// Perform a binary search in a fixed array. Low and high are entry indices. If
// there are three entries in this array it should be called with low=0 and
// high=2.
-template <SearchMode search_mode, typename T>
-int BinarySearch(T* array, Name* name, int low, int high, int valid_entries,
- int* out_insertion_index) {
- DCHECK(search_mode == ALL_ENTRIES || out_insertion_index == NULL);
+template<SearchMode search_mode, typename T>
+int BinarySearch(T* array, Name* name, int low, int high, int valid_entries) {
uint32_t hash = name->Hash();
int limit = high;
for (; low <= limit; ++low) {
int sort_index = array->GetSortedKeyIndex(low);
Name* entry = array->GetKey(sort_index);
- uint32_t current_hash = entry->Hash();
- if (current_hash != hash) {
- if (out_insertion_index != NULL) {
- *out_insertion_index = sort_index + (current_hash > hash ? 0 : 1);
- }
- return T::kNotFound;
- }
+ if (entry->Hash() != hash) break;
if (entry->Equals(name)) {
if (search_mode == ALL_ENTRIES || sort_index < valid_entries) {
return sort_index;
}
}
- if (out_insertion_index != NULL) *out_insertion_index = limit + 1;
return T::kNotFound;
}
// Perform a linear search in this fixed array. len is the number of entry
// indices that are valid.
-template <SearchMode search_mode, typename T>
-int LinearSearch(T* array, Name* name, int len, int valid_entries,
- int* out_insertion_index) {
+template<SearchMode search_mode, typename T>
+int LinearSearch(T* array, Name* name, int len, int valid_entries) {
uint32_t hash = name->Hash();
if (search_mode == ALL_ENTRIES) {
for (int number = 0; number < len; number++) {
int sorted_index = array->GetSortedKeyIndex(number);
Name* entry = array->GetKey(sorted_index);
uint32_t current_hash = entry->Hash();
- if (current_hash > hash) {
- if (out_insertion_index != NULL) *out_insertion_index = sorted_index;
- return T::kNotFound;
- }
+ if (current_hash > hash) break;
if (current_hash == hash && entry->Equals(name)) return sorted_index;
}
- if (out_insertion_index != NULL) *out_insertion_index = len;
- return T::kNotFound;
} else {
DCHECK(len >= valid_entries);
- DCHECK_EQ(NULL, out_insertion_index); // Not supported here.
for (int number = 0; number < valid_entries; number++) {
Name* entry = array->GetKey(number);
uint32_t current_hash = entry->Hash();
if (current_hash == hash && entry->Equals(name)) return number;
}
- return T::kNotFound;
}
+ return T::kNotFound;
}
-template <SearchMode search_mode, typename T>
-int Search(T* array, Name* name, int valid_entries, int* out_insertion_index) {
+template<SearchMode search_mode, typename T>
+int Search(T* array, Name* name, int valid_entries) {
if (search_mode == VALID_ENTRIES) {
SLOW_DCHECK(array->IsSortedNoDuplicates(valid_entries));
} else {
}
int nof = array->number_of_entries();
- if (nof == 0) {
- if (out_insertion_index != NULL) *out_insertion_index = 0;
- return T::kNotFound;
- }
+ if (nof == 0) return T::kNotFound;
// Fast case: do linear search for small arrays.
const int kMaxElementsForLinearSearch = 8;
nof <= kMaxElementsForLinearSearch) ||
(search_mode == VALID_ENTRIES &&
valid_entries <= (kMaxElementsForLinearSearch * 3))) {
- return LinearSearch<search_mode>(array, name, nof, valid_entries,
- out_insertion_index);
+ return LinearSearch<search_mode>(array, name, nof, valid_entries);
}
// Slow case: perform binary search.
- return BinarySearch<search_mode>(array, name, 0, nof - 1, valid_entries,
- out_insertion_index);
+ return BinarySearch<search_mode>(array, name, 0, nof - 1, valid_entries);
}
int DescriptorArray::Search(Name* name, int valid_descriptors) {
- return internal::Search<VALID_ENTRIES>(this, name, valid_descriptors, NULL);
+ return internal::Search<VALID_ENTRIES>(this, name, valid_descriptors);
}
enum SearchMode { ALL_ENTRIES, VALID_ENTRIES };
-template <SearchMode search_mode, typename T>
-inline int Search(T* array, Name* name, int valid_entries = 0,
- int* out_insertion_index = NULL);
+template<SearchMode search_mode, typename T>
+inline int LinearSearch(T* array, Name* name, int len, int valid_entries);
+
+
+template<SearchMode search_mode, typename T>
+inline int Search(T* array, Name* name, int valid_entries = 0);
// HashTable is a subclass of FixedArray that implements a hash table
}
-int TransitionArray::Search(Name* name, int* out_insertion_index) {
+int TransitionArray::Search(Name* name) {
if (IsSimpleTransition()) {
Name* key = GetKey(kSimpleTransitionIndex);
if (key->Equals(name)) return kSimpleTransitionIndex;
- if (out_insertion_index != NULL) {
- *out_insertion_index = key->Hash() > name->Hash() ? 0 : 1;
- }
return kNotFound;
}
- return internal::Search<ALL_ENTRIES>(this, name, 0, out_insertion_index);
+ return internal::Search<ALL_ENTRIES>(this, name);
}
}
+static bool InsertionPointFound(Name* key1, Name* key2) {
+ return key1->Hash() > key2->Hash();
+}
+
+
Handle<TransitionArray> TransitionArray::NewWith(Handle<Map> map,
Handle<Name> name,
Handle<Map> target,
int number_of_transitions = map->transitions()->number_of_transitions();
int new_nof = number_of_transitions;
- int insertion_index = kNotFound;
- int index = map->transitions()->Search(*name, &insertion_index);
-
- if (index == kNotFound) {
- ++new_nof;
- } else {
- insertion_index = index;
- }
- DCHECK(insertion_index >= 0 && insertion_index <= number_of_transitions);
-
+ int insertion_index = map->transitions()->Search(*name);
+ if (insertion_index == kNotFound) ++new_nof;
CHECK(new_nof <= kMaxNumberOfTransitions);
if (new_nof <= map->transitions()->number_of_transitions_storage()) {
DisallowHeapAllocation no_gc;
TransitionArray* array = map->transitions();
- if (index != kNotFound) {
- array->SetTarget(index, *target);
+ if (insertion_index != kNotFound) {
+ array->SetTarget(insertion_index, *target);
return handle(array);
}
array->SetNumberOfTransitions(new_nof);
- for (index = number_of_transitions; index > insertion_index; --index) {
- Name* key = array->GetKey(index - 1);
- DCHECK(key->Hash() > name->Hash());
- array->SetKey(index, key);
- array->SetTarget(index, array->GetTarget(index - 1));
+ uint32_t hash = name->Hash();
+ for (insertion_index = number_of_transitions; insertion_index > 0;
+ --insertion_index) {
+ Name* key = array->GetKey(insertion_index - 1);
+ if (key->Hash() <= hash) break;
+ array->SetKey(insertion_index, key);
+ array->SetTarget(insertion_index, array->GetTarget(insertion_index - 1));
}
- array->SetKey(index, *name);
- array->SetTarget(index, *target);
+ array->SetKey(insertion_index, *name);
+ array->SetTarget(insertion_index, *target);
return handle(array);
}
number_of_transitions = array->number_of_transitions();
new_nof = number_of_transitions;
- insertion_index = kNotFound;
- index = array->Search(*name, &insertion_index);
- if (index == kNotFound) {
- ++new_nof;
- } else {
- insertion_index = index;
- }
- DCHECK(insertion_index >= 0 && insertion_index <= number_of_transitions);
+ insertion_index = array->Search(*name);
+ if (insertion_index == kNotFound) ++new_nof;
result->Shrink(ToKeyIndex(new_nof));
result->SetNumberOfTransitions(new_nof);
result->SetPrototypeTransitions(array->GetPrototypeTransitions());
}
- DCHECK_NE(kNotFound, insertion_index);
- for (int i = 0; i < insertion_index; ++i) {
- result->NoIncrementalWriteBarrierCopyFrom(array, i, i);
+ insertion_index = 0;
+ for (; insertion_index < number_of_transitions; ++insertion_index) {
+ if (InsertionPointFound(array->GetKey(insertion_index), *name)) break;
+ result->NoIncrementalWriteBarrierCopyFrom(
+ array, insertion_index, insertion_index);
}
+
result->NoIncrementalWriteBarrierSet(insertion_index, *name, *target);
- for (int i = insertion_index; i < number_of_transitions; ++i) {
- result->NoIncrementalWriteBarrierCopyFrom(array, i, i + 1);
+
+ for (; insertion_index < number_of_transitions; ++insertion_index) {
+ result->NoIncrementalWriteBarrierCopyFrom(
+ array, insertion_index, insertion_index + 1);
}
result->set_back_pointer_storage(array->back_pointer_storage());
SimpleTransitionFlag flag);
// Search a transition for a given property name.
- inline int Search(Name* name, int* out_insertion_index = NULL);
+ inline int Search(Name* name);
// Allocates a TransitionArray.
static Handle<TransitionArray> Allocate(Isolate* isolate,