*/
std::vector<std::string> input_names;
input_names.reserve(prev_inputs.size());
- std::transform(prev_inputs.begin(), prev_inputs.end(),
- std::back_inserter(input_names),
- [](auto const &vg) -> const auto &{ return vg->getName(); });
+ std::transform(
+ prev_inputs.begin(), prev_inputs.end(), std::back_inserter(input_names),
+ [](auto const &vg) -> const auto & { return vg->getName(); });
const std::vector<Var_Grad *> &inputs = tensor_manager->requestInputs(
gnode, init_context.getInputDimensions(), input_names);
return outputs;
}
+
#ifdef ENABLE_TEST
std::map<std::string, std::vector<unsigned int>>
sharedConstTensors &labels) {
std::vector<Tensor> ins;
- std::transform(inputs.begin(), inputs.end(), std::back_inserter(ins),
- [](auto const &val) -> const auto &{ return *val.get(); });
+ std::transform(
+ inputs.begin(), inputs.end(), std::back_inserter(ins),
+ [](auto const &val) -> const auto & { return *val.get(); });
std::vector<Tensor> labs;
- std::transform(labels.begin(), labels.end(), std::back_inserter(labs),
- [](auto const &val) -> const auto &{ return *val.get(); });
+ std::transform(
+ labels.begin(), labels.end(), std::back_inserter(labs),
+ [](auto const &val) -> const auto & { return *val.get(); });
setInputsLabels(ins, labs);
}
// this must match training (verify only forwarding output values) for 2 iterations with tolerance 1.2e-4
// mkResNet18Tc(2, ModelTestOption::COMPARE)
}
-), [](const testing::TestParamInfo<nntrainerModelTest::ParamType>& info){
+), [](const testing::TestParamInfo<nntrainerModelTest::ParamType>& info) -> const auto &{
return std::get<1>(info.param);
});
// clang-format on