--- /dev/null
+#include <isl_constraint.h>
+#include <isl_set.h>
+#include <isl_polynomial_private.h>
+#include <isl_morph.h>
+
+struct range_data {
+ int *signs;
+ int sign;
+ int test_monotonicity;
+ int monotonicity;
+ int exact;
+ isl_qpolynomial *qp;
+ isl_qpolynomial *poly;
+ isl_pw_qpolynomial_fold *pwf;
+ isl_pw_qpolynomial_fold *pwf_exact;
+};
+
+static int propagate_on_domain(__isl_take isl_basic_set *bset,
+ __isl_take isl_qpolynomial *poly, struct range_data *data);
+
+/* Check whether the polynomial "poly" has sign "sign" over "bset",
+ * i.e., if sign == 1, check that the lower bound on the polynomial
+ * is non-negative and if sign == -1, check that the upper bound on
+ * the polynomial is non-positive.
+ */
+static int has_sign(__isl_keep isl_basic_set *bset,
+ __isl_keep isl_qpolynomial *poly, int sign, int *signs)
+{
+ struct range_data data_m;
+ unsigned nvar;
+ unsigned nparam;
+ isl_dim *dim;
+ isl_qpolynomial *opt;
+ int r;
+
+ nparam = isl_basic_set_dim(bset, isl_dim_param);
+ nvar = isl_basic_set_dim(bset, isl_dim_set);
+
+ bset = isl_basic_set_copy(bset);
+ poly = isl_qpolynomial_copy(poly);
+
+ bset = isl_basic_set_move_dims(bset, isl_dim_set, 0,
+ isl_dim_param, 0, nparam);
+ poly = isl_qpolynomial_move_dims(poly, isl_dim_set, 0,
+ isl_dim_param, 0, nparam);
+
+ dim = isl_qpolynomial_get_dim(poly);
+ dim = isl_dim_drop(dim, isl_dim_set, 0, isl_dim_size(dim, isl_dim_set));
+
+ data_m.test_monotonicity = 0;
+ data_m.signs = signs;
+ data_m.pwf = isl_pw_qpolynomial_fold_zero(dim);
+ data_m.sign = -sign;
+ data_m.exact = 0;
+ data_m.pwf_exact = NULL;
+
+ if (propagate_on_domain(bset, poly, &data_m) < 0)
+ goto error;
+
+ if (sign > 0)
+ opt = isl_pw_qpolynomial_fold_min(data_m.pwf);
+ else
+ opt = isl_pw_qpolynomial_fold_max(data_m.pwf);
+
+ if (!opt)
+ r = -1;
+ else if (isl_qpolynomial_is_nan(opt) ||
+ isl_qpolynomial_is_infty(opt) ||
+ isl_qpolynomial_is_neginfty(opt))
+ r = 0;
+ else
+ r = sign * isl_qpolynomial_sgn(opt) >= 0;
+
+ isl_qpolynomial_free(opt);
+
+ return r;
+error:
+ isl_pw_qpolynomial_fold_free(data_m.pwf);
+ return -1;
+}
+
+/* Return 1 if poly is monotonically increasing in the last set variable,
+ * -1 if poly is monotonically decreasing in the last set variable,
+ * 0 if no conclusion,
+ * -2 on error.
+ *
+ * We simply check the sign of p(x+1)-p(x)
+ */
+static int monotonicity(__isl_keep isl_basic_set *bset,
+ __isl_keep isl_qpolynomial *poly, struct range_data *data)
+{
+ isl_ctx *ctx;
+ isl_dim *dim;
+ isl_qpolynomial *sub = NULL;
+ isl_qpolynomial *diff = NULL;
+ int result = 0;
+ int s;
+ unsigned nvar;
+
+ ctx = isl_qpolynomial_get_ctx(poly);
+ dim = isl_qpolynomial_get_dim(poly);
+
+ nvar = isl_basic_set_dim(bset, isl_dim_set);
+
+ sub = isl_qpolynomial_var(isl_dim_copy(dim), isl_dim_set, nvar - 1);
+ sub = isl_qpolynomial_add(sub,
+ isl_qpolynomial_rat_cst(dim, ctx->one, ctx->one));
+
+ diff = isl_qpolynomial_substitute(isl_qpolynomial_copy(poly),
+ isl_dim_set, nvar - 1, 1, &sub);
+ diff = isl_qpolynomial_sub(diff, isl_qpolynomial_copy(poly));
+
+ s = has_sign(bset, diff, 1, data->signs);
+ if (s < 0)
+ goto error;
+ if (s)
+ result = 1;
+ else {
+ s = has_sign(bset, diff, -1, data->signs);
+ if (s < 0)
+ goto error;
+ if (s)
+ result = -1;
+ }
+
+ isl_qpolynomial_free(diff);
+ isl_qpolynomial_free(sub);
+
+ return result;
+error:
+ isl_qpolynomial_free(diff);
+ isl_qpolynomial_free(sub);
+ return -2;
+}
+
+static __isl_give isl_qpolynomial *bound2poly(__isl_take isl_constraint *bound,
+ __isl_take isl_dim *dim, unsigned pos, int sign)
+{
+ if (!bound) {
+ if (sign > 0)
+ return isl_qpolynomial_infty(dim);
+ else
+ return isl_qpolynomial_neginfty(dim);
+ }
+ isl_dim_free(dim);
+ return isl_qpolynomial_from_constraint(bound, isl_dim_set, pos);
+}
+
+static int bound_is_integer(__isl_take isl_constraint *bound, unsigned pos)
+{
+ isl_int c;
+ int is_int;
+
+ if (!bound)
+ return 1;
+
+ isl_int_init(c);
+ isl_constraint_get_coefficient(bound, isl_dim_set, pos, &c);
+ is_int = isl_int_is_one(c) || isl_int_is_negone(c);
+ isl_int_clear(c);
+
+ return is_int;
+}
+
+struct isl_fixed_sign_data {
+ int *signs;
+ int sign;
+ isl_qpolynomial *poly;
+};
+
+/* Add term "term" to data->poly if it has sign data->sign.
+ * The sign is determined based on the signs of the parameters
+ * and variables in data->signs.
+ */
+static int collect_fixed_sign_terms(__isl_take isl_term *term, void *user)
+{
+ struct isl_fixed_sign_data *data = (struct isl_fixed_sign_data *)user;
+ isl_int n, d;
+ int i;
+ int sign;
+ unsigned nparam;
+ unsigned nvar;
+
+ if (!term)
+ return -1;
+
+ nparam = isl_term_dim(term, isl_dim_param);
+ nvar = isl_term_dim(term, isl_dim_set);
+
+ isl_assert(isl_term_get_ctx(term), isl_term_dim(term, isl_dim_div) == 0,
+ return -1);
+
+ isl_int_init(n);
+ isl_int_init(d);
+
+ isl_term_get_num(term, &n);
+ isl_term_get_den(term, &d);
+
+ sign = isl_int_sgn(n);
+ for (i = 0; i < nparam; ++i) {
+ if (data->signs[i] > 0)
+ continue;
+ if (isl_term_get_exp(term, isl_dim_param, i) % 2)
+ sign = -sign;
+ }
+ for (i = 0; i < nvar; ++i) {
+ if (data->signs[nparam + i] > 0)
+ continue;
+ if (isl_term_get_exp(term, isl_dim_set, i) % 2)
+ sign = -sign;
+ }
+
+ if (sign == data->sign) {
+ isl_qpolynomial *t = isl_qpolynomial_from_term(term);
+
+ data->poly = isl_qpolynomial_add(data->poly, t);
+ } else
+ isl_term_free(term);
+
+ isl_int_clear(n);
+ isl_int_clear(d);
+
+ return 0;
+}
+
+/* Construct and return a polynomial that consists of the terms
+ * in "poly" that have sign "sign".
+ */
+static __isl_give isl_qpolynomial *fixed_sign_terms(
+ __isl_keep isl_qpolynomial *poly, int *signs, int sign)
+{
+ struct isl_fixed_sign_data data = { signs, sign };
+ data.poly = isl_qpolynomial_zero(isl_qpolynomial_get_dim(poly));
+
+ if (isl_qpolynomial_foreach_term(poly, collect_fixed_sign_terms, &data) < 0)
+ goto error;
+
+ return data.poly;
+error:
+ isl_qpolynomial_free(data.poly);
+ return NULL;
+}
+
+/* Helper function to add a guarder polynomial to either pwf_exact or pwf,
+ * depending on whether the result has been determined to be exact.
+ */
+static int add_guarded_poly(__isl_take isl_basic_set *bset,
+ __isl_take isl_qpolynomial *poly, struct range_data *data)
+{
+ enum isl_fold type = data->sign < 0 ? isl_fold_min : isl_fold_max;
+ isl_set *set;
+ isl_qpolynomial_fold *fold;
+ isl_pw_qpolynomial_fold *pwf;
+
+ fold = isl_qpolynomial_fold_alloc(type, poly);
+ set = isl_set_from_basic_set(bset);
+ pwf = isl_pw_qpolynomial_fold_alloc(set, fold);
+ if (data->exact)
+ data->pwf_exact = isl_pw_qpolynomial_fold_add(
+ data->pwf_exact, pwf);
+ else
+ data->pwf = isl_pw_qpolynomial_fold_add(data->pwf, pwf);
+
+ return 0;
+}
+
+/* Given a lower and upper bound on the final variable and constraints
+ * on the remaining variables where these bounds are active,
+ * eliminate the variable from data->poly based on these bounds.
+ * If the polynomial has been determined to be monotonic
+ * in the variable, then simply plug in the appropriate bound.
+ * If the current polynomial is exact and if this bound is integer,
+ * then the result is still exact. In all other cases, the results
+ * may be inexact.
+ * Otherwise, plug in the largest bound (in absolute value) in
+ * the positive terms (if an upper bound is wanted) or the negative terms
+ * (if a lower bounded is wanted) and the other bound in the other terms.
+ *
+ * If all variables have been eliminated, then record the result.
+ * Ohterwise, recurse on the next variable.
+ */
+static int propagate_on_bound_pair(__isl_take isl_constraint *lower,
+ __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset,
+ void *user)
+{
+ struct range_data *data = (struct range_data *)user;
+ int save_exact = data->exact;
+ isl_qpolynomial *poly;
+ int r;
+ unsigned nvar;
+
+ nvar = isl_basic_set_dim(bset, isl_dim_set);
+
+ if (data->monotonicity) {
+ isl_qpolynomial *sub;
+ isl_dim *dim = isl_qpolynomial_get_dim(data->poly);
+ if (data->monotonicity * data->sign > 0) {
+ if (data->exact)
+ data->exact = bound_is_integer(upper, nvar);
+ sub = bound2poly(upper, dim, nvar, 1);
+ isl_constraint_free(lower);
+ } else {
+ if (data->exact)
+ data->exact = bound_is_integer(lower, nvar);
+ sub = bound2poly(lower, dim, nvar, -1);
+ isl_constraint_free(upper);
+ }
+ poly = isl_qpolynomial_copy(data->poly);
+ poly = isl_qpolynomial_substitute(poly, isl_dim_set, nvar, 1, &sub);
+ poly = isl_qpolynomial_drop_dims(poly, isl_dim_set, nvar, 1);
+
+ isl_qpolynomial_free(sub);
+ } else {
+ isl_qpolynomial *l, *u;
+ isl_qpolynomial *pos, *neg;
+ isl_dim *dim = isl_qpolynomial_get_dim(data->poly);
+ unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
+ int sign = data->sign * data->signs[nparam + nvar];
+
+ data->exact = 0;
+
+ u = bound2poly(upper, isl_dim_copy(dim), nvar, 1);
+ l = bound2poly(lower, dim, nvar, -1);
+
+ pos = fixed_sign_terms(data->poly, data->signs, sign);
+ neg = fixed_sign_terms(data->poly, data->signs, -sign);
+
+ pos = isl_qpolynomial_substitute(pos, isl_dim_set, nvar, 1, &u);
+ neg = isl_qpolynomial_substitute(neg, isl_dim_set, nvar, 1, &l);
+
+ poly = isl_qpolynomial_add(pos, neg);
+ poly = isl_qpolynomial_drop_dims(poly, isl_dim_set, nvar, 1);
+
+ isl_qpolynomial_free(u);
+ isl_qpolynomial_free(l);
+ }
+
+ if (isl_basic_set_dim(bset, isl_dim_set) == 0)
+ r = add_guarded_poly(bset, poly, data);
+ else
+ r = propagate_on_domain(bset, poly, data);
+
+ data->exact = save_exact;
+
+ return r;
+}
+
+/* Recursively perform range propagation on the polynomial "poly"
+ * defined over the basic set "bset" and collect the results in "data".
+ */
+static int propagate_on_domain(__isl_take isl_basic_set *bset,
+ __isl_take isl_qpolynomial *poly, struct range_data *data)
+{
+ isl_qpolynomial *save_poly = data->poly;
+ int save_monotonicity = data->monotonicity;
+ unsigned d;
+
+ if (!bset || !poly)
+ goto error;
+
+ d = isl_basic_set_dim(bset, isl_dim_set);
+ isl_assert(bset->ctx, d >= 1, goto error);
+
+ if (isl_qpolynomial_is_cst(poly, NULL, NULL)) {
+ bset = isl_basic_set_project_out(bset, isl_dim_set, 0, d);
+ poly = isl_qpolynomial_drop_dims(poly, isl_dim_set, 0, d);
+ return add_guarded_poly(bset, poly, data);
+ }
+
+ if (data->test_monotonicity)
+ data->monotonicity = monotonicity(bset, poly, data);
+ else
+ data->monotonicity = 0;
+ if (data->monotonicity < -1)
+ goto error;
+
+ data->poly = poly;
+ if (isl_basic_set_foreach_bound_pair(bset, isl_dim_set, d - 1,
+ &propagate_on_bound_pair, data) < 0)
+ goto error;
+
+ isl_basic_set_free(bset);
+ isl_qpolynomial_free(poly);
+ data->monotonicity = save_monotonicity;
+ data->poly = save_poly;
+
+ return 0;
+error:
+ isl_basic_set_free(bset);
+ isl_qpolynomial_free(poly);
+ data->monotonicity = save_monotonicity;
+ data->poly = save_poly;
+ return -1;
+}
+
+static int basic_guarded_poly_bound(__isl_take isl_basic_set *bset, void *user)
+{
+ struct range_data *data = (struct range_data *)user;
+ unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
+ unsigned dim = isl_basic_set_dim(bset, isl_dim_set);
+ int r;
+
+ data->signs = NULL;
+
+ data->signs = isl_alloc_array(bset->ctx, int,
+ isl_basic_set_dim(bset, isl_dim_all));
+
+ if (isl_basic_set_dims_get_sign(bset, isl_dim_set, 0, dim,
+ data->signs + nparam) < 0)
+ goto error;
+ if (isl_basic_set_dims_get_sign(bset, isl_dim_param, 0, nparam,
+ data->signs) < 0)
+ goto error;
+
+ r = propagate_on_domain(bset, isl_qpolynomial_copy(data->poly), data);
+
+ free(data->signs);
+
+ return r;
+error:
+ free(data->signs);
+ isl_basic_set_free(bset);
+ return -1;
+}
+
+static int compressed_guarded_poly_bound(__isl_take isl_basic_set *bset,
+ __isl_take isl_qpolynomial *poly, void *user)
+{
+ struct range_data *data = (struct range_data *)user;
+ unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
+ unsigned nvar = isl_basic_set_dim(bset, isl_dim_set);
+ isl_set *set;
+
+ if (!bset)
+ goto error;
+
+ if (nvar == 0)
+ return add_guarded_poly(bset, poly, data);
+
+ set = isl_set_from_basic_set(bset);
+ set = isl_set_split_dims(set, isl_dim_param, 0, nparam);
+ set = isl_set_split_dims(set, isl_dim_set, 0, nvar);
+
+ data->poly = poly;
+
+ if (isl_set_foreach_basic_set(set, &basic_guarded_poly_bound, data) < 0)
+ goto error;
+
+ isl_set_free(set);
+ isl_qpolynomial_free(poly);
+
+ return 0;
+error:
+ isl_set_free(set);
+ isl_qpolynomial_free(poly);
+ return -1;
+}
+
+static int guarded_poly_bound(__isl_take isl_basic_set *bset,
+ __isl_take isl_qpolynomial *poly, void *user)
+{
+ struct range_data *data = (struct range_data *)user;
+ isl_pw_qpolynomial_fold *top_pwf;
+ isl_pw_qpolynomial_fold *top_pwf_exact;
+ isl_dim *dim;
+ isl_morph *morph, *morph2;
+ unsigned orig_nvar;
+ int r;
+
+ bset = isl_basic_set_detect_equalities(bset);
+
+ if (!bset)
+ goto error;
+
+ if (bset->n_eq == 0)
+ return compressed_guarded_poly_bound(bset, poly, user);
+
+ orig_nvar = isl_basic_set_dim(bset, isl_dim_set);
+
+ morph = isl_basic_set_variable_compression(bset, isl_dim_param);
+ bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
+
+ morph2 = isl_basic_set_parameter_compression(bset);
+ bset = isl_morph_basic_set(isl_morph_copy(morph2), bset);
+
+ morph = isl_morph_compose(morph2, morph);
+
+ morph2 = isl_basic_set_variable_compression(bset, isl_dim_set);
+ bset = isl_morph_basic_set(isl_morph_copy(morph2), bset);
+
+ morph2 = isl_morph_compose(morph2, isl_morph_copy(morph));
+ poly = isl_qpolynomial_morph(poly, morph2);
+
+ dim = isl_morph_get_ran_dim(morph);
+ dim = isl_dim_drop(dim, isl_dim_set, 0, isl_dim_size(dim, isl_dim_set));
+
+ top_pwf = data->pwf;
+ top_pwf_exact = data->pwf_exact;
+
+ data->pwf = isl_pw_qpolynomial_fold_zero(isl_dim_copy(dim));
+ data->pwf_exact = isl_pw_qpolynomial_fold_zero(dim);
+
+ r = compressed_guarded_poly_bound(bset, poly, user);
+
+ morph = isl_morph_drop_dims(morph, isl_dim_set, 0, orig_nvar);
+ morph = isl_morph_inverse(morph);
+
+ data->pwf = isl_pw_qpolynomial_fold_morph(data->pwf,
+ isl_morph_copy(morph));
+ data->pwf_exact = isl_pw_qpolynomial_fold_morph(data->pwf_exact, morph);
+
+ data->pwf = isl_pw_qpolynomial_fold_add(top_pwf, data->pwf);
+ data->pwf_exact = isl_pw_qpolynomial_fold_add(top_pwf_exact,
+ data->pwf_exact);
+
+ return r;
+error:
+ isl_basic_set_free(bset);
+ isl_qpolynomial_free(poly);
+ return -1;
+}
+
+static int basic_guarded_bound(__isl_take isl_basic_set *bset, void *user)
+{
+ struct range_data *data = (struct range_data *)user;
+ int r;
+
+ r = isl_qpolynomial_as_polynomial_on_domain(data->qp, bset,
+ &guarded_poly_bound, user);
+ isl_basic_set_free(bset);
+ return r;
+}
+
+static int guarded_bound(__isl_take isl_set *set,
+ __isl_take isl_qpolynomial *qp, void *user)
+{
+ struct range_data *data = (struct range_data *)user;
+
+ if (!set || !qp)
+ goto error;
+
+ set = isl_set_make_disjoint(set);
+
+ data->qp = qp;
+
+ if (isl_set_foreach_basic_set(set, &basic_guarded_bound, data) < 0)
+ goto error;
+
+ isl_set_free(set);
+ isl_qpolynomial_free(qp);
+
+ return 0;
+error:
+ isl_set_free(set);
+ isl_qpolynomial_free(qp);
+ return -1;
+}
+
+/* Compute a lower or upper bound (depending on "type") on the given
+ * piecewise step-polynomial using range propagation.
+ */
+__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound_range(
+ __isl_take isl_pw_qpolynomial *pwqp, enum isl_fold type, int *exact)
+{
+ isl_dim *dim;
+ isl_pw_qpolynomial_fold *pwf;
+ unsigned nvar;
+ unsigned nparam;
+ struct range_data data;
+ int covers;
+
+ if (!pwqp)
+ return NULL;
+
+ dim = isl_pw_qpolynomial_get_dim(pwqp);
+ nvar = isl_dim_size(dim, isl_dim_set);
+
+ if (isl_pw_qpolynomial_is_zero(pwqp)) {
+ isl_pw_qpolynomial_free(pwqp);
+ dim = isl_dim_drop(dim, isl_dim_set, 0, nvar);
+ return isl_pw_qpolynomial_fold_zero(dim);
+ }
+
+ if (nvar == 0) {
+ isl_dim_free(dim);
+ return isl_pw_qpolynomial_fold_from_pw_qpolynomial(type, pwqp);
+ }
+
+ dim = isl_dim_drop(dim, isl_dim_set, 0, nvar);
+
+ nparam = isl_dim_size(dim, isl_dim_param);
+ data.pwf = isl_pw_qpolynomial_fold_zero(isl_dim_copy(dim));
+ data.pwf_exact = isl_pw_qpolynomial_fold_zero(isl_dim_copy(dim));
+ if (type == isl_fold_min)
+ data.sign = -1;
+ else
+ data.sign = 1;
+ data.test_monotonicity = 1;
+ data.exact = !!exact;
+
+ if (isl_pw_qpolynomial_foreach_lifted_piece(pwqp, guarded_bound, &data))
+ goto error;
+
+ covers = isl_pw_qpolynomial_fold_covers(data.pwf_exact, data.pwf);
+ if (covers < 0)
+ goto error;
+
+ if (exact)
+ *exact = covers;
+
+ isl_dim_free(dim);
+ isl_pw_qpolynomial_free(pwqp);
+
+ if (covers) {
+ isl_pw_qpolynomial_fold_free(data.pwf);
+ return data.pwf_exact;
+ }
+
+ data.pwf = isl_pw_qpolynomial_fold_add(data.pwf, data.pwf_exact);
+
+ return data.pwf;
+error:
+ isl_pw_qpolynomial_fold_free(data.pwf);
+ isl_dim_free(dim);
+ isl_pw_qpolynomial_free(pwqp);
+ return NULL;
+}