constraints.end(); I != E; ++I) {
+
+      if (I->Type != InlineAsm::isOutput) {
+        ++ValueCount;
+        continue;  // Ignore non-output constraints.
+      }
+
+      assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
+      std::string C = InterpretASMConstraint(*I);
+      if (C.empty()) continue;
+
+      if (!IsFirst) {
+        Out << ", ";
+        IsFirst = false;
+      }
+
+      // Unpack the dest.
+      Value *DestVal;
+      int DestValNo = -1;
+
+      if (ValueCount < ResultVals.size()) {
+        DestVal = ResultVals[ValueCount].first;
+        DestValNo = ResultVals[ValueCount].second;
+      } else
+        DestVal = CI.getArgOperand(ValueCount-ResultVals.size());
+
+      if (I->isEarlyClobber)
+        C = "&"+C;
+
+      Out << "\"=" << C << "\"(" << GetValueName(DestVal);
+      if (DestValNo != -1)
+        Out << ".field" << DestValNo; // Multiple retvals.
+      Out << ")";
+      ++ValueCount;
+    }
+
+
+    // Convert over all the input constraints.
+    Out << "\n        :";
+    IsFirst = true;
+    ValueCount = 0;
+    for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
+         E = Constraints.end(); I != E; ++I) {
+      if (I->Type != InlineAsm::isInput) {
+        ++ValueCount;
+        continue;  // Ignore non-input constraints.
+      }
+
+      assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
+      std::string C = InterpretASMConstraint(*I);
+      if (C.empty()) continue;
+
+      if (!IsFirst) {
+        Out << ", ";
+        IsFirst = false;
+      }
+
+      assert(ValueCount >= ResultVals.size() && "Input can't refer to result");
+      Value *SrcVal = CI.getArgOperand(ValueCount-ResultVals.size());
+
+      Out << "\"" << C << "\"(";
+      if (!I->isIndirect)
+        writeOperand(SrcVal);
+      else
+        writeOperandDeref(SrcVal);
+      Out << ")";
+    }
+
+    // Convert over the clobber constraints.
+    IsFirst = true;
+    for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
+         E = Constraints.end(); I != E; ++I) {
+      if (I->Type != InlineAsm::isClobber)
+        continue;  // Ignore non-input constraints.
+
+      assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
+      std::string C = InterpretASMConstraint(*I);
+      if (C.empty()) continue;
+
+      if (!IsFirst) {
+        Out << ", ";
+        IsFirst = false;
+      }
+
+      Out << '\"' << C << '"';
+    }
+
+    Out << ")";
+  }
+
+  void GenWriter::visitAllocaInst(AllocaInst &I) {
+    Out << '(';
+    printType(Out, I.getType());
+    Out << ") alloca(sizeof(";
+    printType(Out, I.getType()->getElementType());
+    Out << ')';
+    if (I.isArrayAllocation()) {
+      Out << " * " ;
+      writeOperand(I.getOperand(0));
+    }
+    Out << ')';
+  }
+
+  void GenWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
+                                     gep_type_iterator E, bool Static) {
+
+    // If there are no indices, just print out the pointer.
+    if (I == E) {
+      writeOperand(Ptr);
+      return;
+    }
+
+    // Find out if the last index is into a vector.  If so, we have to print this
+    // specially.  Since vectors can't have elements of indexable type, only the
+    // last index could possibly be of a vector element.
+    VectorType *LastIndexIsVector = 0;
+    {
+      for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
+        LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
+    }
+
+    Out << "(";
+
+    // If the last index is into a vector, we can't print it as &a[i][j] because
+    // we can't index into a vector with j in GCC.  Instead, emit this as
+    // (((float*)&a[i])+j)
+    if (LastIndexIsVector) {
+      Out << "((";
+      printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
+      Out << ")(";
+    }
+
+    Out << '&';
+
+    // If the first index is 0 (very typical) we can do a number of
+    // simplifications to clean up the code.
+    Value *FirstOp = I.getOperand();
+    if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
+      // First index isn't simple, print it the hard way.
+      writeOperand(Ptr);
+    } else {
+      ++I;  // Skip the zero index.
+
+      // Okay, emit the first operand. If Ptr is something that is already address
+      // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
+      if (isAddressExposed(Ptr)) {
+        writeOperandInternal(Ptr, Static);
+      } else if (I != E && (*I)->isStructTy()) {
+        // If we didn't already emit the first operand, see if we can print it as
+        // P->f instead of "P[0].f"
+        writeOperand(Ptr);
+        Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
+        ++I;  // eat the struct index as well.
+      } else {
+        // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
+        Out << "(*";
+        writeOperand(Ptr);
+        Out << ")";
+      }
+    }
+
+    for (; I != E; ++I) {
+      if ((*I)->isStructTy()) {
+        Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
+      } else if ((*I)->isArrayTy()) {
+        Out << ".array[";
+        writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
+        Out << ']';
+      } else if (!(*I)->isVectorTy()) {
+        Out << '[';
+        writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
+        Out << ']';
+      } else {
+        // If the last index is into a vector, then print it out as "+j)".  This
+        // works with the 'LastIndexIsVector' code above.
+        if (isa<Constant>(I.getOperand()) &&
+            cast<Constant>(I.getOperand())->isNullValue()) {
+          Out << "))";  // avoid "+0".
+        } else {
+          Out << ")+(";
+          writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
+          Out << "))";
+        }
+      }
+    }
+    Out << ")";
+  }
+
+  void GenWriter::writeMemoryAccess(Value *Operand, Type *OperandType,
+                                  bool IsVolatile, unsigned Alignment) {
+
+    bool IsUnaligned = Alignment &&
+      Alignment < TD->getABITypeAlignment(OperandType);
+
+    if (!IsUnaligned)
+      Out << '*';
+    if (IsVolatile || IsUnaligned) {
+      Out << "((";
+      if (IsUnaligned)
+        Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
+      printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
+      if (IsUnaligned) {
+        Out << "; } ";
+        if (IsVolatile) Out << "volatile ";
+        Out << "*";
+      }
+      Out << ")";
+    }
+
+    writeOperand(Operand);
+
+    if (IsVolatile || IsUnaligned) {
+      Out << ')';
+      if (IsUnaligned)
+        Out << "->data";
+    }
+  }
+
+  void GenWriter::visitLoadInst(LoadInst &I) {
+    writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
+                      I.getAlignment());
+
+  }
+
+  void GenWriter::visitStoreInst(StoreInst &I) {
+    writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
+                      I.isVolatile(), I.getAlignment());
+    Out << " = ";
+    Value *Operand = I.getOperand(0);
+    Constant *BitMask = 0;
+    if (IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
+      if (!ITy->isPowerOf2ByteWidth())
+        // We have a bit width that doesn't match an even power-of-2 byte
+        // size. Consequently we must & the value with the type's bit mask
+        BitMask = ConstantInt::get(ITy, ITy->getBitMask());
+    if (BitMask)
+      Out << "((";
+    writeOperand(Operand);
+    if (BitMask) {
+      Out << ") & ";
+      printConstant(BitMask, false);
+      Out << ")";
+    }
+  }
+
+  void GenWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
+    printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
+                       gep_type_end(I), false);
+  }
+
+  void GenWriter::visitVAArgInst(VAArgInst &I) {
+    Out << "va_arg(*(va_list*)";
+    writeOperand(I.getOperand(0));
+    Out << ", ";
+    printType(Out, I.getType());
+    Out << ");\n ";
+  }
+
+  void GenWriter::visitInsertElementInst(InsertElementInst &I) {
+    Type *EltTy = I.getType()->getElementType();
+    writeOperand(I.getOperand(0));
+    Out << ";\n  ";
+    Out << "((";
+    printType(Out, PointerType::getUnqual(EltTy));
+    Out << ")(&" << GetValueName(&I) << "))[";
+    writeOperand(I.getOperand(2));
+    Out << "] = (";
+    writeOperand(I.getOperand(1));
+    Out << ")";
+  }
+
+  void GenWriter::visitExtractElementInst(ExtractElementInst &I) {
+    // We know that our operand is not inlined.
+    Out << "((";
+    Type *EltTy = cast<VectorType>(I.getOperand(0)->getType())->getElementType();
+    printType(Out, PointerType::getUnqual(EltTy));
+    Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
+    writeOperand(I.getOperand(1));
+    Out << "]";
+  }
+
+  void GenWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
+    Out << "(";
+    printType(Out, SVI.getType());
+    Out << "){ ";
+    VectorType *VT = SVI.getType();
+    unsigned NumElts = VT->getNumElements();
+    Type *EltTy = VT->getElementType();
+
+    for (unsigned i = 0; i != NumElts; ++i) {
+      if (i) Out << ", ";
+      int SrcVal = SVI.getMaskValue(i);
+      if ((unsigned)SrcVal >= NumElts*2) {
+        Out << " 0/*undef*/ ";
+      } else {
+        Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
+        if (isa<Instruction>(Op)) {
+          // Do an extractelement of this value from the appropriate input.
+          Out << "((";
+          printType(Out, PointerType::getUnqual(EltTy));
+          Out << ")(&" << GetValueName(Op)
+              << "))[" << (SrcVal & (NumElts-1)) << "]";
+        } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
+          Out << "0";
+        } else {
+          printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal &
+                                                             (NumElts-1)),
+                        false);
+        }
+      }
+    }
+    Out << "}";
+  }
+
+  void GenWriter::visitInsertValueInst(InsertValueInst &IVI) {
+    // Start by copying the entire aggregate value into the result variable.
+    writeOperand(IVI.getOperand(0));
+    Out << ";\n  ";
+
+    // Then do the insert to update the field.
+    Out << GetValueName(&IVI);
+    for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end();
+         i != e; ++i) {
+      Type *IndexedTy =
+        ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(),
+                                         makeArrayRef(b, i+1));
+      if (IndexedTy->isArrayTy())
+        Out << ".array[" << *i << "]";
+      else
+        Out << ".field" << *i;
+    }
+    Out << " = ";
+    writeOperand(IVI.getOperand(1));
+  }
+
+  void GenWriter::visitExtractValueInst(ExtractValueInst &EVI) {
+    Out << "(";
+    if (isa<UndefValue>(EVI.getOperand(0))) {
+      Out << "(";
+      printType(Out, EVI.getType());
+      Out << ") 0/*UNDEF*/";
+    } else {
+      Out << GetValueName(EVI.getOperand(0));
+      for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end();
+           i != e; ++i) {
+        Type *IndexedTy =
+          ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(),
+                                           makeArrayRef(b, i+1));
+        if (IndexedTy->isArrayTy())
+          Out << ".array[" << *i << "]";
+        else
+          Out << ".field" << *i;
+      }
+    }
+    Out << ")";
+  }
+
+  llvm::FunctionPass *createGenPass(ir::Unit &unit) {
+    return new GenWriter(unit);
+  }
+
+} /* namespace gbe */
+
diff --git a/backend/src/llvm/llvm_to_gen.cpp b/backend/src/llvm/llvm_to_gen.cpp
new file mode 100644 (file)
index 0000000..a619dda
--- /dev/null
@@ -0,0 +1,66 @@
+/* 
+ * Copyright © 2012 Intel Corporation
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library. If not, see <http://www.gnu.org/licenses/>.
+ *
+ * Author: Benjamin Segovia <benjamin.segovia@intel.com>
+ */
+
+//===-- llc.cpp - Implement the LLVM Native Code Generator ----------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the llc code generator driver. It provides a convenient
+// command-line interface for generating native assembly-language code
+// or C code, given LLVM bitcode.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/LLVMContext.h"
+#include "llvm/Module.h"
+#include "llvm/PassManager.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/IRReader.h"
+
+#include "llvm/llvm_to_gen.hpp"
+#include "sys/platform.hpp"
+
+namespace gbe
+{
+  llvm::FunctionPass *createGenPass(ir::Unit &unit);
+
+  void llvmToGen(ir::Unit &unit, const char *fileName)
+  {
+    using namespace llvm;
+    // Get the global LLVM context
+    llvm::LLVMContext& c = llvm::getGlobalContext();
+
+    // Get the module from its file
+    SMDiagnostic Err;
+    std::auto_ptr<Module> M;
+    M.reset(ParseIRFile(fileName, Err, c));
+    GBE_ASSERT (M.get() != 0);
+    Module &mod = *M.get();
+
+    llvm::PassManager passes;
+    passes.add(createGenPass(unit));
+    passes.run(mod);
+  }
+} /* namespace gbe */
+
diff --git a/backend/src/llvm/llvm_to_gen.hpp b/backend/src/llvm/llvm_to_gen.hpp
new file mode 100644 (file)
index 0000000..84fa559
--- /dev/null
@@ -0,0 +1,39 @@
+/* 
+ * Copyright © 2012 Intel Corporation
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library. If not, see <http://www.gnu.org/licenses/>.
+ *
+ * Author: Benjamin Segovia <benjamin.segovia@intel.com>
+ */
+
+/**
+ * \file llvm_to_gen.hpp
+ * \author Benjamin Segovia <benjamin.segovia@intel.com>
+ */
+#ifndef __GBE_IR_LLVM_TO_GEN_HPP__
+#define __GBE_IR_LLVM_TO_GEN_HPP__
+
+namespace gbe {
+  namespace ir {
+    // The code is output into an IR unit
+    class Unit;
+  } /* namespace ir */
+
+  /*! Convert the LLVM IR code to a GEN IR code */
+  void llvmToGen(ir::Unit &unit, const char *fileName);
+
+} /* namespace gbe */
+
+#endif /* __GBE_IR_LLVM_TO_GEN_HPP__ */
+
index 0a00536..df37db0 100644 (file)
  */
 
 #include "utest/utest.hpp"
+#include "llvm/llvm_to_gen.hpp"
+#include "ir/unit.hpp"
 #include <cstdlib>
 
-// Transform some llvm code to gen code
-#if 0
-extern "C" int llvmToGen(int argc, char **argv);
-#else
-extern "C" int llvmToGen(const char *fileName);
-#endif
-
-/*! Where the kernels to test are */
-static std::string kernelPath;
+namespace gbe
+{
+  /*! Where the kernels to test are */
+  static std::string kernelPath;
 
-char *copyString(const char *src) {
-  const size_t len = strlen(src);
-  char *dst = GBE_NEW_ARRAY(char, len + 1);
-  std::memcpy(dst, src, len);
-  dst[len] = 0;
-  return dst;
-}
+  char *copyString(const char *src) {
+    const size_t len = strlen(src);
+    char *dst = GBE_NEW_ARRAY(char, len + 1);
+    std::memcpy(dst, src, len);
+    dst[len] = 0;
+    return dst;
+  }
 
-static void utestLLVM2Gen(const char *kernel)
-{
-  const std::string path = kernelPath + kernel;
-#if 0
-  char *toFree[] = {
-    copyString(""),
-    copyString("-march=gen"),
-    copyString(path.c_str())
-  };
-  char *argv[] = {toFree[0], toFree[1], toFree[2]};
-  llvmToGen(3, argv);
-  GBE_DELETE_ARRAY(toFree[0]);
-  GBE_DELETE_ARRAY(toFree[1]);
-  GBE_DELETE_ARRAY(toFree[2]);
-#else
-  llvmToGen(path.c_str());
-#endif
-}
+  static void utestLLVM2Gen(const char *kernel)
+  {
+    const std::string path = kernelPath + kernel;
+    ir::Unit unit;
+    llvmToGen(unit, path.c_str());
+    std::cout << unit << std::endl;
+  }
+} /* namespace gbe */
 
 static void utestLLVM(void)
 {
+  using namespace gbe;
+
   // Try to find where the kernels are
   FILE *dummyKernel = NULL;
 #define TRY_PATH(PATH)                                      \
@@ -87,7 +76,9 @@ runTests:
   GBE_ASSERT(dummyKernel != NULL);
   fclose(dummyKernel);
 
-  UTEST_EXPECT_SUCCESS(utestLLVM2Gen("void.ll"));
+  //UTEST_EXPECT_SUCCESS(utestLLVM2Gen("add.ll"));
+  UTEST_EXPECT_SUCCESS(utestLLVM2Gen("add2.ll"));
+  //UTEST_EXPECT_SUCCESS(utestLLVM2Gen("void.ll"));
 }
 
 UTEST_REGISTER(utestLLVM)