This patch allows iterating typed enum via the ADT/Sequence utility.
Differential Revision: https://reviews.llvm.org/D103900
#ifndef LLVM_ADT_SEQUENCE_H
#define LLVM_ADT_SEQUENCE_H
-#include <cstddef> //std::ptrdiff_t
-#include <iterator> //std::random_access_iterator_tag
+#include <cassert> // assert
+#include <cstddef> // std::ptrdiff_t
+#include <iterator> // std::random_access_iterator_tag
+#include <limits> // std::numeric_limits
+#include <type_traits> // std::underlying_type, std::is_enum
namespace llvm {
namespace detail {
-template <typename T, bool IsReversed> struct iota_range_iterator {
+template <typename T, typename U, bool IsReversed> struct iota_range_iterator {
using iterator_category = std::random_access_iterator_tag;
using value_type = T;
using difference_type = std::ptrdiff_t;
using pointer = T *;
using reference = T &;
-private:
- struct Forward {
- static void increment(T &V) { ++V; }
- static void decrement(T &V) { --V; }
- static void offset(T &V, difference_type Offset) { V += Offset; }
- static T add(const T &V, difference_type Offset) { return V + Offset; }
- static difference_type difference(const T &A, const T &B) { return A - B; }
- };
-
- struct Reverse {
- static void increment(T &V) { --V; }
- static void decrement(T &V) { ++V; }
- static void offset(T &V, difference_type Offset) { V -= Offset; }
- static T add(const T &V, difference_type Offset) { return V - Offset; }
- static difference_type difference(const T &A, const T &B) { return B - A; }
- };
-
- using Op = std::conditional_t<!IsReversed, Forward, Reverse>;
-
-public:
// default-constructible
iota_range_iterator() = default;
// copy-constructible
iota_range_iterator(const iota_range_iterator &) = default;
// value constructor
- explicit iota_range_iterator(T Value) : Value(Value) {}
+ explicit iota_range_iterator(U Value) : Value(Value) {}
// copy-assignable
iota_range_iterator &operator=(const iota_range_iterator &) = default;
// destructible
}
// Dereference
- T operator*() const { return Value; }
- T operator[](difference_type Offset) const { return Op::add(Value, Offset); }
+ T operator*() const { return static_cast<T>(Value); }
+ T operator[](difference_type Offset) const {
+ return static_cast<T>(Op::add(Value, Offset));
+ }
// Arithmetic
iota_range_iterator operator+(difference_type Offset) const {
}
private:
- T Value;
+ struct Forward {
+ static void increment(U &V) { ++V; }
+ static void decrement(U &V) { --V; }
+ static void offset(U &V, difference_type Offset) { V += Offset; }
+ static U add(const U &V, difference_type Offset) { return V + Offset; }
+ static difference_type difference(const U &A, const U &B) {
+ return difference_type(A) - difference_type(B);
+ }
+ };
+
+ struct Reverse {
+ static void increment(U &V) { --V; }
+ static void decrement(U &V) { ++V; }
+ static void offset(U &V, difference_type Offset) { V -= Offset; }
+ static U add(const U &V, difference_type Offset) { return V - Offset; }
+ static difference_type difference(const U &A, const U &B) {
+ return difference_type(B) - difference_type(A);
+ }
+ };
+
+ using Op = std::conditional_t<!IsReversed, Forward, Reverse>;
+
+ U Value;
};
+// Providing std::type_identity for C++14.
+template <class T> struct type_identity { using type = T; };
+
} // namespace detail
-template <typename ValueT> struct iota_range {
- static_assert(std::is_integral<ValueT>::value,
- "ValueT must be an integral type");
+template <typename T> struct iota_range {
+private:
+ using underlying_type =
+ typename std::conditional_t<std::is_enum<T>::value,
+ std::underlying_type<T>,
+ detail::type_identity<T>>::type;
+ using numeric_type =
+ typename std::conditional_t<std::is_signed<underlying_type>::value,
+ intmax_t, uintmax_t>;
+
+ static numeric_type compute_past_end(numeric_type End, bool Inclusive) {
+ if (Inclusive) {
+ // This assertion forbids overflow of `PastEndValue`.
+ assert(End != std::numeric_limits<numeric_type>::max() &&
+ "Forbidden End value for seq_inclusive.");
+ return End + 1;
+ }
+ return End;
+ }
+ static numeric_type raw(T Value) { return static_cast<numeric_type>(Value); }
- using value_type = ValueT;
- using reference = ValueT &;
- using const_reference = const ValueT &;
- using iterator = detail::iota_range_iterator<value_type, false>;
+ numeric_type BeginValue;
+ numeric_type PastEndValue;
+
+public:
+ using value_type = T;
+ using reference = T &;
+ using const_reference = const T &;
+ using iterator = detail::iota_range_iterator<value_type, numeric_type, false>;
using const_iterator = iterator;
- using reverse_iterator = detail::iota_range_iterator<value_type, true>;
+ using reverse_iterator =
+ detail::iota_range_iterator<value_type, numeric_type, true>;
using const_reverse_iterator = reverse_iterator;
using difference_type = std::ptrdiff_t;
using size_type = std::size_t;
- value_type Begin;
- value_type End;
-
- explicit iota_range(ValueT Begin, ValueT End) : Begin(Begin), End(End) {}
+ explicit iota_range(T Begin, T End, bool Inclusive)
+ : BeginValue(raw(Begin)),
+ PastEndValue(compute_past_end(raw(End), Inclusive)) {
+ assert(Begin <= End && "Begin must be less or equal to End.");
+ }
- size_t size() const { return End - Begin; }
- bool empty() const { return Begin == End; }
+ size_t size() const { return PastEndValue - BeginValue; }
+ bool empty() const { return BeginValue == PastEndValue; }
- auto begin() const { return const_iterator(Begin); }
- auto end() const { return const_iterator(End); }
+ auto begin() const { return const_iterator(BeginValue); }
+ auto end() const { return const_iterator(PastEndValue); }
- auto rbegin() const { return const_reverse_iterator(End - 1); }
- auto rend() const { return const_reverse_iterator(Begin - 1); }
+ auto rbegin() const { return const_reverse_iterator(PastEndValue - 1); }
+ auto rend() const {
+ assert(std::is_unsigned<numeric_type>::value ||
+ BeginValue != std::numeric_limits<numeric_type>::min() &&
+ "Forbidden Begin value for reverse iteration");
+ return const_reverse_iterator(BeginValue - 1);
+ }
private:
- static_assert(std::is_same<ValueT, std::remove_cv_t<ValueT>>::value,
- "ValueT must not be const nor volatile");
+ static_assert(std::is_integral<T>::value || std::is_enum<T>::value,
+ "T must be an integral or enum type");
+ static_assert(std::is_same<T, std::remove_cv_t<T>>::value,
+ "T must not be const nor volatile");
+ static_assert(std::is_integral<numeric_type>::value,
+ "numeric_type must be an integral type");
};
-template <typename ValueT> auto seq(ValueT Begin, ValueT End) {
- return iota_range<ValueT>(Begin, End);
+/// Iterate over an integral/enum type from Begin up to - but not including -
+/// End.
+/// Note on enum iteration: `seq` will generate each consecutive value, even if
+/// no enumerator with that value exists.
+template <typename T> auto seq(T Begin, T End) {
+ return iota_range<T>(Begin, End, false);
+}
+
+/// Iterate over an integral/enum type from Begin to End inclusive.
+/// Note on enum iteration: `seq_inclusive` will generate each consecutive
+/// value, even if no enumerator with that value exists.
+/// To prevent overflow, `End` must be different from INTMAX_MAX if T is signed
+/// (resp. UINTMAX_MAX if T is unsigned).
+template <typename T> auto seq_inclusive(T Begin, T End) {
+ return iota_range<T>(Begin, End, true);
}
} // end namespace llvm
#ifndef LLVM_SUPPORT_MACHINEVALUETYPE_H
#define LLVM_SUPPORT_MACHINEVALUETYPE_H
+#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
/// returned as Other, otherwise they are invalid.
static MVT getVT(Type *Ty, bool HandleUnknown = false);
- private:
- /// A simple iterator over the MVT::SimpleValueType enum.
- struct mvt_iterator {
- SimpleValueType VT;
-
- mvt_iterator(SimpleValueType VT) : VT(VT) {}
-
- MVT operator*() const { return VT; }
- bool operator!=(const mvt_iterator &LHS) const { return VT != LHS.VT; }
-
- mvt_iterator& operator++() {
- VT = (MVT::SimpleValueType)((int)VT + 1);
- assert((int)VT <= MVT::MAX_ALLOWED_VALUETYPE &&
- "MVT iterator overflowed.");
- return *this;
- }
- };
-
- /// A range of the MVT::SimpleValueType enum.
- using mvt_range = iterator_range<mvt_iterator>;
-
public:
/// SimpleValueType Iteration
/// @{
- static mvt_range all_valuetypes() {
- return mvt_range(MVT::FIRST_VALUETYPE,
- (MVT::SimpleValueType)(MVT::LAST_VALUETYPE + 1));
+ static auto all_valuetypes() {
+ return seq_inclusive(MVT::FIRST_VALUETYPE, MVT::LAST_VALUETYPE);
}
- static mvt_range integer_valuetypes() {
- return mvt_range(MVT::FIRST_INTEGER_VALUETYPE,
- (MVT::SimpleValueType)(MVT::LAST_INTEGER_VALUETYPE + 1));
+ static auto integer_valuetypes() {
+ return seq_inclusive(MVT::FIRST_INTEGER_VALUETYPE,
+ MVT::LAST_INTEGER_VALUETYPE);
}
- static mvt_range fp_valuetypes() {
- return mvt_range(MVT::FIRST_FP_VALUETYPE,
- (MVT::SimpleValueType)(MVT::LAST_FP_VALUETYPE + 1));
+ static auto fp_valuetypes() {
+ return seq_inclusive(MVT::FIRST_FP_VALUETYPE, MVT::LAST_FP_VALUETYPE);
}
- static mvt_range vector_valuetypes() {
- return mvt_range(MVT::FIRST_VECTOR_VALUETYPE,
- (MVT::SimpleValueType)(MVT::LAST_VECTOR_VALUETYPE + 1));
+ static auto vector_valuetypes() {
+ return seq_inclusive(MVT::FIRST_VECTOR_VALUETYPE,
+ MVT::LAST_VECTOR_VALUETYPE);
}
- static mvt_range fixedlen_vector_valuetypes() {
- return mvt_range(
- MVT::FIRST_FIXEDLEN_VECTOR_VALUETYPE,
- (MVT::SimpleValueType)(MVT::LAST_FIXEDLEN_VECTOR_VALUETYPE + 1));
+ static auto fixedlen_vector_valuetypes() {
+ return seq_inclusive(MVT::FIRST_FIXEDLEN_VECTOR_VALUETYPE,
+ MVT::LAST_FIXEDLEN_VECTOR_VALUETYPE);
}
- static mvt_range scalable_vector_valuetypes() {
- return mvt_range(
- MVT::FIRST_SCALABLE_VECTOR_VALUETYPE,
- (MVT::SimpleValueType)(MVT::LAST_SCALABLE_VECTOR_VALUETYPE + 1));
+ static auto scalable_vector_valuetypes() {
+ return seq_inclusive(MVT::FIRST_SCALABLE_VECTOR_VALUETYPE,
+ MVT::LAST_SCALABLE_VECTOR_VALUETYPE);
}
- static mvt_range integer_fixedlen_vector_valuetypes() {
- return mvt_range(
- MVT::FIRST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE,
- (MVT::SimpleValueType)(MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE + 1));
+ static auto integer_fixedlen_vector_valuetypes() {
+ return seq_inclusive(MVT::FIRST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE,
+ MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE);
}
- static mvt_range fp_fixedlen_vector_valuetypes() {
- return mvt_range(
- MVT::FIRST_FP_FIXEDLEN_VECTOR_VALUETYPE,
- (MVT::SimpleValueType)(MVT::LAST_FP_FIXEDLEN_VECTOR_VALUETYPE + 1));
+ static auto fp_fixedlen_vector_valuetypes() {
+ return seq_inclusive(MVT::FIRST_FP_FIXEDLEN_VECTOR_VALUETYPE,
+ MVT::LAST_FP_FIXEDLEN_VECTOR_VALUETYPE);
}
- static mvt_range integer_scalable_vector_valuetypes() {
- return mvt_range(
- MVT::FIRST_INTEGER_SCALABLE_VECTOR_VALUETYPE,
- (MVT::SimpleValueType)(MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE + 1));
+ static auto integer_scalable_vector_valuetypes() {
+ return seq_inclusive(MVT::FIRST_INTEGER_SCALABLE_VECTOR_VALUETYPE,
+ MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE);
}
- static mvt_range fp_scalable_vector_valuetypes() {
- return mvt_range(
- MVT::FIRST_FP_SCALABLE_VECTOR_VALUETYPE,
- (MVT::SimpleValueType)(MVT::LAST_FP_SCALABLE_VECTOR_VALUETYPE + 1));
+ static auto fp_scalable_vector_valuetypes() {
+ return seq_inclusive(MVT::FIRST_FP_SCALABLE_VECTOR_VALUETYPE,
+ MVT::LAST_FP_SCALABLE_VECTOR_VALUETYPE);
}
/// @}
};
EVT InVT = InOp.getValueType();
if (InVT.getSizeInBits() != VT.getSizeInBits()) {
EVT InEltVT = InVT.getVectorElementType();
- for (int i = MVT::FIRST_VECTOR_VALUETYPE, e = MVT::LAST_VECTOR_VALUETYPE; i < e; ++i) {
- EVT FixedVT = (MVT::SimpleValueType)i;
+ for (EVT FixedVT : MVT::vector_valuetypes()) {
EVT FixedEltVT = FixedVT.getVectorElementType();
if (TLI.isTypeLegal(FixedVT) &&
FixedVT.getSizeInBits() == VT.getSizeInBits() &&
if (!Scalable && Width == WidenEltWidth)
return RetVT;
- // See if there is larger legal integer than the element type to load/store.
- unsigned VT;
// Don't bother looking for an integer type if the vector is scalable, skip
// to vector types.
if (!Scalable) {
- for (VT = (unsigned)MVT::LAST_INTEGER_VALUETYPE;
- VT >= (unsigned)MVT::FIRST_INTEGER_VALUETYPE; --VT) {
- EVT MemVT((MVT::SimpleValueType) VT);
+ // See if there is larger legal integer than the element type to load/store.
+ for (EVT MemVT : reverse(MVT::integer_valuetypes())) {
unsigned MemVTWidth = MemVT.getSizeInBits();
if (MemVT.getSizeInBits() <= WidenEltWidth)
break;
// See if there is a larger vector type to load/store that has the same vector
// element type and is evenly divisible with the WidenVT.
- for (VT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
- VT >= (unsigned)MVT::FIRST_VECTOR_VALUETYPE; --VT) {
- EVT MemVT = (MVT::SimpleValueType) VT;
+ for (EVT MemVT : reverse(MVT::vector_valuetypes())) {
// Skip vector MVTs which don't match the scalable property of WidenVT.
if (Scalable != MemVT.isScalableVector())
continue;
continue;
case X86::OperandType::OPERAND_COND_CODE: {
Exploration = true;
- auto CondCodes = seq((int)X86::CondCode::COND_O,
- 1 + (int)X86::CondCode::LAST_VALID_COND);
- Choices.reserve(std::distance(CondCodes.begin(), CondCodes.end()));
+ auto CondCodes =
+ seq_inclusive(X86::CondCode::COND_O, X86::CondCode::LAST_VALID_COND);
+ Choices.reserve(CondCodes.size());
for (int CondCode : CondCodes)
Choices.emplace_back(MCOperand::createImm(CondCode));
break;
AttrPtrVecVecTy &AttributeSetsToPreserve) {
assert(AttributeSetsToPreserve.empty() && "Should not be sharing vectors.");
AttributeSetsToPreserve.reserve(AL.getNumAttrSets());
- for (unsigned SetIdx : seq(AL.index_begin(), AL.index_end())) {
+ for (unsigned SetIdx = AL.index_begin(), SetEndIdx = AL.index_end();
+ SetIdx != SetEndIdx; ++SetIdx) {
AttrPtrIdxVecVecTy AttributesToPreserve;
AttributesToPreserve.first = SetIdx;
visitAttributeSet(AL.getAttributes(AttributesToPreserve.first),
//===----------------------------------------------------------------------===//
#include "llvm/ADT/Sequence.h"
+#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <list>
using namespace llvm;
+using testing::ElementsAre;
+
namespace {
TEST(SequenceTest, Forward) {
EXPECT_EQ(Backward[2], 7);
}
+enum class CharEnum : char { A = 1, B, C, D, E };
+
+TEST(SequenceTest, ForwardIteration) {
+ EXPECT_THAT(seq_inclusive(CharEnum::C, CharEnum::E),
+ ElementsAre(CharEnum::C, CharEnum::D, CharEnum::E));
+}
+
+TEST(SequenceTest, BackwardIteration) {
+ EXPECT_THAT(reverse(seq_inclusive(CharEnum::B, CharEnum::D)),
+ ElementsAre(CharEnum::D, CharEnum::C, CharEnum::B));
+}
+
+using IntegralTypes =
+ testing::Types<uint8_t, uint16_t, uint32_t, uint64_t, uintmax_t, //
+ int8_t, int16_t, int32_t, int64_t, intmax_t>;
+
+template <class T> class SequenceTest : public testing::Test {
+public:
+ const T min = std::numeric_limits<T>::min();
+ const T minp1 = min + 1;
+ const T max = std::numeric_limits<T>::max();
+ const T maxm1 = max - 1;
+
+ void checkIteration() const {
+ // Forward
+ EXPECT_THAT(seq(min, min), ElementsAre());
+ EXPECT_THAT(seq(min, minp1), ElementsAre(min));
+ EXPECT_THAT(seq(maxm1, max), ElementsAre(maxm1));
+ EXPECT_THAT(seq(max, max), ElementsAre());
+ // Reverse
+ if (!std::is_same<T, intmax_t>::value) {
+ EXPECT_THAT(reverse(seq(min, min)), ElementsAre());
+ EXPECT_THAT(reverse(seq(min, minp1)), ElementsAre(min));
+ }
+ EXPECT_THAT(reverse(seq(maxm1, max)), ElementsAre(maxm1));
+ EXPECT_THAT(reverse(seq(max, max)), ElementsAre());
+ // Inclusive
+ EXPECT_THAT(seq_inclusive(min, min), ElementsAre(min));
+ EXPECT_THAT(seq_inclusive(min, minp1), ElementsAre(min, minp1));
+ EXPECT_THAT(seq_inclusive(maxm1, maxm1), ElementsAre(maxm1));
+ // Inclusive Reverse
+ if (!std::is_same<T, intmax_t>::value) {
+ EXPECT_THAT(reverse(seq_inclusive(min, min)), ElementsAre(min));
+ EXPECT_THAT(reverse(seq_inclusive(min, minp1)), ElementsAre(minp1, min));
+ }
+ EXPECT_THAT(reverse(seq_inclusive(maxm1, maxm1)), ElementsAre(maxm1));
+ }
+
+ void checkIterators() const {
+ auto checkValidIterators = [](auto sequence) {
+ EXPECT_LE(sequence.begin(), sequence.end());
+ };
+ checkValidIterators(seq(min, min));
+ checkValidIterators(seq(max, max));
+ checkValidIterators(seq_inclusive(min, min));
+ checkValidIterators(seq_inclusive(maxm1, maxm1));
+ }
+};
+TYPED_TEST_SUITE(SequenceTest, IntegralTypes);
+TYPED_TEST(SequenceTest, Boundaries) {
+ this->checkIteration();
+ this->checkIterators();
+}
+
+#if defined(GTEST_HAS_DEATH_TEST) && !defined(NDEBUG)
+template <class T> class SequenceDeathTest : public SequenceTest<T> {
+public:
+ using SequenceTest<T>::min;
+ using SequenceTest<T>::minp1;
+ using SequenceTest<T>::max;
+ using SequenceTest<T>::maxm1;
+
+ void checkInvalidOrder() const {
+ EXPECT_DEATH(seq(max, min), "Begin must be less or equal to End.");
+ EXPECT_DEATH(seq(minp1, min), "Begin must be less or equal to End.");
+ EXPECT_DEATH(seq_inclusive(maxm1, min),
+ "Begin must be less or equal to End.");
+ EXPECT_DEATH(seq_inclusive(minp1, min),
+ "Begin must be less or equal to End.");
+ }
+ void checkInvalidValues() const {
+ if (std::is_same<T, intmax_t>::value || std::is_same<T, uintmax_t>::value) {
+ EXPECT_DEATH(seq_inclusive(min, max),
+ "Forbidden End value for seq_inclusive.");
+ EXPECT_DEATH(seq_inclusive(minp1, max),
+ "Forbidden End value for seq_inclusive.");
+ }
+ if (std::is_same<T, intmax_t>::value) {
+ EXPECT_DEATH(reverse(seq(min, min)),
+ "Forbidden Begin value for reverse iteration");
+ EXPECT_DEATH(reverse(seq_inclusive(min, min)),
+ "Forbidden Begin value for reverse iteration");
+ // Note it is fine to use `Begin == 0` when `iota_range::numeric_type ==
+ // uintmax_t` as unsigned integer underflow is well-defined.
+ }
+ }
+};
+TYPED_TEST_SUITE(SequenceDeathTest, IntegralTypes);
+TYPED_TEST(SequenceDeathTest, DeathTests) {
+ this->checkInvalidOrder();
+ this->checkInvalidValues();
+}
+#endif // defined(GTEST_HAS_DEATH_TEST) && !defined(NDEBUG)
+
} // anonymous namespace
namespace {
TEST(ScalableVectorMVTsTest, IntegerMVTs) {
- for (auto VecTy : MVT::integer_scalable_vector_valuetypes()) {
+ for (MVT VecTy : MVT::integer_scalable_vector_valuetypes()) {
ASSERT_TRUE(VecTy.isValid());
ASSERT_TRUE(VecTy.isInteger());
ASSERT_TRUE(VecTy.isVector());
}
TEST(ScalableVectorMVTsTest, FloatMVTs) {
- for (auto VecTy : MVT::fp_scalable_vector_valuetypes()) {
+ for (MVT VecTy : MVT::fp_scalable_vector_valuetypes()) {
ASSERT_TRUE(VecTy.isValid());
ASSERT_TRUE(VecTy.isFloatingPoint());
ASSERT_TRUE(VecTy.isVector());
}
TEST(ConstantRange, ICmp) {
- for (auto Pred : seq<unsigned>(CmpInst::Predicate::FIRST_ICMP_PREDICATE,
- 1 + CmpInst::Predicate::LAST_ICMP_PREDICATE))
- ICmpTestImpl((CmpInst::Predicate)Pred);
+ for (auto Pred : seq_inclusive(CmpInst::Predicate::FIRST_ICMP_PREDICATE,
+ CmpInst::Predicate::LAST_ICMP_PREDICATE))
+ ICmpTestImpl(Pred);
}
TEST(ConstantRange, MakeGuaranteedNoWrapRegion) {
unsigned endPos = map.getResults().back().cast<AffineDimExpr>().getPosition();
AffineExpr expr;
SmallVector<Value, 2> dynamicDims;
- for (auto dim : llvm::seq(startPos, endPos + 1)) {
+ for (auto dim : llvm::seq_inclusive(startPos, endPos)) {
dynamicDims.push_back(builder.createOrFold<tensor::DimOp>(loc, src, dim));
AffineExpr currExpr = builder.getAffineSymbolExpr(dim - startPos);
expr = (expr ? expr * currExpr : currExpr);
map.value().getResults().front().cast<AffineDimExpr>().getPosition();
unsigned endPos =
map.value().getResults().back().cast<AffineDimExpr>().getPosition();
- for (auto dim : llvm::seq(startPos, endPos + 1)) {
+ for (auto dim : llvm::seq_inclusive(startPos, endPos)) {
expandedDimToCollapsedDim[dim] = map.index();
}
}