--- /dev/null
+# RUN: SUPPORTLIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext %PYTHON %s | FileCheck %s
+
+import filecmp
+import numpy as np
+import os
+import sys
+import tempfile
+
+_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
+sys.path.append(_SCRIPT_PATH)
+
+from tools import mlir_pytaco_api as pt
+from tools import testing_utils as utils
+
+i, j, k = pt.get_index_vars(3)
+
+# Set up scalar and sparse tensors.
+alpha = pt.tensor(42.0)
+S = pt.tensor([8, 8, 8],
+ pt.format([pt.compressed, pt.compressed, pt.compressed]))
+X = pt.tensor([8, 8, 8],
+ pt.format([pt.compressed, pt.compressed, pt.compressed]))
+S.insert([0, 0, 0], 2.0)
+S.insert([1, 1, 1], 3.0)
+S.insert([4, 4, 4], 4.0)
+S.insert([7, 7, 7], 5.0)
+
+# TODO: make this work:
+# X[i, j, k] = alpha[0] * S[i, j, k]
+X[i, j, k] = S[i, j, k]
+
+expected = """; extended FROSTT format
+3 4
+8 8 8
+1 1 1 2
+2 2 2 3
+5 5 5 4
+8 8 8 5
+"""
+
+# Force evaluation of the kernel by writing out X.
+with tempfile.TemporaryDirectory() as test_dir:
+ x_file = os.path.join(test_dir, 'X.tns')
+ pt.write(x_file, X)
+ #
+ # CHECK: Compare result True
+ #
+ x_data = utils.file_as_string(x_file)
+ print(f'Compare result {x_data == expected}')