MachineBasicBlock *MBB = MI->getParent();
MachineFunction &MF = *MBB->getParent();
- // Get two load or store instructions. Use the original instruction for one
- // of them (arbitrarily the second here) and create a clone for the other.
- MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
- MBB->insert(MI, EarlierMI);
+ // Get two load or store instructions. Use the original instruction for
+ // one of them and create a clone for the other.
+ MachineInstr *HighPartMI = MF.CloneMachineInstr(&*MI);
+ MachineInstr *LowPartMI = &*MI;
+ MBB->insert(LowPartMI, HighPartMI);
// Set up the two 64-bit registers and remember super reg and its flags.
- MachineOperand &HighRegOp = EarlierMI->getOperand(0);
- MachineOperand &LowRegOp = MI->getOperand(0);
+ MachineOperand &HighRegOp = HighPartMI->getOperand(0);
+ MachineOperand &LowRegOp = LowPartMI->getOperand(0);
Register Reg128 = LowRegOp.getReg();
unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
unsigned Reg128Undef = getUndefRegState(LowRegOp.isUndef());
HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
- if (MI->mayStore()) {
- // Add implicit uses of the super register in case one of the subregs is
- // undefined. We could track liveness and skip storing an undefined
- // subreg, but this is hopefully rare (discovered with llvm-stress).
- // If Reg128 was killed, set kill flag on MI.
- unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
- MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
- MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
- }
-
// The address in the first (high) instruction is already correct.
// Adjust the offset in the second (low) instruction.
- MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
- MachineOperand &LowOffsetOp = MI->getOperand(2);
+ MachineOperand &HighOffsetOp = HighPartMI->getOperand(2);
+ MachineOperand &LowOffsetOp = LowPartMI->getOperand(2);
LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
- // Clear the kill flags on the registers in the first instruction.
- if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse())
- EarlierMI->getOperand(0).setIsKill(false);
- EarlierMI->getOperand(1).setIsKill(false);
- EarlierMI->getOperand(3).setIsKill(false);
-
// Set the opcodes.
unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
assert(HighOpcode && LowOpcode && "Both offsets should be in range");
+ HighPartMI->setDesc(get(HighOpcode));
+ LowPartMI->setDesc(get(LowOpcode));
+
+ MachineInstr *FirstMI = HighPartMI;
+ if (MI->mayStore()) {
+ FirstMI->getOperand(0).setIsKill(false);
+ // Add implicit uses of the super register in case one of the subregs is
+ // undefined. We could track liveness and skip storing an undefined
+ // subreg, but this is hopefully rare (discovered with llvm-stress).
+ // If Reg128 was killed, set kill flag on MI.
+ unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
+ MachineInstrBuilder(MF, HighPartMI).addReg(Reg128, Reg128UndefImpl);
+ MachineInstrBuilder(MF, LowPartMI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
+ } else {
+ // If HighPartMI clobbers any of the address registers, it needs to come
+ // after LowPartMI.
+ auto overlapsAddressReg = [&](Register Reg) -> bool {
+ return RI.regsOverlap(Reg, MI->getOperand(1).getReg()) ||
+ RI.regsOverlap(Reg, MI->getOperand(3).getReg());
+ };
+ if (overlapsAddressReg(HighRegOp.getReg())) {
+ assert(!overlapsAddressReg(LowRegOp.getReg()) &&
+ "Both loads clobber address!");
+ MBB->splice(HighPartMI, MBB, LowPartMI);
+ FirstMI = LowPartMI;
+ }
+ }
- EarlierMI->setDesc(get(HighOpcode));
- MI->setDesc(get(LowOpcode));
+ // Clear the kill flags on the address registers in the first instruction.
+ FirstMI->getOperand(1).setIsKill(false);
+ FirstMI->getOperand(3).setIsKill(false);
}
// Split ADJDYNALLOC instruction MI.