main-binary-address: is the load address of the firmware type binary
main-binary-slide: is the slide of the firmware type binary, if address isn't known
+binary-addresses: A comma-separated list of binary load addresses base16.
+ lldb will parse the binaries in memory to get UUIDs, then
+ try to find the binaries & debug info by UUID. Intended for
+ use with a small number of firmware type binaries where the
+ search for binary/debug info may be expensive.
+
//----------------------------------------------------------------------
// "qShlibInfoAddr"
//
lldb::addr_t base_addr,
bool base_addr_is_offset);
+ /// Find/load a binary into lldb given a UUID and the address where it is
+ /// loaded in memory, or a slide to be applied to the file address.
+ /// May force an expensive search on the computer to find the binary by
+ /// UUID, should not be used for a large number of binaries - intended for
+ /// an environment where there may be one, or a few, binaries resident in
+ /// memory.
+ ///
+ /// Given a UUID, search for a binary and load it at the address provided,
+ /// or with the slide applied, or at the file address unslid.
+ ///
+ /// Given an address, try to read the binary out of memory, get the UUID,
+ /// find the file if possible and load it unslid, or add the memory module.
+ ///
+ /// \param[in] process
+ /// The process to add this binary to.
+ ///
+ /// \param[in] uuid
+ /// UUID of the binary to be loaded. UUID may be empty, and if a
+ /// load address is supplied, will read the binary from memory, get
+ /// a UUID and try to find a local binary. There is a performance
+ /// cost to doing this, it is not preferable.
+ ///
+ /// \param[in] value
+ /// Address where the binary should be loaded, or read out of memory.
+ /// Or a slide value, to be applied to the file addresses of the binary.
+ ///
+ /// \param[in] value_is_offset
+ /// A flag indicating that \p value is an address, or an offset to
+ /// be applied to the file addresses.
+ ///
+ /// \param[in] force_symbol_search
+ /// Allow the search to do a possibly expensive external search for
+ /// the ObjectFile and/or SymbolFile.
+ ///
+ /// \param[in] notify
+ /// Whether ModulesDidLoad should be called when a binary has been added
+ /// to the Target. The caller may prefer to batch up these when loading
+ /// multiple binaries.
+ ///
+ /// \return
+ /// Returns a shared pointer for the Module that has been added.
+ static lldb::ModuleSP
+ LoadBinaryWithUUIDAndAddress(Process *process, UUID uuid, lldb::addr_t value,
+ bool value_is_offset, bool force_symbol_search,
+ bool notify);
+
/// Get information about the shared cache for a process, if possible.
///
/// On some systems (e.g. Darwin based systems), a set of libraries that are
#include "lldb/Core/ModuleSpec.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Section.h"
+#include "lldb/Symbol/LocateSymbolFile.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Target/MemoryRegionInfo.h"
+#include "lldb/Target/Platform.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/ConstString.h"
+#include "lldb/Utility/LLDBLog.h"
+#include "lldb/Utility/Log.h"
#include "lldb/lldb-private-interfaces.h"
#include "llvm/ADT/StringRef.h"
return nullptr;
}
+static ModuleSP ReadUnnamedMemoryModule(Process *process, addr_t addr) {
+ char namebuf[80];
+ snprintf(namebuf, sizeof(namebuf), "memory-image-0x%" PRIx64, addr);
+ return process->ReadModuleFromMemory(FileSpec(namebuf), addr);
+}
+
+ModuleSP DynamicLoader::LoadBinaryWithUUIDAndAddress(Process *process,
+ UUID uuid, addr_t value,
+ bool value_is_offset,
+ bool force_symbol_search,
+ bool notify) {
+ ModuleSP memory_module_sp;
+ ModuleSP module_sp;
+ PlatformSP platform_sp = process->GetTarget().GetPlatform();
+ Target &target = process->GetTarget();
+ Status error;
+ ModuleSpec module_spec;
+ module_spec.GetUUID() = uuid;
+
+ if (!uuid.IsValid() && !value_is_offset) {
+ memory_module_sp = ReadUnnamedMemoryModule(process, value);
+
+ if (memory_module_sp)
+ uuid = memory_module_sp->GetUUID();
+ }
+
+ if (uuid.IsValid()) {
+ ModuleSpec module_spec;
+ module_spec.GetUUID() = uuid;
+
+ if (!module_sp)
+ module_sp = target.GetOrCreateModule(module_spec, false, &error);
+
+ // If we haven't found a binary, or we don't have a SymbolFile, see
+ // if there is an external search tool that can find it.
+ if (force_symbol_search &&
+ (!module_sp || !module_sp->GetSymbolFileFileSpec())) {
+ Symbols::DownloadObjectAndSymbolFile(module_spec, error, true);
+ if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
+ module_sp = std::make_shared<Module>(module_spec);
+ }
+ }
+ }
+
+ // If we couldn't find the binary anywhere else, as a last resort,
+ // read it out of memory.
+ if (!module_sp.get() && value != LLDB_INVALID_ADDRESS && !value_is_offset) {
+ if (!memory_module_sp)
+ memory_module_sp = ReadUnnamedMemoryModule(process, value);
+ if (memory_module_sp)
+ module_sp = memory_module_sp;
+ }
+
+ Log *log = GetLog(LLDBLog::DynamicLoader);
+ if (module_sp.get()) {
+ target.GetImages().AppendIfNeeded(module_sp, false);
+
+ bool changed = false;
+ if (module_sp->GetObjectFile()) {
+ if (value != LLDB_INVALID_ADDRESS) {
+ LLDB_LOGF(log, "Loading binary UUID %s at %s 0x%" PRIx64,
+ uuid.GetAsString().c_str(),
+ value_is_offset ? "offset" : "address", value);
+ module_sp->SetLoadAddress(target, value, value_is_offset, changed);
+ } else {
+ // No address/offset/slide, load the binary at file address,
+ // offset 0.
+ LLDB_LOGF(log, "Loading binary UUID %s at file address",
+ uuid.GetAsString().c_str());
+ module_sp->SetLoadAddress(target, 0, true /* value_is_slide */,
+ changed);
+ }
+ } else {
+ // In-memory image, load at its true address, offset 0.
+ LLDB_LOGF(log, "Loading binary UUID %s from memory at address 0x%" PRIx64,
+ uuid.GetAsString().c_str(), value);
+ module_sp->SetLoadAddress(target, 0, true /* value_is_slide */, changed);
+ }
+
+ if (notify) {
+ ModuleList added_module;
+ added_module.Append(module_sp, false);
+ target.ModulesDidLoad(added_module);
+ }
+ } else {
+ LLDB_LOGF(log, "Unable to find binary with UUID %s and load it at "
+ "%s 0x%" PRIx64,
+ uuid.GetAsString().c_str(),
+ value_is_offset ? "offset" : "address", value);
+ }
+
+ return module_sp;
+}
+
int64_t DynamicLoader::ReadUnsignedIntWithSizeInBytes(addr_t addr,
int size_in_bytes) {
Status error;
}
if (m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
- uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
+ if (!uuid_is_null(raw_uuid))
+ uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
// convert the "main bin spec" type into our
// ObjectFile::BinaryType enum
switch (binspec_type) {
MachOCorefileImageEntry image_entry;
image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset);
- image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
+ if (!uuid_is_null(uuid))
+ image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
image_entry.load_address = load_address;
image_entry.currently_executing = currently_executing;
MachOCorefileImageEntry image_entry;
image_entry.filename = filename;
- image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
+ if (!uuid_is_null(uuid))
+ image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
image_entry.load_address = load_address;
image_entry.slide = slide;
+ image_entry.currently_executing = true;
image_infos.all_image_infos.push_back(image_entry);
}
}
ModuleList added_modules;
for (const MachOCorefileImageEntry &image : image_infos.all_image_infos) {
- ModuleSpec module_spec;
- module_spec.GetUUID() = image.uuid;
- if (image.filename.empty()) {
- char namebuf[80];
- if (image.load_address != LLDB_INVALID_ADDRESS)
- snprintf(namebuf, sizeof(namebuf), "mem-image-0x%" PRIx64,
- image.load_address);
- else
- snprintf(namebuf, sizeof(namebuf), "mem-image+0x%" PRIx64, image.slide);
- module_spec.GetFileSpec() = FileSpec(namebuf);
- } else {
- module_spec.GetFileSpec() = FileSpec(image.filename.c_str());
- }
- if (image.currently_executing) {
+ ModuleSP module_sp;
+
+ if (!image.filename.empty()) {
Status error;
- Symbols::DownloadObjectAndSymbolFile(module_spec, error, true);
- if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
- process.GetTarget().GetOrCreateModule(module_spec, false);
+ ModuleSpec module_spec;
+ module_spec.GetUUID() = image.uuid;
+ module_spec.GetFileSpec() = FileSpec(image.filename.c_str());
+ if (image.currently_executing) {
+ Symbols::DownloadObjectAndSymbolFile(module_spec, error, true);
+ if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
+ process.GetTarget().GetOrCreateModule(module_spec, false);
+ }
}
- }
- Status error;
- ModuleSP module_sp =
- process.GetTarget().GetOrCreateModule(module_spec, false, &error);
- if (!module_sp.get() || !module_sp->GetObjectFile()) {
+ module_sp =
+ process.GetTarget().GetOrCreateModule(module_spec, false, &error);
+ process.GetTarget().GetImages().AppendIfNeeded(module_sp,
+ false /* notify */);
+ } else {
if (image.load_address != LLDB_INVALID_ADDRESS) {
- module_sp = process.ReadModuleFromMemory(module_spec.GetFileSpec(),
- image.load_address);
+ module_sp = DynamicLoader::LoadBinaryWithUUIDAndAddress(
+ &process, image.uuid, image.load_address,
+ false /* value_is_offset */, image.currently_executing,
+ false /* notify */);
+ } else if (image.slide != LLDB_INVALID_ADDRESS) {
+ module_sp = DynamicLoader::LoadBinaryWithUUIDAndAddress(
+ &process, image.uuid, image.slide, true /* value_is_offset */,
+ image.currently_executing, false /* notify */);
}
}
+
if (module_sp.get()) {
// Will call ModulesDidLoad with all modules once they've all
// been added to the Target with load addresses. Don't notify
// here, before the load address is set.
- const bool notify = false;
- process.GetTarget().GetImages().AppendIfNeeded(module_sp, notify);
- added_modules.Append(module_sp, notify);
+ added_modules.Append(module_sp, false /* notify */);
if (image.segment_load_addresses.size() > 0) {
if (log) {
std::string uuidstr = image.uuid.GetAsString();
return true;
}
+std::vector<addr_t>
+GDBRemoteCommunicationClient::GetProcessStandaloneBinaries() {
+ if (m_qProcessInfo_is_valid == eLazyBoolCalculate)
+ GetCurrentProcessInfo();
+ return m_binary_addresses;
+}
+
bool GDBRemoteCommunicationClient::GetGDBServerVersion() {
if (m_qGDBServerVersion_is_valid == eLazyBoolCalculate) {
m_gdb_server_name.clear();
m_process_standalone_value_is_offset = false;
++num_keys_decoded;
}
+ } else if (name.equals("binary-addresses")) {
+ addr_t addr;
+ while (!value.empty()) {
+ llvm::StringRef addr_str;
+ std::tie(addr_str, value) = value.split(',');
+ if (!addr_str.getAsInteger(16, addr))
+ m_binary_addresses.push_back(addr);
+ }
}
}
if (num_keys_decoded > 0)
bool GetProcessStandaloneBinary(UUID &uuid, lldb::addr_t &value,
bool &value_is_offset);
+ std::vector<lldb::addr_t> GetProcessStandaloneBinaries();
+
void GetRemoteQSupported();
bool GetVContSupported(char flavor);
UUID m_process_standalone_uuid;
lldb::addr_t m_process_standalone_value = LLDB_INVALID_ADDRESS;
bool m_process_standalone_value_is_offset = false;
+ std::vector<lldb::addr_t> m_binary_addresses;
llvm::VersionTuple m_os_version;
llvm::VersionTuple m_maccatalyst_version;
std::string m_os_build;
ModuleSP module_sp;
if (standalone_uuid.IsValid()) {
- ModuleSpec module_spec;
- module_spec.GetUUID() = standalone_uuid;
-
- // Look up UUID in global module cache before attempting
- // a more expensive search.
- Status error = ModuleList::GetSharedModule(module_spec, module_sp,
- nullptr, nullptr, nullptr);
-
- if (!module_sp) {
- // Force a an external lookup, if that tool is available.
- if (!module_spec.GetSymbolFileSpec()) {
- Status error;
- Symbols::DownloadObjectAndSymbolFile(module_spec, error, true);
- }
-
- if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
- module_sp = std::make_shared<Module>(module_spec);
- }
- }
-
- // If we couldn't find the binary anywhere else, as a last resort,
- // read it out of memory.
- if (!module_sp.get() && standalone_value != LLDB_INVALID_ADDRESS &&
- !standalone_value_is_offset) {
- char namebuf[80];
- snprintf(namebuf, sizeof(namebuf), "mem-image-0x%" PRIx64,
- standalone_value);
- module_sp =
- ReadModuleFromMemory(FileSpec(namebuf), standalone_value);
- }
-
- Log *log = GetLog(LLDBLog::DynamicLoader);
- if (module_sp.get()) {
- target.GetImages().AppendIfNeeded(module_sp, false);
-
- bool changed = false;
- if (module_sp->GetObjectFile()) {
- if (standalone_value != LLDB_INVALID_ADDRESS) {
- if (log)
- log->Printf("Loading binary UUID %s at %s 0x%" PRIx64,
- standalone_uuid.GetAsString().c_str(),
- standalone_value_is_offset ? "offset" : "address",
- standalone_value);
- module_sp->SetLoadAddress(target, standalone_value,
- standalone_value_is_offset, changed);
- } else {
- // No address/offset/slide, load the binary at file address,
- // offset 0.
- if (log)
- log->Printf("Loading binary UUID %s at file address",
- standalone_uuid.GetAsString().c_str());
- const bool value_is_slide = true;
- module_sp->SetLoadAddress(target, 0, value_is_slide, changed);
- }
- } else {
- // In-memory image, load at its true address, offset 0.
- if (log)
- log->Printf("Loading binary UUID %s from memory",
- standalone_uuid.GetAsString().c_str());
- const bool value_is_slide = true;
- module_sp->SetLoadAddress(target, 0, value_is_slide, changed);
- }
+ const bool force_symbol_search = true;
+ const bool notify = true;
+ DynamicLoader::LoadBinaryWithUUIDAndAddress(
+ this, standalone_uuid, standalone_value,
+ standalone_value_is_offset, force_symbol_search, notify);
+ }
+ }
- ModuleList added_module;
- added_module.Append(module_sp, false);
- target.ModulesDidLoad(added_module);
- } else {
- if (log)
- log->Printf("Unable to find binary with UUID %s and load it at "
- "%s 0x%" PRIx64,
- standalone_uuid.GetAsString().c_str(),
- standalone_value_is_offset ? "offset" : "address",
- standalone_value);
- }
+ // The remote stub may know about a list of binaries to
+ // force load into the process -- a firmware type situation
+ // where multiple binaries are present in virtual memory,
+ // and we are only given the addresses of the binaries.
+ // Not intended for use with userland debugging when we
+ // a DynamicLoader plugin that knows how to find the loaded
+ // binaries and will track updates as binaries are added.
+
+ std::vector<addr_t> bin_addrs = m_gdb_comm.GetProcessStandaloneBinaries();
+ if (bin_addrs.size()) {
+ UUID uuid;
+ const bool value_is_slide = false;
+ for (addr_t addr : bin_addrs) {
+ const bool force_symbol_search = true;
+ const bool notify = true;
+ DynamicLoader::LoadBinaryWithUUIDAndAddress(
+ this, uuid, addr, value_is_slide, force_symbol_search, notify);
}
}
return false;
}
-// We have a hint about a binary -- a UUID, possibly a load address.
-// Try to load a file with that UUID into lldb, and if we have a load
-// address, set it correctly. Else assume that the binary was loaded
-// with no slide.
-static bool load_standalone_binary(UUID uuid, addr_t value,
- bool value_is_offset, Target &target) {
- if (uuid.IsValid()) {
- ModuleSpec module_spec;
- module_spec.GetUUID() = uuid;
-
- // Look up UUID in global module cache before attempting
- // dsymForUUID-like action.
- ModuleSP module_sp;
- Status error = ModuleList::GetSharedModule(module_spec, module_sp, nullptr,
- nullptr, nullptr);
-
- if (!module_sp.get()) {
- // Force a a dsymForUUID lookup, if that tool is available.
- if (!module_spec.GetSymbolFileSpec()) {
- Status error;
- Symbols::DownloadObjectAndSymbolFile(module_spec, error, true);
- }
-
- if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
- module_sp = std::make_shared<Module>(module_spec);
- }
- }
-
- // If we couldn't find the binary anywhere else, as a last resort,
- // read it out of memory in the corefile.
- if (!module_sp.get() && value != LLDB_INVALID_ADDRESS && !value_is_offset) {
- char namebuf[80];
- snprintf(namebuf, sizeof(namebuf), "mem-image-0x%" PRIx64, value);
- module_sp =
- target.GetProcessSP()->ReadModuleFromMemory(FileSpec(namebuf), value);
- }
-
- if (module_sp.get()) {
- target.SetArchitecture(module_sp->GetObjectFile()->GetArchitecture());
- target.GetImages().AppendIfNeeded(module_sp, false);
-
- // TODO: Instead of using the load address as a value, if we create a
- // memory module from that address, we could get the correct segment
- // offset values from the in-memory load commands and set them correctly.
- // In case the load address we were given is not correct for all segments,
- // e.g. something in the shared cache. DynamicLoaderDarwinKernel does
- // something similar for kexts. In the context of a corefile, this would
- // be an inexpensive operation. Not all binaries in a corefile will have
- // a Mach-O header/load commands in memory, so this will not work in all
- // cases.
-
- bool changed = false;
- if (module_sp->GetObjectFile()) {
- if (value != LLDB_INVALID_ADDRESS) {
- module_sp->SetLoadAddress(target, value, value_is_offset, changed);
- } else {
- // No address/offset/slide, load the binary at file address,
- // offset 0.
- const bool value_is_slide = true;
- module_sp->SetLoadAddress(target, 0, value_is_slide, changed);
- }
- } else {
- // In-memory image, load at its true address, offset 0.
- const bool value_is_slide = true;
- module_sp->SetLoadAddress(target, 0, value_is_slide, changed);
- }
-
- ModuleList added_module;
- added_module.Append(module_sp, false);
- target.ModulesDidLoad(added_module);
-
- // Flush info in the process (stack frames, etc).
- ProcessSP process_sp(target.GetProcessSP());
- if (process_sp)
- process_sp->Flush();
-
- return true;
- }
- }
- return false;
-}
-
// Process Control
Status ProcessMachCore::DoLoadCore() {
Log *log(GetLog(LLDBLog::DynamicLoader | LLDBLog::Process));
objfile_binary_uuid.GetAsString().c_str(), objfile_binary_value,
objfile_binary_value_is_offset, type);
}
- if (objfile_binary_value != LLDB_INVALID_ADDRESS &&
- !objfile_binary_value_is_offset) {
- if (type == ObjectFile::eBinaryTypeUser) {
- load_standalone_binary(objfile_binary_uuid, objfile_binary_value,
- objfile_binary_value_is_offset, GetTarget());
- m_dyld_addr = objfile_binary_value;
- m_dyld_plugin_name = DynamicLoaderMacOSXDYLD::GetPluginNameStatic();
- found_main_binary_definitively = true;
- }
- if (type == ObjectFile::eBinaryTypeKernel) {
- m_mach_kernel_addr = objfile_binary_value;
- m_dyld_plugin_name = DynamicLoaderDarwinKernel::GetPluginNameStatic();
- found_main_binary_definitively = true;
- }
+ const bool force_symbol_search = true;
+ const bool notify = true;
+ if (DynamicLoader::LoadBinaryWithUUIDAndAddress(
+ this, objfile_binary_uuid, objfile_binary_value,
+ objfile_binary_value_is_offset, force_symbol_search, notify)) {
+ found_main_binary_definitively = true;
+ m_dyld_plugin_name = DynamicLoaderStatic::GetPluginNameStatic();
}
- if (!found_main_binary_definitively) {
- // ObjectFile::eBinaryTypeStandalone, undeclared types
- if (load_standalone_binary(objfile_binary_uuid, objfile_binary_value,
- objfile_binary_value_is_offset, GetTarget())) {
- found_main_binary_definitively = true;
- m_dyld_plugin_name = DynamicLoaderStatic::GetPluginNameStatic();
- }
+ if (type == ObjectFile::eBinaryTypeUser) {
+ m_dyld_addr = objfile_binary_value;
+ m_dyld_plugin_name = DynamicLoaderMacOSXDYLD::GetPluginNameStatic();
+ }
+ if (type == ObjectFile::eBinaryTypeKernel) {
+ m_mach_kernel_addr = objfile_binary_value;
+ m_dyld_plugin_name = DynamicLoaderDarwinKernel::GetPluginNameStatic();
}
}
// We have no address specified, only a UUID. Load it at the file
// address.
const bool value_is_offset = false;
- if (load_standalone_binary(ident_uuid, ident_binary_addr, value_is_offset,
- GetTarget())) {
+ const bool force_symbol_search = true;
+ const bool notify = true;
+ if (DynamicLoader::LoadBinaryWithUUIDAndAddress(
+ this, ident_uuid, ident_binary_addr, value_is_offset,
+ force_symbol_search, notify)) {
found_main_binary_definitively = true;
m_dyld_plugin_name = DynamicLoaderStatic::GetPluginNameStatic();
}
// uuid_t is guaranteed to always be a 16-byte array
typedef unsigned char uuid_t[16];
+// Return 1 if uuid is null, that is, all zeroes.
+int uuid_is_null(uuid_t uuid) {
+ for (int i = 0; i < 16; i++)
+ if (uuid[i])
+ return 0;
+ return 1;
+}
+
#endif // utility_UUID_COMPATIBILITY_H
--- /dev/null
+MAKE_DSYM := NO
+C_SOURCES := main.c
+LD_EXTRAS := -L. -lone -ltwo
+
+.PHONY: libone.dylib libtwo.dylib
+all: libone.dylib libtwo.dylib a.out create-empty-corefile
+
+create-empty-corefile:
+ "$(MAKE)" -f "$(MAKEFILE_RULES)" EXE=create-multibin-corefile \
+ CXX_SOURCES=create-multibin-corefile.cpp
+
+libone.dylib: one.c
+ $(MAKE) -f $(MAKEFILE_RULES) \
+ DYLIB_ONLY=YES DYLIB_NAME=one DYLIB_C_SOURCES=one.c
+
+libtwo.dylib: two.c
+ $(MAKE) -f $(MAKEFILE_RULES) \
+ DYLIB_ONLY=YES DYLIB_NAME=two DYLIB_C_SOURCES=two.c
+
+include Makefile.rules
--- /dev/null
+"""Test corefiles with "main bin spec"/"load binary" with only addrs work."""
+
+
+import os
+import re
+import subprocess
+
+import lldb
+from lldbsuite.test.decorators import *
+from lldbsuite.test.lldbtest import *
+from lldbsuite.test import lldbutil
+
+
+class TestMultipleBinaryCorefile(TestBase):
+
+ def initial_setup(self):
+ self.build()
+ self.aout_exe_basename = "a.out"
+ self.libone_exe_basename = "libone.dylib"
+ self.libtwo_exe_basename = "libtwo.dylib"
+ self.aout_exe = self.getBuildArtifact(self.aout_exe_basename)
+ self.aout_slide = 0x5000
+ self.libone_exe = self.getBuildArtifact(self.libone_exe_basename)
+ self.libone_slide = 0x100840000
+ self.libtwo_exe = self.getBuildArtifact(self.libtwo_exe_basename)
+ self.libtwo_slide = 0
+ self.corefile = self.getBuildArtifact("multiple-binaries.core")
+ self.create_corefile = self.getBuildArtifact("create-multibin-corefile")
+ cmd="%s %s %s@%x %s@%x %s@%x" % (self.create_corefile, self.corefile,
+ self.aout_exe, self.aout_slide,
+ self.libone_exe, self.libone_slide,
+ self.libtwo_exe, self.libtwo_slide)
+ call(cmd, shell=True)
+
+
+ def load_corefile_and_test(self):
+ target = self.dbg.CreateTarget('')
+ err = lldb.SBError()
+ if self.TraceOn():
+ self.runCmd("script print('loading corefile %s')" % self.corefile)
+ process = target.LoadCore(self.corefile)
+ self.assertEqual(process.IsValid(), True)
+ if self.TraceOn():
+ self.runCmd("script print('image list after loading corefile:')")
+ self.runCmd("image list")
+
+ self.assertEqual(target.GetNumModules(), 3)
+ fspec = target.GetModuleAtIndex(0).GetFileSpec()
+ self.assertEqual(fspec.GetFilename(), self.aout_exe_basename)
+
+ # libone.dylib was never loaded into lldb, see that we added a memory module.
+ fspec = target.GetModuleAtIndex(1).GetFileSpec()
+ self.assertIn('memory-image', fspec.GetFilename())
+
+ dwarfdump_uuid_regex = re.compile(
+ 'UUID: ([-0-9a-fA-F]+) \(([^\(]+)\) .*')
+ dwarfdump_cmd_output = subprocess.check_output(
+ ('/usr/bin/dwarfdump --uuid "%s"' % self.libone_exe), shell=True).decode("utf-8")
+ libone_uuid = None
+ for line in dwarfdump_cmd_output.splitlines():
+ match = dwarfdump_uuid_regex.search(line)
+ if match:
+ libone_uuid = match.group(1)
+
+ memory_image_uuid = target.GetModuleAtIndex(1).GetUUIDString()
+ self.assertEqual(libone_uuid, memory_image_uuid)
+
+ fspec = target.GetModuleAtIndex(2).GetFileSpec()
+ self.assertEqual(fspec.GetFilename(), self.libtwo_exe_basename)
+
+ # Executables "always" have this base address
+ aout_load = target.GetModuleAtIndex(0).GetObjectFileHeaderAddress().GetLoadAddress(target)
+ self.assertEqual(aout_load, 0x100000000 + self.aout_slide)
+
+ # Value from Makefile
+ libone_load = target.GetModuleAtIndex(1).GetObjectFileHeaderAddress().GetLoadAddress(target)
+ self.assertEqual(libone_load, self.libone_slide)
+
+ # Value from Makefile
+ libtwo_load = target.GetModuleAtIndex(2).GetObjectFileHeaderAddress().GetLoadAddress(target)
+ self.assertEqual(libtwo_load, self.libtwo_slide)
+
+ self.dbg.DeleteTarget(target)
+ self.dbg.Clear()
+
+ NO_DEBUG_INFO_TESTCASE = True
+
+ @skipIf(archs=no_match(['x86_64', 'arm64', 'arm64e', 'aarch64']))
+ @skipIfRemote
+ @skipUnlessDarwin
+ def test_corefile_binaries_dsymforuuid(self):
+ self.initial_setup()
+
+ if self.TraceOn():
+ self.runCmd("log enable lldb dyld host")
+ self.addTearDownHook(lambda: self.runCmd("log disable lldb dyld host"))
+
+ ## We can hook in our dsym-for-uuid shell script to lldb with this env
+ ## var instead of requiring a defaults write.
+ dsym_for_uuid = self.getBuildArtifact("dsym-for-uuid.sh")
+ os.environ['LLDB_APPLE_DSYMFORUUID_EXECUTABLE'] = dsym_for_uuid
+ if self.TraceOn():
+ print("Setting env var LLDB_APPLE_DSYMFORUUID_EXECUTABLE=" + dsym_for_uuid)
+ self.addTearDownHook(lambda: os.environ.pop('LLDB_APPLE_DSYMFORUUID_EXECUTABLE', None))
+
+ self.runCmd("settings set target.load-script-from-symbol-file true")
+ self.addTearDownHook(lambda: self.runCmd("settings set target.load-script-from-symbol-file false"))
+
+ dwarfdump_uuid_regex = re.compile(
+ 'UUID: ([-0-9a-fA-F]+) \(([^\(]+)\) .*')
+ dwarfdump_cmd_output = subprocess.check_output(
+ ('/usr/bin/dwarfdump --uuid "%s"' % self.libtwo_exe), shell=True).decode("utf-8")
+ libtwo_uuid = None
+ for line in dwarfdump_cmd_output.splitlines():
+ match = dwarfdump_uuid_regex.search(line)
+ if match:
+ libtwo_uuid = match.group(1)
+ self.assertNotEqual(libtwo_uuid, None, "Could not get uuid of built libtwo.dylib")
+
+ ### Create our dsym-for-uuid shell script which returns aout_exe
+ shell_cmds = [
+ '#! /bin/sh',
+ '# the last argument is the uuid',
+ 'while [ $# -gt 1 ]',
+ 'do',
+ ' shift',
+ 'done',
+ 'ret=0',
+ 'echo "<?xml version=\\"1.0\\" encoding=\\"UTF-8\\"?>"',
+ 'echo "<!DOCTYPE plist PUBLIC \\"-//Apple//DTD PLIST 1.0//EN\\" \\"http://www.apple.com/DTDs/PropertyList-1.0.dtd\\">"',
+ 'echo "<plist version=\\"1.0\\">"',
+ '',
+ 'if [ "$1" != "%s" ]' % (libtwo_uuid),
+ 'then',
+ ' echo "<key>DBGError</key><string>not found</string>"',
+ ' echo "</plist>"',
+ ' exit 1',
+ 'fi',
+ ' uuid=%s' % libtwo_uuid,
+ ' bin=%s' % self.libtwo_exe,
+ ' dsym=%s.dSYM/Contents/Resources/DWARF/%s' % (self.libtwo_exe, os.path.basename(self.libtwo_exe)),
+ 'echo "<dict><key>$uuid</key><dict>"',
+ '',
+ 'echo "<key>DBGDSYMPath</key><string>$dsym</string>"',
+ 'echo "<key>DBGSymbolRichExecutable</key><string>$bin</string>"',
+ 'echo "</dict></dict></plist>"',
+ 'exit $ret'
+ ]
+
+ with open(dsym_for_uuid, "w") as writer:
+ for l in shell_cmds:
+ writer.write(l + '\n')
+
+ os.chmod(dsym_for_uuid, 0o755)
+
+ # Register TWO of our binaries, but require dsymForUUID to find the third.
+ target = self.dbg.CreateTarget(self.aout_exe, '', '', False, lldb.SBError())
+ self.dbg.DeleteTarget(target)
+
+ if self.TraceOn():
+ self.runCmd("script print('Global image list, before loading corefile:')")
+ self.runCmd("image list -g")
+
+ self.load_corefile_and_test()
+
+ @skipIf(archs=no_match(['x86_64', 'arm64', 'arm64e', 'aarch64']))
+ @skipIfRemote
+ @skipUnlessDarwin
+ def test_corefile_binaries_preloaded(self):
+ self.initial_setup()
+
+ if self.TraceOn():
+ self.runCmd("log enable lldb dyld host")
+ self.addTearDownHook(lambda: self.runCmd("log disable lldb dyld host"))
+
+ # Register all three binaries in lldb's global module
+ # cache, then throw the Targets away.
+ target = self.dbg.CreateTarget(self.aout_exe, '', '', False, lldb.SBError())
+ self.dbg.DeleteTarget(target)
+ target = self.dbg.CreateTarget(self.libtwo_exe, '', '', False, lldb.SBError())
+ self.dbg.DeleteTarget(target)
+
+ if self.TraceOn():
+ self.runCmd("script print('Global image list, before loading corefile:')")
+ self.runCmd("image list -g")
+
+ self.load_corefile_and_test()
--- /dev/null
+#include <errno.h>
+#include <fcntl.h>
+#include <inttypes.h>
+#include <mach-o/loader.h>
+#include <mach/thread_status.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <string>
+#include <sys/errno.h>
+#include <sys/stat.h>
+#include <sys/types.h>
+#include <sys/uio.h>
+#include <unistd.h>
+#include <uuid/uuid.h>
+#include <vector>
+
+// Given a list of binaries, and optional slides to be applied,
+// create a corefile whose memory is those binaries laid at at
+// their slid addresses.
+//
+// Add a 'main bin spec' LC_NOTE for the first binary, and
+// 'load binary' LC_NOTEs for any additional binaries, and
+// these LC_NOTEs will ONLY have the vmaddr of the binary - no
+// UUID, no slide, no filename.
+//
+// Test that lldb can use the load addresses, find the UUIDs,
+// and load the binaries/dSYMs and put them at the correct load
+// address.
+
+struct main_bin_spec_payload {
+ uint32_t version;
+ uint32_t type;
+ uint64_t address;
+ uint64_t slide;
+ uuid_t uuid;
+ uint32_t log2_pagesize;
+ uint32_t platform;
+};
+
+struct load_binary_payload {
+ uint32_t version;
+ uuid_t uuid;
+ uint64_t address;
+ uint64_t slide;
+ const char name[4];
+};
+
+union uint32_buf {
+ uint8_t bytebuf[4];
+ uint32_t val;
+};
+
+union uint64_buf {
+ uint8_t bytebuf[8];
+ uint64_t val;
+};
+
+void add_uint64(std::vector<uint8_t> &buf, uint64_t val) {
+ uint64_buf conv;
+ conv.val = val;
+ for (int i = 0; i < 8; i++)
+ buf.push_back(conv.bytebuf[i]);
+}
+
+void add_uint32(std::vector<uint8_t> &buf, uint32_t val) {
+ uint32_buf conv;
+ conv.val = val;
+ for (int i = 0; i < 4; i++)
+ buf.push_back(conv.bytebuf[i]);
+}
+
+std::vector<uint8_t> lc_thread_load_command(cpu_type_t cputype) {
+ std::vector<uint8_t> data;
+ // Emit an LC_THREAD register context appropriate for the cputype
+ // of the binary we're embedded. The tests in this case do not
+ // use the register values, so 0's are fine, lldb needs to see at
+ // least one LC_THREAD in the corefile.
+#if defined(__x86_64__)
+ if (cputype == CPU_TYPE_X86_64) {
+ add_uint32(data, LC_THREAD); // thread_command.cmd
+ add_uint32(data,
+ 16 + (x86_THREAD_STATE64_COUNT * 4)); // thread_command.cmdsize
+ add_uint32(data, x86_THREAD_STATE64); // thread_command.flavor
+ add_uint32(data, x86_THREAD_STATE64_COUNT); // thread_command.count
+ for (int i = 0; i < x86_THREAD_STATE64_COUNT; i++) {
+ add_uint32(data, 0); // whatever, just some empty register values
+ }
+ }
+#endif
+#if defined(__arm64__) || defined(__aarch64__)
+ if (cputype == CPU_TYPE_ARM64) {
+ add_uint32(data, LC_THREAD); // thread_command.cmd
+ add_uint32(data,
+ 16 + (ARM_THREAD_STATE64_COUNT * 4)); // thread_command.cmdsize
+ add_uint32(data, ARM_THREAD_STATE64); // thread_command.flavor
+ add_uint32(data, ARM_THREAD_STATE64_COUNT); // thread_command.count
+ for (int i = 0; i < ARM_THREAD_STATE64_COUNT; i++) {
+ add_uint32(data, 0); // whatever, just some empty register values
+ }
+ }
+#endif
+ return data;
+}
+
+void add_lc_note_main_bin_spec_load_command(
+ std::vector<std::vector<uint8_t>> &loadcmds, std::vector<uint8_t> &payload,
+ int payload_file_offset, std::string uuidstr, uint64_t address,
+ uint64_t slide) {
+ std::vector<uint8_t> loadcmd_data;
+
+ add_uint32(loadcmd_data, LC_NOTE); // note_command.cmd
+ add_uint32(loadcmd_data, 40); // note_command.cmdsize
+ char lc_note_name[16];
+ memset(lc_note_name, 0, 16);
+ strcpy(lc_note_name, "main bin spec");
+
+ // lc_note.data_owner
+ for (int i = 0; i < 16; i++)
+ loadcmd_data.push_back(lc_note_name[i]);
+
+ // we start writing the payload at payload_file_offset to leave
+ // room at the start for the header & the load commands.
+ uint64_t current_payload_offset = payload.size() + payload_file_offset;
+
+ add_uint64(loadcmd_data, current_payload_offset); // note_command.offset
+ add_uint64(loadcmd_data,
+ sizeof(struct main_bin_spec_payload)); // note_command.size
+
+ loadcmds.push_back(loadcmd_data);
+
+ // Now write the "main bin spec" payload.
+ add_uint32(payload, 2); // version
+ add_uint32(payload, 3); // type == 3 [ firmware, standalone, etc ]
+ add_uint64(payload, address); // load address
+ add_uint64(payload, slide); // slide
+ uuid_t uuid;
+ uuid_parse(uuidstr.c_str(), uuid);
+ for (int i = 0; i < sizeof(uuid_t); i++)
+ payload.push_back(uuid[i]);
+ add_uint32(payload, 0); // log2_pagesize unspecified
+ add_uint32(payload, 0); // platform unspecified
+}
+
+void add_lc_note_load_binary_load_command(
+ std::vector<std::vector<uint8_t>> &loadcmds, std::vector<uint8_t> &payload,
+ int payload_file_offset, std::string uuidstr, uint64_t address,
+ uint64_t slide) {
+ std::vector<uint8_t> loadcmd_data;
+
+ add_uint32(loadcmd_data, LC_NOTE); // note_command.cmd
+ add_uint32(loadcmd_data, 40); // note_command.cmdsize
+ char lc_note_name[16];
+ memset(lc_note_name, 0, 16);
+ strcpy(lc_note_name, "load binary");
+
+ // lc_note.data_owner
+ for (int i = 0; i < 16; i++)
+ loadcmd_data.push_back(lc_note_name[i]);
+
+ // we start writing the payload at payload_file_offset to leave
+ // room at the start for the header & the load commands.
+ uint64_t current_payload_offset = payload.size() + payload_file_offset;
+
+ add_uint64(loadcmd_data, current_payload_offset); // note_command.offset
+ add_uint64(loadcmd_data,
+ sizeof(struct load_binary_payload)); // note_command.size
+
+ loadcmds.push_back(loadcmd_data);
+
+ // Now write the "load binary" payload.
+ add_uint32(payload, 1); // version
+ uuid_t uuid;
+ uuid_parse(uuidstr.c_str(), uuid);
+ for (int i = 0; i < sizeof(uuid_t); i++)
+ payload.push_back(uuid[i]);
+ add_uint64(payload, address); // load address
+ add_uint64(payload, slide); // slide
+ add_uint32(payload, 0); // name
+}
+
+void add_lc_segment(std::vector<std::vector<uint8_t>> &loadcmds,
+ std::vector<uint8_t> &payload, int payload_file_offset,
+ uint64_t vmaddr, uint64_t size) {
+ std::vector<uint8_t> loadcmd_data;
+ struct segment_command_64 seg;
+ seg.cmd = LC_SEGMENT_64;
+ seg.cmdsize = sizeof(struct segment_command_64); // no sections
+ memset(seg.segname, 0, 16);
+ seg.vmaddr = vmaddr;
+ seg.vmsize = size;
+ seg.fileoff = payload.size() + payload_file_offset;
+ seg.filesize = size;
+ seg.maxprot = 1;
+ seg.initprot = 1;
+ seg.nsects = 0;
+ seg.flags = 0;
+
+ uint8_t *p = (uint8_t *)&seg;
+ for (int i = 0; i < sizeof(struct segment_command_64); i++) {
+ loadcmd_data.push_back(*(p + i));
+ }
+ loadcmds.push_back(loadcmd_data);
+}
+
+std::string scan_binary(const char *fn, uint64_t &vmaddr, cpu_type_t &cputype,
+ cpu_subtype_t &cpusubtype) {
+ FILE *f = fopen(fn, "r");
+ if (f == nullptr) {
+ fprintf(stderr, "Unable to open binary '%s' to get uuid\n", fn);
+ exit(1);
+ }
+ uint32_t num_of_load_cmds = 0;
+ uint32_t size_of_load_cmds = 0;
+ std::string uuid;
+ off_t file_offset = 0;
+ vmaddr = UINT64_MAX;
+
+ uint8_t magic[4];
+ if (::fread(magic, 1, 4, f) != 4) {
+ fprintf(stderr, "Failed to read magic number from input file %s\n", fn);
+ exit(1);
+ }
+ uint8_t magic_32_be[] = {0xfe, 0xed, 0xfa, 0xce};
+ uint8_t magic_32_le[] = {0xce, 0xfa, 0xed, 0xfe};
+ uint8_t magic_64_be[] = {0xfe, 0xed, 0xfa, 0xcf};
+ uint8_t magic_64_le[] = {0xcf, 0xfa, 0xed, 0xfe};
+
+ if (memcmp(magic, magic_32_be, 4) == 0 ||
+ memcmp(magic, magic_64_be, 4) == 0) {
+ fprintf(stderr, "big endian corefiles not supported\n");
+ exit(1);
+ }
+
+ ::fseeko(f, 0, SEEK_SET);
+ if (memcmp(magic, magic_32_le, 4) == 0) {
+ struct mach_header mh;
+ if (::fread(&mh, 1, sizeof(mh), f) != sizeof(mh)) {
+ fprintf(stderr, "error reading mach header from input file\n");
+ exit(1);
+ }
+ if (mh.cputype != CPU_TYPE_X86_64 && mh.cputype != CPU_TYPE_ARM64) {
+ fprintf(stderr,
+ "This tool creates an x86_64/arm64 corefile but "
+ "the supplied binary '%s' is cputype 0x%x\n",
+ fn, (uint32_t)mh.cputype);
+ exit(1);
+ }
+ num_of_load_cmds = mh.ncmds;
+ size_of_load_cmds = mh.sizeofcmds;
+ file_offset += sizeof(struct mach_header);
+ cputype = mh.cputype;
+ cpusubtype = mh.cpusubtype;
+ } else {
+ struct mach_header_64 mh;
+ if (::fread(&mh, 1, sizeof(mh), f) != sizeof(mh)) {
+ fprintf(stderr, "error reading mach header from input file\n");
+ exit(1);
+ }
+ if (mh.cputype != CPU_TYPE_X86_64 && mh.cputype != CPU_TYPE_ARM64) {
+ fprintf(stderr,
+ "This tool creates an x86_64/arm64 corefile but "
+ "the supplied binary '%s' is cputype 0x%x\n",
+ fn, (uint32_t)mh.cputype);
+ exit(1);
+ }
+ num_of_load_cmds = mh.ncmds;
+ size_of_load_cmds = mh.sizeofcmds;
+ file_offset += sizeof(struct mach_header_64);
+ cputype = mh.cputype;
+ cpusubtype = mh.cpusubtype;
+ }
+
+ off_t load_cmds_offset = file_offset;
+
+ for (int i = 0; i < num_of_load_cmds &&
+ (file_offset - load_cmds_offset) < size_of_load_cmds;
+ i++) {
+ ::fseeko(f, file_offset, SEEK_SET);
+ uint32_t cmd;
+ uint32_t cmdsize;
+ ::fread(&cmd, sizeof(uint32_t), 1, f);
+ ::fread(&cmdsize, sizeof(uint32_t), 1, f);
+ if (vmaddr == UINT64_MAX && cmd == LC_SEGMENT_64) {
+ struct segment_command_64 segcmd;
+ ::fseeko(f, file_offset, SEEK_SET);
+ if (::fread(&segcmd, 1, sizeof(segcmd), f) != sizeof(segcmd)) {
+ fprintf(stderr, "Unable to read LC_SEGMENT_64 load command.\n");
+ exit(1);
+ }
+ if (strcmp("__TEXT", segcmd.segname) == 0)
+ vmaddr = segcmd.vmaddr;
+ }
+ if (cmd == LC_UUID) {
+ struct uuid_command uuidcmd;
+ ::fseeko(f, file_offset, SEEK_SET);
+ if (::fread(&uuidcmd, 1, sizeof(uuidcmd), f) != sizeof(uuidcmd)) {
+ fprintf(stderr, "Unable to read LC_UUID load command.\n");
+ exit(1);
+ }
+ uuid_string_t uuidstr;
+ uuid_unparse(uuidcmd.uuid, uuidstr);
+ uuid = uuidstr;
+ }
+ file_offset += cmdsize;
+ }
+ return uuid;
+}
+
+void slide_macho_binary(std::vector<uint8_t> &image, uint64_t slide) {
+ uint8_t *p = image.data();
+ struct mach_header_64 *mh = (struct mach_header_64 *)p;
+ p += sizeof(struct mach_header_64);
+ for (int lc_idx = 0; lc_idx < mh->ncmds; lc_idx++) {
+ struct load_command *lc = (struct load_command *)p;
+ if (lc->cmd == LC_SEGMENT_64) {
+ struct segment_command_64 *seg = (struct segment_command_64 *)p;
+ if (seg->maxprot != 0 && seg->nsects > 0) {
+ seg->vmaddr += slide;
+ uint8_t *j = p + sizeof(segment_command_64);
+ for (int sect_idx = 0; sect_idx < seg->nsects; sect_idx++) {
+ struct section_64 *sect = (struct section_64 *)j;
+ sect->addr += slide;
+ j += sizeof(struct section_64);
+ }
+ }
+ }
+ p += lc->cmdsize;
+ }
+}
+
+int main(int argc, char **argv) {
+ if (argc < 3) {
+ fprintf(stderr,
+ "usage: output-corefile binary1[@optional-slide] "
+ "[binary2[@optional-slide] [binary3[@optional-slide] ...]]\n");
+ exit(1);
+ }
+
+ // An array of load commands (in the form of byte arrays)
+ std::vector<std::vector<uint8_t>> load_commands;
+
+ // An array of corefile contents (page data, lc_note data, etc)
+ std::vector<uint8_t> payload;
+
+ std::vector<std::string> input_filenames;
+ std::vector<uint64_t> input_slides;
+ std::vector<uint64_t> input_filesizes;
+ std::vector<uint64_t> input_filevmaddrs;
+ uint64_t main_binary_cputype = CPU_TYPE_ARM64;
+ uint64_t vmaddr = UINT64_MAX;
+ cpu_type_t cputype;
+ cpu_subtype_t cpusubtype;
+ for (int i = 2; i < argc; i++) {
+ std::string filename;
+ std::string filename_and_opt_hex(argv[i]);
+ uint64_t slide = 0;
+ auto at_pos = filename_and_opt_hex.find_last_of('@');
+ if (at_pos == std::string::npos) {
+ filename = filename_and_opt_hex;
+ } else {
+ filename = filename_and_opt_hex.substr(0, at_pos);
+ std::string hexstr = filename_and_opt_hex.substr(at_pos + 1);
+ errno = 0;
+ slide = (uint64_t)strtoull(hexstr.c_str(), nullptr, 16);
+ if (errno != 0) {
+ fprintf(stderr, "Unable to parse hex slide value in %s\n", argv[i]);
+ exit(1);
+ }
+ }
+ struct stat stbuf;
+ if (stat(filename.c_str(), &stbuf) == -1) {
+ fprintf(stderr, "Unable to stat '%s', exiting.\n", filename.c_str());
+ exit(1);
+ }
+ input_filenames.push_back(filename);
+ input_slides.push_back(slide);
+ input_filesizes.push_back(stbuf.st_size);
+ scan_binary(filename.c_str(), vmaddr, cputype, cpusubtype);
+ input_filevmaddrs.push_back(vmaddr + slide);
+ if (i == 2) {
+ main_binary_cputype = cputype;
+ }
+ }
+
+ const char *output_corefile_name = argv[1];
+ std::string empty_uuidstr = "00000000-0000-0000-0000-000000000000";
+
+ // First add all the load commands / payload so we can figure out how large
+ // the load commands will actually be.
+ load_commands.push_back(lc_thread_load_command(cputype));
+
+ add_lc_note_main_bin_spec_load_command(load_commands, payload, 0,
+ empty_uuidstr, 0, UINT64_MAX);
+ for (int i = 1; i < input_filenames.size(); i++) {
+ add_lc_note_load_binary_load_command(load_commands, payload, 0,
+ empty_uuidstr, 0, UINT64_MAX);
+ }
+
+ for (int i = 0; i < input_filenames.size(); i++) {
+ add_lc_segment(load_commands, payload, 0, 0, 0);
+ }
+
+ int size_of_load_commands = 0;
+ for (const auto &lc : load_commands)
+ size_of_load_commands += lc.size();
+
+ int size_of_header_and_load_cmds =
+ sizeof(struct mach_header_64) + size_of_load_commands;
+
+ // Erase the load commands / payload now that we know how much space is
+ // needed, redo it.
+ load_commands.clear();
+ payload.clear();
+
+ // Push the LC_THREAD load command.
+ load_commands.push_back(lc_thread_load_command(main_binary_cputype));
+
+ const off_t payload_offset = size_of_header_and_load_cmds;
+
+ add_lc_note_main_bin_spec_load_command(load_commands, payload, payload_offset,
+ empty_uuidstr, input_filevmaddrs[0],
+ UINT64_MAX);
+
+ for (int i = 1; i < input_filenames.size(); i++) {
+ add_lc_note_load_binary_load_command(load_commands, payload, payload_offset,
+ empty_uuidstr, input_filevmaddrs[i],
+ UINT64_MAX);
+ }
+
+ for (int i = 0; i < input_filenames.size(); i++) {
+ add_lc_segment(load_commands, payload, payload_offset, input_filevmaddrs[i],
+ input_filesizes[i]);
+
+ // Copy the contents of the binary into payload.
+ int fd = open(input_filenames[i].c_str(), O_RDONLY);
+ if (fd == -1) {
+ fprintf(stderr, "Unable to open %s for reading\n",
+ input_filenames[i].c_str());
+ exit(1);
+ }
+ std::vector<uint8_t> binary_contents;
+ for (int j = 0; j < input_filesizes[i]; j++) {
+ uint8_t byte;
+ read(fd, &byte, 1);
+ binary_contents.push_back(byte);
+ }
+ close(fd);
+
+ size_t cur_payload_size = payload.size();
+ payload.resize(cur_payload_size + binary_contents.size());
+ slide_macho_binary(binary_contents, input_slides[i]);
+ memcpy(payload.data() + cur_payload_size, binary_contents.data(),
+ binary_contents.size());
+ }
+
+ struct mach_header_64 mh;
+ mh.magic = MH_MAGIC_64;
+ mh.cputype = cputype;
+
+ mh.cpusubtype = cpusubtype;
+ mh.filetype = MH_CORE;
+ mh.ncmds = load_commands.size();
+ mh.sizeofcmds = size_of_load_commands;
+ mh.flags = 0;
+ mh.reserved = 0;
+
+ FILE *f = fopen(output_corefile_name, "w");
+
+ if (f == nullptr) {
+ fprintf(stderr, "Unable to open file %s for writing\n",
+ output_corefile_name);
+ exit(1);
+ }
+
+ fwrite(&mh, sizeof(mh), 1, f);
+
+ for (const auto &lc : load_commands)
+ fwrite(lc.data(), lc.size(), 1, f);
+
+ fwrite(payload.data(), payload.size(), 1, f);
+
+ fclose(f);
+}
--- /dev/null
+#include <stdio.h>
+int one();
+int two();
+int main() {
+ puts("this is the standalone binary test program");
+ return one() + two();
+}
--- /dev/null
+int one() { return 5; }
--- /dev/null
+int two() { return 10; }