NeuronLayer<Dtype>::SetUp(bottom, top);
// Set up the cache for random number generation
rand_vec_.reset(new SyncedMemory(bottom[0]->count() * sizeof(int)));
+ threshold_ = this->layer_param_.dropout_ratio();
+ DCHECK(threshold_ > 0.);
+ DCHECK(threshold_ < 1.);
+ scale_ = 1. / (1. - threshold_);
+ uint_thres_ = (unsigned int)(UINT_MAX * threshold_);
};
template <typename Dtype>
vector<Blob<Dtype>*>* top) {
const Dtype* bottom_data = bottom[0]->cpu_data();
Dtype* top_data = (*top)[0]->mutable_cpu_data();
- float threshold = this->layer_param_.dropout_ratio();
- DCHECK(threshold > 0.);
- DCHECK(threshold < 1.);
- float scale = 1. / threshold;
+ int* mask = (int*)rand_vec_->mutable_cpu_data();
const int count = bottom[0]->count();
if (Caffeine::phase() == Caffeine::TRAIN) {
// Create random numbers
viRngBernoulli(VSL_RNG_METHOD_BERNOULLI_ICDF, Caffeine::vsl_stream(),
- count, (int*)(rand_vec_->mutable_cpu_data()),
- 1. - threshold);
+ count, mask, 1. - threshold_);
for (int i = 0; i < count; ++i) {
- top_data[i] = bottom_data[i] * rand_vec_[i] * scale;
+ top_data[i] = bottom_data[i] * mask[i] * scale_;
}
} else {
memcpy(top_data, bottom_data, bottom[0]->count() * sizeof(Dtype));
const int* mask = (int*)(rand_vec_->cpu_data());
const int count = (*bottom)[0]->count();
for (int i = 0; i < count; ++i) {
- bottom_diff[i] = top_diff[i] * mask[i];
+ bottom_diff[i] = top_diff[i] * mask[i] * scale_;
}
}
return Dtype(0);
template <typename Dtype>
__global__ void DropoutForward(const int n, const Dtype* in,
- const unsigned int* mask, const unsigned int threshold, Dtype* out) {
+ const unsigned int* mask, const unsigned int threshold, const float scale,
+ Dtype* out) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < n) {
- out[index] = in[index] * (mask[index] > threshold);
+ out[index] = in[index] * (mask[index] > threshold) * scale;
}
}
vector<Blob<Dtype>*>* top) {
const Dtype* bottom_data = bottom[0]->gpu_data();
Dtype* top_data = (*top)[0]->mutable_gpu_data();
- float threshold = this->layer_param_.dropout_ratio();
- DCHECK(threshold > 0.);
- DCHECK(threshold < 1.);
- float scale = 1. / threshold;
const int count = bottom[0]->count();
if (Caffeine::phase() == Caffeine::TRAIN) {
// Create random numbers
CURAND_CHECK(curandGenerate(Caffeine::curand_generator(),
(unsigned int*)(rand_vec_->mutable_gpu_data()), count));
- unsigned int uint_thres = (unsigned int)(UINT_MAX * threshold);
// set thresholds
DropoutForward<Dtype><<<CAFFEINE_GET_BLOCKS(count), CAFFEINE_CUDA_NUM_THREADS>>>(
- count, bottom_data, (unsigned int*)(rand_vec_->gpu_data(), uint_thres,
+ count, bottom_data, (unsigned int*)rand_vec_->gpu_data(), uint_thres_, scale_,
top_data);
} else {
CUDA_CHECK(cudaMemcpy(top_data, bottom_data,
- count * sizeof(Dtype)));
+ count * sizeof(Dtype), cudaMemcpyDeviceToDevice));
}
}
template <typename Dtype>
__global__ void DropoutBackward(const int n, const Dtype* in_diff,
- const unsigned int* mask, const unsigned int threshold, Dtype* out_diff) {
+ const unsigned int* mask, const unsigned int threshold, const float scale,
+ Dtype* out_diff) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < n) {
- out_diff[index] = in_diff[index] * (mask[index] > threshold);
+ out_diff[index] = in_diff[index] * (mask[index] > threshold) * scale;
}
}
if (propagate_down) {
const Dtype* top_diff = top[0]->gpu_diff();
Dtype* bottom_diff = (*bottom)[0]->mutable_gpu_diff();
- const unsigned int* mask = (int*)(rand_vec_->gpu_data());
+ const unsigned int* mask = (unsigned int*)rand_vec_->gpu_data();
const int count = (*bottom)[0]->count();
DropoutBackward<Dtype><<<CAFFEINE_GET_BLOCKS(count), CAFFEINE_CUDA_NUM_THREADS>>>(
- count, top_diff, (unsigned int*)(rand_vec_->gpu_data(), uint_thres,
+ count, top_diff, (unsigned int*)rand_vec_->gpu_data(), uint_thres_, scale_,
bottom_diff);
}
return Dtype(0);