slim = tf.contrib.slim
def run(name, image_size, num_classes):
- with tf.Graph().as_default():
- image = tf.placeholder("float", [1, image_size, image_size, 3], name="input")
- with slim.arg_scope(inception.inception_v3_arg_scope()):
- logits, _ = inception.inception_v3(image, num_classes, is_training=False, spatial_squeeze=False)
- probabilities = tf.nn.softmax(logits)
- init_fn = slim.assign_from_checkpoint_fn('inception_v3.ckpt', slim.get_model_variables('InceptionV3'))
+ with tf.Graph().as_default():
+ image = tf.placeholder("float", [1, image_size, image_size, 3], name="input")
+ with slim.arg_scope(inception.inception_v3_arg_scope()):
+ logits, _ = inception.inception_v3(image, num_classes, is_training=False, spatial_squeeze=False)
+ probabilities = tf.nn.softmax(logits)
+ init_fn = slim.assign_from_checkpoint_fn('inception_v3.ckpt', slim.get_model_variables('InceptionV3'))
- with tf.Session() as sess:
- init_fn(sess)
- saver = tf.train.Saver(tf.global_variables())
- saver.save(sess, "output/"+name)
+ with tf.Session() as sess:
+ init_fn(sess)
+ saver = tf.train.Saver(tf.global_variables())
+ saver.save(sess, "output/"+name)
run('inception-v3', 299, 1001)