Transforms: Move GlobalOpt's Evaluator to Utils where it can be reused.
authorPeter Collingbourne <peter@pcc.me.uk>
Wed, 3 Feb 2016 02:51:00 +0000 (02:51 +0000)
committerPeter Collingbourne <peter@pcc.me.uk>
Wed, 3 Feb 2016 02:51:00 +0000 (02:51 +0000)
llvm-svn: 259621

llvm/include/llvm/Transforms/Utils/Evaluator.h [new file with mode: 0644]
llvm/lib/Transforms/IPO/GlobalOpt.cpp
llvm/lib/Transforms/Utils/CMakeLists.txt
llvm/lib/Transforms/Utils/Evaluator.cpp [new file with mode: 0644]

diff --git a/llvm/include/llvm/Transforms/Utils/Evaluator.h b/llvm/include/llvm/Transforms/Utils/Evaluator.h
new file mode 100644 (file)
index 0000000..07f12f4
--- /dev/null
@@ -0,0 +1,119 @@
+//===-- Evaluator.h - LLVM IR evaluator -------------------------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Function evaluator for LLVM IR.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_UTILS_EVALUATOR_H
+#define LLVM_TRANSFORMS_UTILS_EVALUATOR_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/GlobalVariable.h"
+
+#include <deque>
+#include <memory>
+
+namespace llvm {
+
+class DataLayout;
+class Function;
+class TargetLibraryInfo;
+
+/// This class evaluates LLVM IR, producing the Constant representing each SSA
+/// instruction.  Changes to global variables are stored in a mapping that can
+/// be iterated over after the evaluation is complete.  Once an evaluation call
+/// fails, the evaluation object should not be reused.
+class Evaluator {
+public:
+  Evaluator(const DataLayout &DL, const TargetLibraryInfo *TLI)
+      : DL(DL), TLI(TLI) {
+    ValueStack.emplace_back();
+  }
+
+  ~Evaluator() {
+    for (auto &Tmp : AllocaTmps)
+      // If there are still users of the alloca, the program is doing something
+      // silly, e.g. storing the address of the alloca somewhere and using it
+      // later.  Since this is undefined, we'll just make it be null.
+      if (!Tmp->use_empty())
+        Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
+  }
+
+  /// Evaluate a call to function F, returning true if successful, false if we
+  /// can't evaluate it.  ActualArgs contains the formal arguments for the
+  /// function.
+  bool EvaluateFunction(Function *F, Constant *&RetVal,
+                        const SmallVectorImpl<Constant*> &ActualArgs);
+
+  /// Evaluate all instructions in block BB, returning true if successful, false
+  /// if we can't evaluate it.  NewBB returns the next BB that control flows
+  /// into, or null upon return.
+  bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
+
+  Constant *getVal(Value *V) {
+    if (Constant *CV = dyn_cast<Constant>(V)) return CV;
+    Constant *R = ValueStack.back().lookup(V);
+    assert(R && "Reference to an uncomputed value!");
+    return R;
+  }
+
+  void setVal(Value *V, Constant *C) {
+    ValueStack.back()[V] = C;
+  }
+
+  const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
+    return MutatedMemory;
+  }
+
+  const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const {
+    return Invariants;
+  }
+
+private:
+  Constant *ComputeLoadResult(Constant *P);
+
+  /// As we compute SSA register values, we store their contents here. The back
+  /// of the deque contains the current function and the stack contains the
+  /// values in the calling frames.
+  std::deque<DenseMap<Value*, Constant*>> ValueStack;
+
+  /// This is used to detect recursion.  In pathological situations we could hit
+  /// exponential behavior, but at least there is nothing unbounded.
+  SmallVector<Function*, 4> CallStack;
+
+  /// For each store we execute, we update this map.  Loads check this to get
+  /// the most up-to-date value.  If evaluation is successful, this state is
+  /// committed to the process.
+  DenseMap<Constant*, Constant*> MutatedMemory;
+
+  /// To 'execute' an alloca, we create a temporary global variable to represent
+  /// its body.  This vector is needed so we can delete the temporary globals
+  /// when we are done.
+  SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps;
+
+  /// These global variables have been marked invariant by the static
+  /// constructor.
+  SmallPtrSet<GlobalVariable*, 8> Invariants;
+
+  /// These are constants we have checked and know to be simple enough to live
+  /// in a static initializer of a global.
+  SmallPtrSet<Constant*, 8> SimpleConstants;
+
+  const DataLayout &DL;
+  const TargetLibraryInfo *TLI;
+};
+
+}
+
+#endif
index d8fa4df..b9cef72 100644 (file)
@@ -41,6 +41,7 @@
 #include "llvm/Support/MathExtras.h"
 #include "llvm/Support/raw_ostream.h"
 #include "llvm/Transforms/Utils/CtorUtils.h"
+#include "llvm/Transforms/Utils/Evaluator.h"
 #include "llvm/Transforms/Utils/GlobalStatus.h"
 #include "llvm/Transforms/Utils/ModuleUtils.h"
 #include <algorithm>
@@ -2106,138 +2107,6 @@ bool GlobalOpt::OptimizeGlobalVars(Module &M) {
   return Changed;
 }
 
-static inline bool
-isSimpleEnoughValueToCommit(Constant *C,
-                            SmallPtrSetImpl<Constant *> &SimpleConstants,
-                            const DataLayout &DL);
-
-/// Return true if the specified constant can be handled by the code generator.
-/// We don't want to generate something like:
-///   void *X = &X/42;
-/// because the code generator doesn't have a relocation that can handle that.
-///
-/// This function should be called if C was not found (but just got inserted)
-/// in SimpleConstants to avoid having to rescan the same constants all the
-/// time.
-static bool
-isSimpleEnoughValueToCommitHelper(Constant *C,
-                                  SmallPtrSetImpl<Constant *> &SimpleConstants,
-                                  const DataLayout &DL) {
-  // Simple global addresses are supported, do not allow dllimport or
-  // thread-local globals.
-  if (auto *GV = dyn_cast<GlobalValue>(C))
-    return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
-
-  // Simple integer, undef, constant aggregate zero, etc are all supported.
-  if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
-    return true;
-
-  // Aggregate values are safe if all their elements are.
-  if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
-      isa<ConstantVector>(C)) {
-    for (Value *Op : C->operands())
-      if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
-        return false;
-    return true;
-  }
-
-  // We don't know exactly what relocations are allowed in constant expressions,
-  // so we allow &global+constantoffset, which is safe and uniformly supported
-  // across targets.
-  ConstantExpr *CE = cast<ConstantExpr>(C);
-  switch (CE->getOpcode()) {
-  case Instruction::BitCast:
-    // Bitcast is fine if the casted value is fine.
-    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
-
-  case Instruction::IntToPtr:
-  case Instruction::PtrToInt:
-    // int <=> ptr is fine if the int type is the same size as the
-    // pointer type.
-    if (DL.getTypeSizeInBits(CE->getType()) !=
-        DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
-      return false;
-    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
-
-  // GEP is fine if it is simple + constant offset.
-  case Instruction::GetElementPtr:
-    for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
-      if (!isa<ConstantInt>(CE->getOperand(i)))
-        return false;
-    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
-
-  case Instruction::Add:
-    // We allow simple+cst.
-    if (!isa<ConstantInt>(CE->getOperand(1)))
-      return false;
-    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
-  }
-  return false;
-}
-
-static inline bool
-isSimpleEnoughValueToCommit(Constant *C,
-                            SmallPtrSetImpl<Constant *> &SimpleConstants,
-                            const DataLayout &DL) {
-  // If we already checked this constant, we win.
-  if (!SimpleConstants.insert(C).second)
-    return true;
-  // Check the constant.
-  return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
-}
-
-
-/// Return true if this constant is simple enough for us to understand.  In
-/// particular, if it is a cast to anything other than from one pointer type to
-/// another pointer type, we punt.  We basically just support direct accesses to
-/// globals and GEP's of globals.  This should be kept up to date with
-/// CommitValueTo.
-static bool isSimpleEnoughPointerToCommit(Constant *C) {
-  // Conservatively, avoid aggregate types. This is because we don't
-  // want to worry about them partially overlapping other stores.
-  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
-    return false;
-
-  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
-    // Do not allow weak/*_odr/linkonce linkage or external globals.
-    return GV->hasUniqueInitializer();
-
-  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
-    // Handle a constantexpr gep.
-    if (CE->getOpcode() == Instruction::GetElementPtr &&
-        isa<GlobalVariable>(CE->getOperand(0)) &&
-        cast<GEPOperator>(CE)->isInBounds()) {
-      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
-      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
-      // external globals.
-      if (!GV->hasUniqueInitializer())
-        return false;
-
-      // The first index must be zero.
-      ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
-      if (!CI || !CI->isZero()) return false;
-
-      // The remaining indices must be compile-time known integers within the
-      // notional bounds of the corresponding static array types.
-      if (!CE->isGEPWithNoNotionalOverIndexing())
-        return false;
-
-      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
-
-    // A constantexpr bitcast from a pointer to another pointer is a no-op,
-    // and we know how to evaluate it by moving the bitcast from the pointer
-    // operand to the value operand.
-    } else if (CE->getOpcode() == Instruction::BitCast &&
-               isa<GlobalVariable>(CE->getOperand(0))) {
-      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
-      // external globals.
-      return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
-    }
-  }
-
-  return false;
-}
-
 /// Evaluate a piece of a constantexpr store into a global initializer.  This
 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
 /// GEP operands of Addr [0, OpNo) have been stepped into.
@@ -2301,529 +2170,6 @@ static void CommitValueTo(Constant *Val, Constant *Addr) {
   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
 }
 
-namespace {
-
-/// This class evaluates LLVM IR, producing the Constant representing each SSA
-/// instruction.  Changes to global variables are stored in a mapping that can
-/// be iterated over after the evaluation is complete.  Once an evaluation call
-/// fails, the evaluation object should not be reused.
-class Evaluator {
-public:
-  Evaluator(const DataLayout &DL, const TargetLibraryInfo *TLI)
-      : DL(DL), TLI(TLI) {
-    ValueStack.emplace_back();
-  }
-
-  ~Evaluator() {
-    for (auto &Tmp : AllocaTmps)
-      // If there are still users of the alloca, the program is doing something
-      // silly, e.g. storing the address of the alloca somewhere and using it
-      // later.  Since this is undefined, we'll just make it be null.
-      if (!Tmp->use_empty())
-        Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
-  }
-
-  /// Evaluate a call to function F, returning true if successful, false if we
-  /// can't evaluate it.  ActualArgs contains the formal arguments for the
-  /// function.
-  bool EvaluateFunction(Function *F, Constant *&RetVal,
-                        const SmallVectorImpl<Constant*> &ActualArgs);
-
-  /// Evaluate all instructions in block BB, returning true if successful, false
-  /// if we can't evaluate it.  NewBB returns the next BB that control flows
-  /// into, or null upon return.
-  bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
-
-  Constant *getVal(Value *V) {
-    if (Constant *CV = dyn_cast<Constant>(V)) return CV;
-    Constant *R = ValueStack.back().lookup(V);
-    assert(R && "Reference to an uncomputed value!");
-    return R;
-  }
-
-  void setVal(Value *V, Constant *C) {
-    ValueStack.back()[V] = C;
-  }
-
-  const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
-    return MutatedMemory;
-  }
-
-  const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const {
-    return Invariants;
-  }
-
-private:
-  Constant *ComputeLoadResult(Constant *P);
-
-  /// As we compute SSA register values, we store their contents here. The back
-  /// of the deque contains the current function and the stack contains the
-  /// values in the calling frames.
-  std::deque<DenseMap<Value*, Constant*>> ValueStack;
-
-  /// This is used to detect recursion.  In pathological situations we could hit
-  /// exponential behavior, but at least there is nothing unbounded.
-  SmallVector<Function*, 4> CallStack;
-
-  /// For each store we execute, we update this map.  Loads check this to get
-  /// the most up-to-date value.  If evaluation is successful, this state is
-  /// committed to the process.
-  DenseMap<Constant*, Constant*> MutatedMemory;
-
-  /// To 'execute' an alloca, we create a temporary global variable to represent
-  /// its body.  This vector is needed so we can delete the temporary globals
-  /// when we are done.
-  SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps;
-
-  /// These global variables have been marked invariant by the static
-  /// constructor.
-  SmallPtrSet<GlobalVariable*, 8> Invariants;
-
-  /// These are constants we have checked and know to be simple enough to live
-  /// in a static initializer of a global.
-  SmallPtrSet<Constant*, 8> SimpleConstants;
-
-  const DataLayout &DL;
-  const TargetLibraryInfo *TLI;
-};
-
-}  // anonymous namespace
-
-/// Return the value that would be computed by a load from P after the stores
-/// reflected by 'memory' have been performed.  If we can't decide, return null.
-Constant *Evaluator::ComputeLoadResult(Constant *P) {
-  // If this memory location has been recently stored, use the stored value: it
-  // is the most up-to-date.
-  DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
-  if (I != MutatedMemory.end()) return I->second;
-
-  // Access it.
-  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
-    if (GV->hasDefinitiveInitializer())
-      return GV->getInitializer();
-    return nullptr;
-  }
-
-  // Handle a constantexpr getelementptr.
-  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
-    if (CE->getOpcode() == Instruction::GetElementPtr &&
-        isa<GlobalVariable>(CE->getOperand(0))) {
-      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
-      if (GV->hasDefinitiveInitializer())
-        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
-    }
-
-  return nullptr;  // don't know how to evaluate.
-}
-
-/// Evaluate all instructions in block BB, returning true if successful, false
-/// if we can't evaluate it.  NewBB returns the next BB that control flows into,
-/// or null upon return.
-bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
-                              BasicBlock *&NextBB) {
-  // This is the main evaluation loop.
-  while (1) {
-    Constant *InstResult = nullptr;
-
-    DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
-
-    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
-      if (!SI->isSimple()) {
-        DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
-        return false;  // no volatile/atomic accesses.
-      }
-      Constant *Ptr = getVal(SI->getOperand(1));
-      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
-        DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
-        Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
-        DEBUG(dbgs() << "; To: " << *Ptr << "\n");
-      }
-      if (!isSimpleEnoughPointerToCommit(Ptr)) {
-        // If this is too complex for us to commit, reject it.
-        DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
-        return false;
-      }
-
-      Constant *Val = getVal(SI->getOperand(0));
-
-      // If this might be too difficult for the backend to handle (e.g. the addr
-      // of one global variable divided by another) then we can't commit it.
-      if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
-        DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
-              << "\n");
-        return false;
-      }
-
-      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
-        if (CE->getOpcode() == Instruction::BitCast) {
-          DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
-          // If we're evaluating a store through a bitcast, then we need
-          // to pull the bitcast off the pointer type and push it onto the
-          // stored value.
-          Ptr = CE->getOperand(0);
-
-          Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
-
-          // In order to push the bitcast onto the stored value, a bitcast
-          // from NewTy to Val's type must be legal.  If it's not, we can try
-          // introspecting NewTy to find a legal conversion.
-          while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
-            // If NewTy is a struct, we can convert the pointer to the struct
-            // into a pointer to its first member.
-            // FIXME: This could be extended to support arrays as well.
-            if (StructType *STy = dyn_cast<StructType>(NewTy)) {
-              NewTy = STy->getTypeAtIndex(0U);
-
-              IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
-              Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
-              Constant * const IdxList[] = {IdxZero, IdxZero};
-
-              Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList);
-              if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
-                Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
-
-            // If we can't improve the situation by introspecting NewTy,
-            // we have to give up.
-            } else {
-              DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
-                    "evaluate.\n");
-              return false;
-            }
-          }
-
-          // If we found compatible types, go ahead and push the bitcast
-          // onto the stored value.
-          Val = ConstantExpr::getBitCast(Val, NewTy);
-
-          DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
-        }
-      }
-
-      MutatedMemory[Ptr] = Val;
-    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
-      InstResult = ConstantExpr::get(BO->getOpcode(),
-                                     getVal(BO->getOperand(0)),
-                                     getVal(BO->getOperand(1)));
-      DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
-            << "\n");
-    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
-      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
-                                            getVal(CI->getOperand(0)),
-                                            getVal(CI->getOperand(1)));
-      DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
-            << "\n");
-    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
-      InstResult = ConstantExpr::getCast(CI->getOpcode(),
-                                         getVal(CI->getOperand(0)),
-                                         CI->getType());
-      DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
-            << "\n");
-    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
-      InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
-                                           getVal(SI->getOperand(1)),
-                                           getVal(SI->getOperand(2)));
-      DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
-            << "\n");
-    } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
-      InstResult = ConstantExpr::getExtractValue(
-          getVal(EVI->getAggregateOperand()), EVI->getIndices());
-      DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
-                   << "\n");
-    } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
-      InstResult = ConstantExpr::getInsertValue(
-          getVal(IVI->getAggregateOperand()),
-          getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
-      DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
-                   << "\n");
-    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
-      Constant *P = getVal(GEP->getOperand(0));
-      SmallVector<Constant*, 8> GEPOps;
-      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
-           i != e; ++i)
-        GEPOps.push_back(getVal(*i));
-      InstResult =
-          ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
-                                         cast<GEPOperator>(GEP)->isInBounds());
-      DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
-            << "\n");
-    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
-
-      if (!LI->isSimple()) {
-        DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
-        return false;  // no volatile/atomic accesses.
-      }
-
-      Constant *Ptr = getVal(LI->getOperand(0));
-      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
-        Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
-        DEBUG(dbgs() << "Found a constant pointer expression, constant "
-              "folding: " << *Ptr << "\n");
-      }
-      InstResult = ComputeLoadResult(Ptr);
-      if (!InstResult) {
-        DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
-              "\n");
-        return false; // Could not evaluate load.
-      }
-
-      DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
-    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
-      if (AI->isArrayAllocation()) {
-        DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
-        return false;  // Cannot handle array allocs.
-      }
-      Type *Ty = AI->getAllocatedType();
-      AllocaTmps.push_back(
-          make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
-                                      UndefValue::get(Ty), AI->getName()));
-      InstResult = AllocaTmps.back().get();
-      DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
-    } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
-      CallSite CS(&*CurInst);
-
-      // Debug info can safely be ignored here.
-      if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
-        DEBUG(dbgs() << "Ignoring debug info.\n");
-        ++CurInst;
-        continue;
-      }
-
-      // Cannot handle inline asm.
-      if (isa<InlineAsm>(CS.getCalledValue())) {
-        DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
-        return false;
-      }
-
-      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
-        if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
-          if (MSI->isVolatile()) {
-            DEBUG(dbgs() << "Can not optimize a volatile memset " <<
-                  "intrinsic.\n");
-            return false;
-          }
-          Constant *Ptr = getVal(MSI->getDest());
-          Constant *Val = getVal(MSI->getValue());
-          Constant *DestVal = ComputeLoadResult(getVal(Ptr));
-          if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
-            // This memset is a no-op.
-            DEBUG(dbgs() << "Ignoring no-op memset.\n");
-            ++CurInst;
-            continue;
-          }
-        }
-
-        if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
-            II->getIntrinsicID() == Intrinsic::lifetime_end) {
-          DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
-          ++CurInst;
-          continue;
-        }
-
-        if (II->getIntrinsicID() == Intrinsic::invariant_start) {
-          // We don't insert an entry into Values, as it doesn't have a
-          // meaningful return value.
-          if (!II->use_empty()) {
-            DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
-            return false;
-          }
-          ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
-          Value *PtrArg = getVal(II->getArgOperand(1));
-          Value *Ptr = PtrArg->stripPointerCasts();
-          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
-            Type *ElemTy = GV->getValueType();
-            if (!Size->isAllOnesValue() &&
-                Size->getValue().getLimitedValue() >=
-                    DL.getTypeStoreSize(ElemTy)) {
-              Invariants.insert(GV);
-              DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
-                    << "\n");
-            } else {
-              DEBUG(dbgs() << "Found a global var, but can not treat it as an "
-                    "invariant.\n");
-            }
-          }
-          // Continue even if we do nothing.
-          ++CurInst;
-          continue;
-        } else if (II->getIntrinsicID() == Intrinsic::assume) {
-          DEBUG(dbgs() << "Skipping assume intrinsic.\n");
-          ++CurInst;
-          continue;
-        }
-
-        DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
-        return false;
-      }
-
-      // Resolve function pointers.
-      Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
-      if (!Callee || Callee->mayBeOverridden()) {
-        DEBUG(dbgs() << "Can not resolve function pointer.\n");
-        return false;  // Cannot resolve.
-      }
-
-      SmallVector<Constant*, 8> Formals;
-      for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
-        Formals.push_back(getVal(*i));
-
-      if (Callee->isDeclaration()) {
-        // If this is a function we can constant fold, do it.
-        if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
-          InstResult = C;
-          DEBUG(dbgs() << "Constant folded function call. Result: " <<
-                *InstResult << "\n");
-        } else {
-          DEBUG(dbgs() << "Can not constant fold function call.\n");
-          return false;
-        }
-      } else {
-        if (Callee->getFunctionType()->isVarArg()) {
-          DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
-          return false;
-        }
-
-        Constant *RetVal = nullptr;
-        // Execute the call, if successful, use the return value.
-        ValueStack.emplace_back();
-        if (!EvaluateFunction(Callee, RetVal, Formals)) {
-          DEBUG(dbgs() << "Failed to evaluate function.\n");
-          return false;
-        }
-        ValueStack.pop_back();
-        InstResult = RetVal;
-
-        if (InstResult) {
-          DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
-                InstResult << "\n\n");
-        } else {
-          DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
-        }
-      }
-    } else if (isa<TerminatorInst>(CurInst)) {
-      DEBUG(dbgs() << "Found a terminator instruction.\n");
-
-      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
-        if (BI->isUnconditional()) {
-          NextBB = BI->getSuccessor(0);
-        } else {
-          ConstantInt *Cond =
-            dyn_cast<ConstantInt>(getVal(BI->getCondition()));
-          if (!Cond) return false;  // Cannot determine.
-
-          NextBB = BI->getSuccessor(!Cond->getZExtValue());
-        }
-      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
-        ConstantInt *Val =
-          dyn_cast<ConstantInt>(getVal(SI->getCondition()));
-        if (!Val) return false;  // Cannot determine.
-        NextBB = SI->findCaseValue(Val).getCaseSuccessor();
-      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
-        Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
-        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
-          NextBB = BA->getBasicBlock();
-        else
-          return false;  // Cannot determine.
-      } else if (isa<ReturnInst>(CurInst)) {
-        NextBB = nullptr;
-      } else {
-        // invoke, unwind, resume, unreachable.
-        DEBUG(dbgs() << "Can not handle terminator.");
-        return false;  // Cannot handle this terminator.
-      }
-
-      // We succeeded at evaluating this block!
-      DEBUG(dbgs() << "Successfully evaluated block.\n");
-      return true;
-    } else {
-      // Did not know how to evaluate this!
-      DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
-            "\n");
-      return false;
-    }
-
-    if (!CurInst->use_empty()) {
-      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
-        InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
-
-      setVal(&*CurInst, InstResult);
-    }
-
-    // If we just processed an invoke, we finished evaluating the block.
-    if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
-      NextBB = II->getNormalDest();
-      DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
-      return true;
-    }
-
-    // Advance program counter.
-    ++CurInst;
-  }
-}
-
-/// Evaluate a call to function F, returning true if successful, false if we
-/// can't evaluate it.  ActualArgs contains the formal arguments for the
-/// function.
-bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
-                                 const SmallVectorImpl<Constant*> &ActualArgs) {
-  // Check to see if this function is already executing (recursion).  If so,
-  // bail out.  TODO: we might want to accept limited recursion.
-  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
-    return false;
-
-  CallStack.push_back(F);
-
-  // Initialize arguments to the incoming values specified.
-  unsigned ArgNo = 0;
-  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
-       ++AI, ++ArgNo)
-    setVal(&*AI, ActualArgs[ArgNo]);
-
-  // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
-  // we can only evaluate any one basic block at most once.  This set keeps
-  // track of what we have executed so we can detect recursive cases etc.
-  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
-
-  // CurBB - The current basic block we're evaluating.
-  BasicBlock *CurBB = &F->front();
-
-  BasicBlock::iterator CurInst = CurBB->begin();
-
-  while (1) {
-    BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
-    DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
-
-    if (!EvaluateBlock(CurInst, NextBB))
-      return false;
-
-    if (!NextBB) {
-      // Successfully running until there's no next block means that we found
-      // the return.  Fill it the return value and pop the call stack.
-      ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
-      if (RI->getNumOperands())
-        RetVal = getVal(RI->getOperand(0));
-      CallStack.pop_back();
-      return true;
-    }
-
-    // Okay, we succeeded in evaluating this control flow.  See if we have
-    // executed the new block before.  If so, we have a looping function,
-    // which we cannot evaluate in reasonable time.
-    if (!ExecutedBlocks.insert(NextBB).second)
-      return false;  // looped!
-
-    // Okay, we have never been in this block before.  Check to see if there
-    // are any PHI nodes.  If so, evaluate them with information about where
-    // we came from.
-    PHINode *PN = nullptr;
-    for (CurInst = NextBB->begin();
-         (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
-      setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
-
-    // Advance to the next block.
-    CurBB = NextBB;
-  }
-}
-
 /// Evaluate static constructors in the function, if we can.  Return true if we
 /// can, false otherwise.
 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
index 6a72752..c3c5cdb 100644 (file)
@@ -11,6 +11,7 @@ add_llvm_library(LLVMTransformUtils
   CodeExtractor.cpp
   CtorUtils.cpp
   DemoteRegToStack.cpp
+  Evaluator.cpp
   FlattenCFG.cpp
   GlobalStatus.cpp
   InlineFunction.cpp
diff --git a/llvm/lib/Transforms/Utils/Evaluator.cpp b/llvm/lib/Transforms/Utils/Evaluator.cpp
new file mode 100644 (file)
index 0000000..ff32377
--- /dev/null
@@ -0,0 +1,596 @@
+//===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Function evaluator for LLVM IR.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/Evaluator.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/DiagnosticPrinter.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Support/Debug.h"
+
+#define DEBUG_TYPE "evaluator"
+
+using namespace llvm;
+
+static inline bool
+isSimpleEnoughValueToCommit(Constant *C,
+                            SmallPtrSetImpl<Constant *> &SimpleConstants,
+                            const DataLayout &DL);
+
+/// Return true if the specified constant can be handled by the code generator.
+/// We don't want to generate something like:
+///   void *X = &X/42;
+/// because the code generator doesn't have a relocation that can handle that.
+///
+/// This function should be called if C was not found (but just got inserted)
+/// in SimpleConstants to avoid having to rescan the same constants all the
+/// time.
+static bool
+isSimpleEnoughValueToCommitHelper(Constant *C,
+                                  SmallPtrSetImpl<Constant *> &SimpleConstants,
+                                  const DataLayout &DL) {
+  // Simple global addresses are supported, do not allow dllimport or
+  // thread-local globals.
+  if (auto *GV = dyn_cast<GlobalValue>(C))
+    return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
+
+  // Simple integer, undef, constant aggregate zero, etc are all supported.
+  if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
+    return true;
+
+  // Aggregate values are safe if all their elements are.
+  if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
+      isa<ConstantVector>(C)) {
+    for (Value *Op : C->operands())
+      if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
+        return false;
+    return true;
+  }
+
+  // We don't know exactly what relocations are allowed in constant expressions,
+  // so we allow &global+constantoffset, which is safe and uniformly supported
+  // across targets.
+  ConstantExpr *CE = cast<ConstantExpr>(C);
+  switch (CE->getOpcode()) {
+  case Instruction::BitCast:
+    // Bitcast is fine if the casted value is fine.
+    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
+
+  case Instruction::IntToPtr:
+  case Instruction::PtrToInt:
+    // int <=> ptr is fine if the int type is the same size as the
+    // pointer type.
+    if (DL.getTypeSizeInBits(CE->getType()) !=
+        DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
+      return false;
+    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
+
+  // GEP is fine if it is simple + constant offset.
+  case Instruction::GetElementPtr:
+    for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
+      if (!isa<ConstantInt>(CE->getOperand(i)))
+        return false;
+    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
+
+  case Instruction::Add:
+    // We allow simple+cst.
+    if (!isa<ConstantInt>(CE->getOperand(1)))
+      return false;
+    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
+  }
+  return false;
+}
+
+static inline bool
+isSimpleEnoughValueToCommit(Constant *C,
+                            SmallPtrSetImpl<Constant *> &SimpleConstants,
+                            const DataLayout &DL) {
+  // If we already checked this constant, we win.
+  if (!SimpleConstants.insert(C).second)
+    return true;
+  // Check the constant.
+  return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
+}
+
+/// Return true if this constant is simple enough for us to understand.  In
+/// particular, if it is a cast to anything other than from one pointer type to
+/// another pointer type, we punt.  We basically just support direct accesses to
+/// globals and GEP's of globals.  This should be kept up to date with
+/// CommitValueTo.
+static bool isSimpleEnoughPointerToCommit(Constant *C) {
+  // Conservatively, avoid aggregate types. This is because we don't
+  // want to worry about them partially overlapping other stores.
+  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
+    return false;
+
+  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
+    // Do not allow weak/*_odr/linkonce linkage or external globals.
+    return GV->hasUniqueInitializer();
+
+  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+    // Handle a constantexpr gep.
+    if (CE->getOpcode() == Instruction::GetElementPtr &&
+        isa<GlobalVariable>(CE->getOperand(0)) &&
+        cast<GEPOperator>(CE)->isInBounds()) {
+      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
+      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
+      // external globals.
+      if (!GV->hasUniqueInitializer())
+        return false;
+
+      // The first index must be zero.
+      ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
+      if (!CI || !CI->isZero()) return false;
+
+      // The remaining indices must be compile-time known integers within the
+      // notional bounds of the corresponding static array types.
+      if (!CE->isGEPWithNoNotionalOverIndexing())
+        return false;
+
+      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
+
+    // A constantexpr bitcast from a pointer to another pointer is a no-op,
+    // and we know how to evaluate it by moving the bitcast from the pointer
+    // operand to the value operand.
+    } else if (CE->getOpcode() == Instruction::BitCast &&
+               isa<GlobalVariable>(CE->getOperand(0))) {
+      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
+      // external globals.
+      return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
+    }
+  }
+
+  return false;
+}
+
+/// Return the value that would be computed by a load from P after the stores
+/// reflected by 'memory' have been performed.  If we can't decide, return null.
+Constant *Evaluator::ComputeLoadResult(Constant *P) {
+  // If this memory location has been recently stored, use the stored value: it
+  // is the most up-to-date.
+  DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
+  if (I != MutatedMemory.end()) return I->second;
+
+  // Access it.
+  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
+    if (GV->hasDefinitiveInitializer())
+      return GV->getInitializer();
+    return nullptr;
+  }
+
+  // Handle a constantexpr getelementptr.
+  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
+    if (CE->getOpcode() == Instruction::GetElementPtr &&
+        isa<GlobalVariable>(CE->getOperand(0))) {
+      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
+      if (GV->hasDefinitiveInitializer())
+        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
+    }
+
+  return nullptr;  // don't know how to evaluate.
+}
+
+/// Evaluate all instructions in block BB, returning true if successful, false
+/// if we can't evaluate it.  NewBB returns the next BB that control flows into,
+/// or null upon return.
+bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
+                              BasicBlock *&NextBB) {
+  // This is the main evaluation loop.
+  while (1) {
+    Constant *InstResult = nullptr;
+
+    DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
+
+    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
+      if (!SI->isSimple()) {
+        DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
+        return false;  // no volatile/atomic accesses.
+      }
+      Constant *Ptr = getVal(SI->getOperand(1));
+      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
+        DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
+        Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
+        DEBUG(dbgs() << "; To: " << *Ptr << "\n");
+      }
+      if (!isSimpleEnoughPointerToCommit(Ptr)) {
+        // If this is too complex for us to commit, reject it.
+        DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
+        return false;
+      }
+
+      Constant *Val = getVal(SI->getOperand(0));
+
+      // If this might be too difficult for the backend to handle (e.g. the addr
+      // of one global variable divided by another) then we can't commit it.
+      if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
+        DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
+              << "\n");
+        return false;
+      }
+
+      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
+        if (CE->getOpcode() == Instruction::BitCast) {
+          DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
+          // If we're evaluating a store through a bitcast, then we need
+          // to pull the bitcast off the pointer type and push it onto the
+          // stored value.
+          Ptr = CE->getOperand(0);
+
+          Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
+
+          // In order to push the bitcast onto the stored value, a bitcast
+          // from NewTy to Val's type must be legal.  If it's not, we can try
+          // introspecting NewTy to find a legal conversion.
+          while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
+            // If NewTy is a struct, we can convert the pointer to the struct
+            // into a pointer to its first member.
+            // FIXME: This could be extended to support arrays as well.
+            if (StructType *STy = dyn_cast<StructType>(NewTy)) {
+              NewTy = STy->getTypeAtIndex(0U);
+
+              IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
+              Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
+              Constant * const IdxList[] = {IdxZero, IdxZero};
+
+              Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList);
+              if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
+                Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
+
+            // If we can't improve the situation by introspecting NewTy,
+            // we have to give up.
+            } else {
+              DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
+                    "evaluate.\n");
+              return false;
+            }
+          }
+
+          // If we found compatible types, go ahead and push the bitcast
+          // onto the stored value.
+          Val = ConstantExpr::getBitCast(Val, NewTy);
+
+          DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
+        }
+      }
+
+      MutatedMemory[Ptr] = Val;
+    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
+      InstResult = ConstantExpr::get(BO->getOpcode(),
+                                     getVal(BO->getOperand(0)),
+                                     getVal(BO->getOperand(1)));
+      DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
+            << "\n");
+    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
+      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
+                                            getVal(CI->getOperand(0)),
+                                            getVal(CI->getOperand(1)));
+      DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
+            << "\n");
+    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
+      InstResult = ConstantExpr::getCast(CI->getOpcode(),
+                                         getVal(CI->getOperand(0)),
+                                         CI->getType());
+      DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
+            << "\n");
+    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
+      InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
+                                           getVal(SI->getOperand(1)),
+                                           getVal(SI->getOperand(2)));
+      DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
+            << "\n");
+    } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
+      InstResult = ConstantExpr::getExtractValue(
+          getVal(EVI->getAggregateOperand()), EVI->getIndices());
+      DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
+                   << "\n");
+    } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
+      InstResult = ConstantExpr::getInsertValue(
+          getVal(IVI->getAggregateOperand()),
+          getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
+      DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
+                   << "\n");
+    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
+      Constant *P = getVal(GEP->getOperand(0));
+      SmallVector<Constant*, 8> GEPOps;
+      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
+           i != e; ++i)
+        GEPOps.push_back(getVal(*i));
+      InstResult =
+          ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
+                                         cast<GEPOperator>(GEP)->isInBounds());
+      DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
+            << "\n");
+    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
+
+      if (!LI->isSimple()) {
+        DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
+        return false;  // no volatile/atomic accesses.
+      }
+
+      Constant *Ptr = getVal(LI->getOperand(0));
+      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
+        Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
+        DEBUG(dbgs() << "Found a constant pointer expression, constant "
+              "folding: " << *Ptr << "\n");
+      }
+      InstResult = ComputeLoadResult(Ptr);
+      if (!InstResult) {
+        DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
+              "\n");
+        return false; // Could not evaluate load.
+      }
+
+      DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
+    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
+      if (AI->isArrayAllocation()) {
+        DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
+        return false;  // Cannot handle array allocs.
+      }
+      Type *Ty = AI->getAllocatedType();
+      AllocaTmps.push_back(
+          make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
+                                      UndefValue::get(Ty), AI->getName()));
+      InstResult = AllocaTmps.back().get();
+      DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
+    } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
+      CallSite CS(&*CurInst);
+
+      // Debug info can safely be ignored here.
+      if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
+        DEBUG(dbgs() << "Ignoring debug info.\n");
+        ++CurInst;
+        continue;
+      }
+
+      // Cannot handle inline asm.
+      if (isa<InlineAsm>(CS.getCalledValue())) {
+        DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
+        return false;
+      }
+
+      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
+        if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
+          if (MSI->isVolatile()) {
+            DEBUG(dbgs() << "Can not optimize a volatile memset " <<
+                  "intrinsic.\n");
+            return false;
+          }
+          Constant *Ptr = getVal(MSI->getDest());
+          Constant *Val = getVal(MSI->getValue());
+          Constant *DestVal = ComputeLoadResult(getVal(Ptr));
+          if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
+            // This memset is a no-op.
+            DEBUG(dbgs() << "Ignoring no-op memset.\n");
+            ++CurInst;
+            continue;
+          }
+        }
+
+        if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
+            II->getIntrinsicID() == Intrinsic::lifetime_end) {
+          DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
+          ++CurInst;
+          continue;
+        }
+
+        if (II->getIntrinsicID() == Intrinsic::invariant_start) {
+          // We don't insert an entry into Values, as it doesn't have a
+          // meaningful return value.
+          if (!II->use_empty()) {
+            DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
+            return false;
+          }
+          ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
+          Value *PtrArg = getVal(II->getArgOperand(1));
+          Value *Ptr = PtrArg->stripPointerCasts();
+          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
+            Type *ElemTy = GV->getValueType();
+            if (!Size->isAllOnesValue() &&
+                Size->getValue().getLimitedValue() >=
+                    DL.getTypeStoreSize(ElemTy)) {
+              Invariants.insert(GV);
+              DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
+                    << "\n");
+            } else {
+              DEBUG(dbgs() << "Found a global var, but can not treat it as an "
+                    "invariant.\n");
+            }
+          }
+          // Continue even if we do nothing.
+          ++CurInst;
+          continue;
+        } else if (II->getIntrinsicID() == Intrinsic::assume) {
+          DEBUG(dbgs() << "Skipping assume intrinsic.\n");
+          ++CurInst;
+          continue;
+        }
+
+        DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
+        return false;
+      }
+
+      // Resolve function pointers.
+      Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
+      if (!Callee || Callee->mayBeOverridden()) {
+        DEBUG(dbgs() << "Can not resolve function pointer.\n");
+        return false;  // Cannot resolve.
+      }
+
+      SmallVector<Constant*, 8> Formals;
+      for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
+        Formals.push_back(getVal(*i));
+
+      if (Callee->isDeclaration()) {
+        // If this is a function we can constant fold, do it.
+        if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
+          InstResult = C;
+          DEBUG(dbgs() << "Constant folded function call. Result: " <<
+                *InstResult << "\n");
+        } else {
+          DEBUG(dbgs() << "Can not constant fold function call.\n");
+          return false;
+        }
+      } else {
+        if (Callee->getFunctionType()->isVarArg()) {
+          DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
+          return false;
+        }
+
+        Constant *RetVal = nullptr;
+        // Execute the call, if successful, use the return value.
+        ValueStack.emplace_back();
+        if (!EvaluateFunction(Callee, RetVal, Formals)) {
+          DEBUG(dbgs() << "Failed to evaluate function.\n");
+          return false;
+        }
+        ValueStack.pop_back();
+        InstResult = RetVal;
+
+        if (InstResult) {
+          DEBUG(dbgs() << "Successfully evaluated function. Result: "
+                       << *InstResult << "\n\n");
+        } else {
+          DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
+        }
+      }
+    } else if (isa<TerminatorInst>(CurInst)) {
+      DEBUG(dbgs() << "Found a terminator instruction.\n");
+
+      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
+        if (BI->isUnconditional()) {
+          NextBB = BI->getSuccessor(0);
+        } else {
+          ConstantInt *Cond =
+            dyn_cast<ConstantInt>(getVal(BI->getCondition()));
+          if (!Cond) return false;  // Cannot determine.
+
+          NextBB = BI->getSuccessor(!Cond->getZExtValue());
+        }
+      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
+        ConstantInt *Val =
+          dyn_cast<ConstantInt>(getVal(SI->getCondition()));
+        if (!Val) return false;  // Cannot determine.
+        NextBB = SI->findCaseValue(Val).getCaseSuccessor();
+      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
+        Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
+        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
+          NextBB = BA->getBasicBlock();
+        else
+          return false;  // Cannot determine.
+      } else if (isa<ReturnInst>(CurInst)) {
+        NextBB = nullptr;
+      } else {
+        // invoke, unwind, resume, unreachable.
+        DEBUG(dbgs() << "Can not handle terminator.");
+        return false;  // Cannot handle this terminator.
+      }
+
+      // We succeeded at evaluating this block!
+      DEBUG(dbgs() << "Successfully evaluated block.\n");
+      return true;
+    } else {
+      // Did not know how to evaluate this!
+      DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
+            "\n");
+      return false;
+    }
+
+    if (!CurInst->use_empty()) {
+      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
+        InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
+
+      setVal(&*CurInst, InstResult);
+    }
+
+    // If we just processed an invoke, we finished evaluating the block.
+    if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
+      NextBB = II->getNormalDest();
+      DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
+      return true;
+    }
+
+    // Advance program counter.
+    ++CurInst;
+  }
+}
+
+/// Evaluate a call to function F, returning true if successful, false if we
+/// can't evaluate it.  ActualArgs contains the formal arguments for the
+/// function.
+bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
+                                 const SmallVectorImpl<Constant*> &ActualArgs) {
+  // Check to see if this function is already executing (recursion).  If so,
+  // bail out.  TODO: we might want to accept limited recursion.
+  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
+    return false;
+
+  CallStack.push_back(F);
+
+  // Initialize arguments to the incoming values specified.
+  unsigned ArgNo = 0;
+  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
+       ++AI, ++ArgNo)
+    setVal(&*AI, ActualArgs[ArgNo]);
+
+  // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
+  // we can only evaluate any one basic block at most once.  This set keeps
+  // track of what we have executed so we can detect recursive cases etc.
+  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
+
+  // CurBB - The current basic block we're evaluating.
+  BasicBlock *CurBB = &F->front();
+
+  BasicBlock::iterator CurInst = CurBB->begin();
+
+  while (1) {
+    BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
+    DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
+
+    if (!EvaluateBlock(CurInst, NextBB))
+      return false;
+
+    if (!NextBB) {
+      // Successfully running until there's no next block means that we found
+      // the return.  Fill it the return value and pop the call stack.
+      ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
+      if (RI->getNumOperands())
+        RetVal = getVal(RI->getOperand(0));
+      CallStack.pop_back();
+      return true;
+    }
+
+    // Okay, we succeeded in evaluating this control flow.  See if we have
+    // executed the new block before.  If so, we have a looping function,
+    // which we cannot evaluate in reasonable time.
+    if (!ExecutedBlocks.insert(NextBB).second)
+      return false;  // looped!
+
+    // Okay, we have never been in this block before.  Check to see if there
+    // are any PHI nodes.  If so, evaluate them with information about where
+    // we came from.
+    PHINode *PN = nullptr;
+    for (CurInst = NextBB->begin();
+         (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
+      setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
+
+    // Advance to the next block.
+    CurBB = NextBB;
+  }
+}
+