bool X86SelectFPExt(const Instruction *I);
bool X86SelectFPTrunc(const Instruction *I);
- bool X86SelectCall(const Instruction *I);
-
- bool DoSelectCall(const Instruction *I, const char *MemIntName);
-
const X86InstrInfo *getInstrInfo() const {
return getTargetMachine()->getInstrInfo();
}
return true;
}
-bool X86FastISel::X86SelectCall(const Instruction *I) {
- const CallInst *CI = cast<CallInst>(I);
- const Value *Callee = CI->getCalledValue();
-
- // Can't handle inline asm yet.
- if (isa<InlineAsm>(Callee))
- return false;
-
- // Skip intrinsic calls - we already handled these.
- if (isa<IntrinsicInst>(CI))
- return false;
-
- // Allow SelectionDAG isel to handle tail calls.
- if (cast<CallInst>(I)->isTailCall())
- return false;
-
- return DoSelectCall(I, nullptr);
-}
-
static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget,
CallingConv::ID CC,
ImmutableCallSite *CS) {
return 4;
}
-// Select either a call, or an llvm.memcpy/memmove/memset intrinsic
-bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) {
- const CallInst *CI = cast<CallInst>(I);
- const Value *Callee = CI->getCalledValue();
-
- // Handle only C and fastcc calling conventions for now.
- ImmutableCallSite CS(CI);
- CallingConv::ID CC = CS.getCallingConv();
- bool isWin64 = Subtarget->isCallingConvWin64(CC);
- if (CC != CallingConv::C && CC != CallingConv::Fast &&
- CC != CallingConv::X86_FastCall && CC != CallingConv::X86_64_Win64 &&
- CC != CallingConv::X86_64_SysV)
- return false;
-
- // fastcc with -tailcallopt is intended to provide a guaranteed
- // tail call optimization. Fastisel doesn't know how to do that.
- if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
- return false;
-
- PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
- FunctionType *FTy = cast<FunctionType>(PT->getElementType());
- bool isVarArg = FTy->isVarArg();
-
- // Don't know how to handle Win64 varargs yet. Nothing special needed for
- // x86-32. Special handling for x86-64 is implemented.
- if (isVarArg && isWin64)
- return false;
-
- // Don't know about inalloca yet.
- if (CS.hasInAllocaArgument())
- return false;
-
- // Fast-isel doesn't know about callee-pop yet.
- if (X86::isCalleePop(CC, Subtarget->is64Bit(), isVarArg,
- TM.Options.GuaranteedTailCallOpt))
- return false;
-
- // Check whether the function can return without sret-demotion.
- SmallVector<ISD::OutputArg, 4> Outs;
- GetReturnInfo(I->getType(), CS.getAttributes(), Outs, TLI);
- bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
- *FuncInfo.MF, FTy->isVarArg(),
- Outs, FTy->getContext());
- if (!CanLowerReturn)
- return false;
-
- // Materialize callee address in a register. FIXME: GV address can be
- // handled with a CALLpcrel32 instead.
- X86AddressMode CalleeAM;
- if (!X86SelectCallAddress(Callee, CalleeAM))
- return false;
- unsigned CalleeOp = 0;
- const GlobalValue *GV = nullptr;
- if (CalleeAM.GV != nullptr) {
- GV = CalleeAM.GV;
- } else if (CalleeAM.Base.Reg != 0) {
- CalleeOp = CalleeAM.Base.Reg;
- } else
- return false;
-
- // Deal with call operands first.
- SmallVector<const Value *, 8> ArgVals;
- SmallVector<unsigned, 8> Args;
- SmallVector<MVT, 8> ArgVTs;
- SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
- unsigned arg_size = CS.arg_size();
- Args.reserve(arg_size);
- ArgVals.reserve(arg_size);
- ArgVTs.reserve(arg_size);
- ArgFlags.reserve(arg_size);
- for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
- i != e; ++i) {
- // If we're lowering a mem intrinsic instead of a regular call, skip the
- // last two arguments, which should not passed to the underlying functions.
- if (MemIntName && e-i <= 2)
- break;
- Value *ArgVal = *i;
- ISD::ArgFlagsTy Flags;
- unsigned AttrInd = i - CS.arg_begin() + 1;
- if (CS.paramHasAttr(AttrInd, Attribute::SExt))
- Flags.setSExt();
- if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
- Flags.setZExt();
-
- if (CS.paramHasAttr(AttrInd, Attribute::ByVal)) {
- PointerType *Ty = cast<PointerType>(ArgVal->getType());
- Type *ElementTy = Ty->getElementType();
- unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
- unsigned FrameAlign = CS.getParamAlignment(AttrInd);
- if (!FrameAlign)
- FrameAlign = TLI.getByValTypeAlignment(ElementTy);
- Flags.setByVal();
- Flags.setByValSize(FrameSize);
- Flags.setByValAlign(FrameAlign);
- if (!IsMemcpySmall(FrameSize))
- return false;
- }
-
- if (CS.paramHasAttr(AttrInd, Attribute::InReg))
- Flags.setInReg();
- if (CS.paramHasAttr(AttrInd, Attribute::Nest))
- Flags.setNest();
-
- // If this is an i1/i8/i16 argument, promote to i32 to avoid an extra
- // instruction. This is safe because it is common to all fastisel supported
- // calling conventions on x86.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(ArgVal)) {
- if (CI->getBitWidth() == 1 || CI->getBitWidth() == 8 ||
- CI->getBitWidth() == 16) {
- if (Flags.isSExt())
- ArgVal = ConstantExpr::getSExt(CI,Type::getInt32Ty(CI->getContext()));
- else
- ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext()));
- }
- }
-
- unsigned ArgReg;
-
- // Passing bools around ends up doing a trunc to i1 and passing it.
- // Codegen this as an argument + "and 1".
- if (ArgVal->getType()->isIntegerTy(1) && isa<TruncInst>(ArgVal) &&
- cast<TruncInst>(ArgVal)->getParent() == I->getParent() &&
- ArgVal->hasOneUse()) {
- ArgVal = cast<TruncInst>(ArgVal)->getOperand(0);
- ArgReg = getRegForValue(ArgVal);
- if (ArgReg == 0) return false;
-
- MVT ArgVT;
- if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false;
-
- ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg,
- ArgVal->hasOneUse(), 1);
- } else {
- ArgReg = getRegForValue(ArgVal);
- }
-
- if (ArgReg == 0) return false;
-
- Type *ArgTy = ArgVal->getType();
- MVT ArgVT;
- if (!isTypeLegal(ArgTy, ArgVT))
- return false;
- if (ArgVT == MVT::x86mmx)
- return false;
- unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
- Flags.setOrigAlign(OriginalAlignment);
-
- Args.push_back(ArgReg);
- ArgVals.push_back(ArgVal);
- ArgVTs.push_back(ArgVT);
- ArgFlags.push_back(Flags);
- }
-
- // Analyze operands of the call, assigning locations to each operand.
- SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs,
- I->getParent()->getContext());
-
- // Allocate shadow area for Win64
- if (isWin64)
- CCInfo.AllocateStack(32, 8);
-
- CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86);
-
- // Get a count of how many bytes are to be pushed on the stack.
- unsigned NumBytes = CCInfo.getNextStackOffset();
-
- // Issue CALLSEQ_START
- unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
- .addImm(NumBytes);
-
- // Process argument: walk the register/memloc assignments, inserting
- // copies / loads.
- SmallVector<unsigned, 4> RegArgs;
- for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
- CCValAssign &VA = ArgLocs[i];
- unsigned Arg = Args[VA.getValNo()];
- EVT ArgVT = ArgVTs[VA.getValNo()];
-
- // Promote the value if needed.
- switch (VA.getLocInfo()) {
- case CCValAssign::Full: break;
- case CCValAssign::SExt: {
- assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
- "Unexpected extend");
- bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
- Arg, ArgVT, Arg);
- assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
- ArgVT = VA.getLocVT();
- break;
- }
- case CCValAssign::ZExt: {
- assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
- "Unexpected extend");
- bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
- Arg, ArgVT, Arg);
- assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
- ArgVT = VA.getLocVT();
- break;
- }
- case CCValAssign::AExt: {
- assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
- "Unexpected extend");
- bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
- Arg, ArgVT, Arg);
- if (!Emitted)
- Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
- Arg, ArgVT, Arg);
- if (!Emitted)
- Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
- Arg, ArgVT, Arg);
-
- assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
- ArgVT = VA.getLocVT();
- break;
- }
- case CCValAssign::BCvt: {
- unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(),
- ISD::BITCAST, Arg, /*TODO: Kill=*/false);
- assert(BC != 0 && "Failed to emit a bitcast!");
- Arg = BC;
- ArgVT = VA.getLocVT();
- break;
- }
- case CCValAssign::VExt:
- // VExt has not been implemented, so this should be impossible to reach
- // for now. However, fallback to Selection DAG isel once implemented.
- return false;
- case CCValAssign::Indirect:
- // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
- // support this.
- return false;
- case CCValAssign::FPExt:
- llvm_unreachable("Unexpected loc info!");
- }
-
- if (VA.isRegLoc()) {
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
- RegArgs.push_back(VA.getLocReg());
- } else {
- unsigned LocMemOffset = VA.getLocMemOffset();
- X86AddressMode AM;
- const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo*>(
- getTargetMachine()->getRegisterInfo());
- AM.Base.Reg = RegInfo->getStackRegister();
- AM.Disp = LocMemOffset;
- const Value *ArgVal = ArgVals[VA.getValNo()];
- ISD::ArgFlagsTy Flags = ArgFlags[VA.getValNo()];
-
- if (Flags.isByVal()) {
- X86AddressMode SrcAM;
- SrcAM.Base.Reg = Arg;
- bool Res = TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize());
- assert(Res && "memcpy length already checked!"); (void)Res;
- } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
- // If this is a really simple value, emit this with the Value* version
- // of X86FastEmitStore. If it isn't simple, we don't want to do this,
- // as it can cause us to reevaluate the argument.
- if (!X86FastEmitStore(ArgVT, ArgVal, AM))
- return false;
- } else {
- if (!X86FastEmitStore(ArgVT, Arg, /*ValIsKill=*/false, AM))
- return false;
- }
- }
- }
-
- // ELF / PIC requires GOT in the EBX register before function calls via PLT
- // GOT pointer.
- if (Subtarget->isPICStyleGOT()) {
- unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
- }
-
- if (Subtarget->is64Bit() && isVarArg && !isWin64) {
- // Count the number of XMM registers allocated.
- static const MCPhysReg XMMArgRegs[] = {
- X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
- X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
- };
- unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
- X86::AL).addImm(NumXMMRegs);
- }
-
- // Issue the call.
- MachineInstrBuilder MIB;
- if (CalleeOp) {
- // Register-indirect call.
- unsigned CallOpc;
- if (Subtarget->is64Bit())
- CallOpc = X86::CALL64r;
- else
- CallOpc = X86::CALL32r;
- MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
- .addReg(CalleeOp);
-
- } else {
- // Direct call.
- assert(GV && "Not a direct call");
- unsigned CallOpc;
- if (Subtarget->is64Bit())
- CallOpc = X86::CALL64pcrel32;
- else
- CallOpc = X86::CALLpcrel32;
-
- // See if we need any target-specific flags on the GV operand.
- unsigned char OpFlags = 0;
-
- // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
- // external symbols most go through the PLT in PIC mode. If the symbol
- // has hidden or protected visibility, or if it is static or local, then
- // we don't need to use the PLT - we can directly call it.
- if (Subtarget->isTargetELF() &&
- TM.getRelocationModel() == Reloc::PIC_ &&
- GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
- OpFlags = X86II::MO_PLT;
- } else if (Subtarget->isPICStyleStubAny() &&
- (GV->isDeclaration() || GV->isWeakForLinker()) &&
- (!Subtarget->getTargetTriple().isMacOSX() ||
- Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
- // PC-relative references to external symbols should go through $stub,
- // unless we're building with the leopard linker or later, which
- // automatically synthesizes these stubs.
- OpFlags = X86II::MO_DARWIN_STUB;
- }
-
-
- MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
- if (MemIntName)
- MIB.addExternalSymbol(MemIntName, OpFlags);
- else
- MIB.addGlobalAddress(GV, 0, OpFlags);
- }
-
- // Add a register mask with the call-preserved registers.
- // Proper defs for return values will be added by setPhysRegsDeadExcept().
- MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv()));
-
- // Add an implicit use GOT pointer in EBX.
- if (Subtarget->isPICStyleGOT())
- MIB.addReg(X86::EBX, RegState::Implicit);
-
- if (Subtarget->is64Bit() && isVarArg && !isWin64)
- MIB.addReg(X86::AL, RegState::Implicit);
-
- // Add implicit physical register uses to the call.
- for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
- MIB.addReg(RegArgs[i], RegState::Implicit);
-
- // Issue CALLSEQ_END
- unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
- unsigned NumBytesCallee = computeBytesPoppedByCallee(Subtarget, CC, &CS);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
- .addImm(NumBytes).addImm(NumBytesCallee);
-
- // Build info for return calling conv lowering code.
- // FIXME: This is practically a copy-paste from TargetLowering::LowerCallTo.
- SmallVector<ISD::InputArg, 32> Ins;
- SmallVector<EVT, 4> RetTys;
- ComputeValueVTs(TLI, I->getType(), RetTys);
- for (unsigned i = 0, e = RetTys.size(); i != e; ++i) {
- EVT VT = RetTys[i];
- MVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT);
- unsigned NumRegs = TLI.getNumRegisters(I->getParent()->getContext(), VT);
- for (unsigned j = 0; j != NumRegs; ++j) {
- ISD::InputArg MyFlags;
- MyFlags.VT = RegisterVT;
- MyFlags.Used = !CS.getInstruction()->use_empty();
- if (CS.paramHasAttr(0, Attribute::SExt))
- MyFlags.Flags.setSExt();
- if (CS.paramHasAttr(0, Attribute::ZExt))
- MyFlags.Flags.setZExt();
- if (CS.paramHasAttr(0, Attribute::InReg))
- MyFlags.Flags.setInReg();
- Ins.push_back(MyFlags);
- }
- }
-
- // Now handle call return values.
- SmallVector<unsigned, 4> UsedRegs;
- SmallVector<CCValAssign, 16> RVLocs;
- CCState CCRetInfo(CC, false, *FuncInfo.MF, TM, RVLocs,
- I->getParent()->getContext());
- unsigned ResultReg = FuncInfo.CreateRegs(I->getType());
- CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
- for (unsigned i = 0; i != RVLocs.size(); ++i) {
- EVT CopyVT = RVLocs[i].getValVT();
- unsigned CopyReg = ResultReg + i;
-
- // If this is a call to a function that returns an fp value on the x87 fp
- // stack, but where we prefer to use the value in xmm registers, copy it
- // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
- if ((RVLocs[i].getLocReg() == X86::ST0 ||
- RVLocs[i].getLocReg() == X86::ST1)) {
- if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
- CopyVT = MVT::f80;
- CopyReg = createResultReg(&X86::RFP80RegClass);
- }
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(X86::FpPOP_RETVAL), CopyReg);
- } else {
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(TargetOpcode::COPY),
- CopyReg).addReg(RVLocs[i].getLocReg());
- UsedRegs.push_back(RVLocs[i].getLocReg());
- }
-
- if (CopyVT != RVLocs[i].getValVT()) {
- // Round the F80 the right size, which also moves to the appropriate xmm
- // register. This is accomplished by storing the F80 value in memory and
- // then loading it back. Ewww...
- EVT ResVT = RVLocs[i].getValVT();
- unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
- unsigned MemSize = ResVT.getSizeInBits()/8;
- int FI = MFI.CreateStackObject(MemSize, MemSize, false);
- addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(Opc)), FI)
- .addReg(CopyReg);
- Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
- addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(Opc), ResultReg + i), FI);
- }
- }
-
- if (RVLocs.size())
- UpdateValueMap(I, ResultReg, RVLocs.size());
-
- // Set all unused physreg defs as dead.
- static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
-
- return true;
-}
-
bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
auto &OutVals = CLI.OutVals;
auto &OutFlags = CLI.OutFlags;
return X86SelectZExt(I);
case Instruction::Br:
return X86SelectBranch(I);
- case Instruction::Call:
- return X86SelectCall(I);
case Instruction::LShr:
case Instruction::AShr:
case Instruction::Shl: