--- /dev/null
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * Copyright (C) 2008 Cavium Networks
+ *
+ * Some parts of the code were originally released under BSD license:
+ *
+ * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
+ * reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials provided
+ * with the distribution.
+ *
+ * * Neither the name of Cavium Networks nor the names of
+ * its contributors may be used to endorse or promote products
+ * derived from this software without specific prior written
+ * permission.
+ *
+ * This Software, including technical data, may be subject to U.S. export
+ * control laws, including the U.S. Export Administration Act and its associated
+ * regulations, and may be subject to export or import regulations in other
+ * countries.
+ *
+ * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
+ * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
+ * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
+ * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
+ * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
+ * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
+ * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
+ * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
+ * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
+ * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
+ */
+
+#include <linux/usb.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/usb/hcd.h>
+#include <linux/prefetch.h>
+#include <linux/dma-mapping.h>
+#include <linux/platform_device.h>
+
+#include <asm/octeon/octeon.h>
+
+#include "octeon-hcd.h"
+
+/**
+ * enum cvmx_usb_speed - the possible USB device speeds
+ *
+ * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps
+ * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps
+ * @CVMX_USB_SPEED_LOW: Device is operation at 1.5Mbps
+ */
+enum cvmx_usb_speed {
+ CVMX_USB_SPEED_HIGH = 0,
+ CVMX_USB_SPEED_FULL = 1,
+ CVMX_USB_SPEED_LOW = 2,
+};
+
+/**
+ * enum cvmx_usb_transfer - the possible USB transfer types
+ *
+ * @CVMX_USB_TRANSFER_CONTROL: USB transfer type control for hub and status
+ * transfers
+ * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low
+ * priority periodic transfers
+ * @CVMX_USB_TRANSFER_BULK: USB transfer type bulk for large low priority
+ * transfers
+ * @CVMX_USB_TRANSFER_INTERRUPT: USB transfer type interrupt for high priority
+ * periodic transfers
+ */
+enum cvmx_usb_transfer {
+ CVMX_USB_TRANSFER_CONTROL = 0,
+ CVMX_USB_TRANSFER_ISOCHRONOUS = 1,
+ CVMX_USB_TRANSFER_BULK = 2,
+ CVMX_USB_TRANSFER_INTERRUPT = 3,
+};
+
+/**
+ * enum cvmx_usb_direction - the transfer directions
+ *
+ * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host
+ * @CVMX_USB_DIRECTION_IN: Data is transferring from the device/host to Octeon
+ */
+enum cvmx_usb_direction {
+ CVMX_USB_DIRECTION_OUT,
+ CVMX_USB_DIRECTION_IN,
+};
+
+/**
+ * enum cvmx_usb_status - possible callback function status codes
+ *
+ * @CVMX_USB_STATUS_OK: The transaction / operation finished without
+ * any errors
+ * @CVMX_USB_STATUS_SHORT: FIXME: This is currently not implemented
+ * @CVMX_USB_STATUS_CANCEL: The transaction was canceled while in flight
+ * by a user call to cvmx_usb_cancel
+ * @CVMX_USB_STATUS_ERROR: The transaction aborted with an unexpected
+ * error status
+ * @CVMX_USB_STATUS_STALL: The transaction received a USB STALL response
+ * from the device
+ * @CVMX_USB_STATUS_XACTERR: The transaction failed with an error from the
+ * device even after a number of retries
+ * @CVMX_USB_STATUS_DATATGLERR: The transaction failed with a data toggle
+ * error even after a number of retries
+ * @CVMX_USB_STATUS_BABBLEERR: The transaction failed with a babble error
+ * @CVMX_USB_STATUS_FRAMEERR: The transaction failed with a frame error
+ * even after a number of retries
+ */
+enum cvmx_usb_status {
+ CVMX_USB_STATUS_OK,
+ CVMX_USB_STATUS_SHORT,
+ CVMX_USB_STATUS_CANCEL,
+ CVMX_USB_STATUS_ERROR,
+ CVMX_USB_STATUS_STALL,
+ CVMX_USB_STATUS_XACTERR,
+ CVMX_USB_STATUS_DATATGLERR,
+ CVMX_USB_STATUS_BABBLEERR,
+ CVMX_USB_STATUS_FRAMEERR,
+};
+
+/**
+ * struct cvmx_usb_port_status - the USB port status information
+ *
+ * @port_enabled: 1 = Usb port is enabled, 0 = disabled
+ * @port_over_current: 1 = Over current detected, 0 = Over current not
+ * detected. Octeon doesn't support over current detection.
+ * @port_powered: 1 = Port power is being supplied to the device, 0 =
+ * power is off. Octeon doesn't support turning port power
+ * off.
+ * @port_speed: Current port speed.
+ * @connected: 1 = A device is connected to the port, 0 = No device is
+ * connected.
+ * @connect_change: 1 = Device connected state changed since the last set
+ * status call.
+ */
+struct cvmx_usb_port_status {
+ u32 reserved : 25;
+ u32 port_enabled : 1;
+ u32 port_over_current : 1;
+ u32 port_powered : 1;
+ enum cvmx_usb_speed port_speed : 2;
+ u32 connected : 1;
+ u32 connect_change : 1;
+};
+
+/**
+ * struct cvmx_usb_iso_packet - descriptor for Isochronous packets
+ *
+ * @offset: This is the offset in bytes into the main buffer where this data
+ * is stored.
+ * @length: This is the length in bytes of the data.
+ * @status: This is the status of this individual packet transfer.
+ */
+struct cvmx_usb_iso_packet {
+ int offset;
+ int length;
+ enum cvmx_usb_status status;
+};
+
+/**
+ * enum cvmx_usb_initialize_flags - flags used by the initialization function
+ *
+ * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI: The USB port uses a 12MHz crystal
+ * as clock source at USB_XO and
+ * USB_XI.
+ * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND: The USB port uses 12/24/48MHz 2.5V
+ * board clock source at USB_XO.
+ * USB_XI should be tied to GND.
+ * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field
+ * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ: Speed of reference clock or
+ * crystal
+ * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ: Speed of reference clock
+ * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ: Speed of reference clock
+ * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA: Disable DMA and used polled IO for
+ * data transfer use for the USB
+ */
+enum cvmx_usb_initialize_flags {
+ CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI = 1 << 0,
+ CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND = 1 << 1,
+ CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK = 3 << 3,
+ CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ = 1 << 3,
+ CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ = 2 << 3,
+ CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ = 3 << 3,
+ /* Bits 3-4 used to encode the clock frequency */
+ CVMX_USB_INITIALIZE_FLAGS_NO_DMA = 1 << 5,
+};
+
+/**
+ * enum cvmx_usb_pipe_flags - internal flags for a pipe.
+ *
+ * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is
+ * actively using hardware.
+ * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed
+ * pipe is in the ping state.
+ */
+enum cvmx_usb_pipe_flags {
+ CVMX_USB_PIPE_FLAGS_SCHEDULED = 1 << 17,
+ CVMX_USB_PIPE_FLAGS_NEED_PING = 1 << 18,
+};
+
+/* Maximum number of times to retry failed transactions */
+#define MAX_RETRIES 3
+
+/* Maximum number of hardware channels supported by the USB block */
+#define MAX_CHANNELS 8
+
+/*
+ * The low level hardware can transfer a maximum of this number of bytes in each
+ * transfer. The field is 19 bits wide
+ */
+#define MAX_TRANSFER_BYTES ((1 << 19) - 1)
+
+/*
+ * The low level hardware can transfer a maximum of this number of packets in
+ * each transfer. The field is 10 bits wide
+ */
+#define MAX_TRANSFER_PACKETS ((1 << 10) - 1)
+
+/**
+ * Logical transactions may take numerous low level
+ * transactions, especially when splits are concerned. This
+ * enum represents all of the possible stages a transaction can
+ * be in. Note that split completes are always even. This is so
+ * the NAK handler can backup to the previous low level
+ * transaction with a simple clearing of bit 0.
+ */
+enum cvmx_usb_stage {
+ CVMX_USB_STAGE_NON_CONTROL,
+ CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE,
+ CVMX_USB_STAGE_SETUP,
+ CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE,
+ CVMX_USB_STAGE_DATA,
+ CVMX_USB_STAGE_DATA_SPLIT_COMPLETE,
+ CVMX_USB_STAGE_STATUS,
+ CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE,
+};
+
+/**
+ * struct cvmx_usb_transaction - describes each pending USB transaction
+ * regardless of type. These are linked together
+ * to form a list of pending requests for a pipe.
+ *
+ * @node: List node for transactions in the pipe.
+ * @type: Type of transaction, duplicated of the pipe.
+ * @flags: State flags for this transaction.
+ * @buffer: User's physical buffer address to read/write.
+ * @buffer_length: Size of the user's buffer in bytes.
+ * @control_header: For control transactions, physical address of the 8
+ * byte standard header.
+ * @iso_start_frame: For ISO transactions, the starting frame number.
+ * @iso_number_packets: For ISO transactions, the number of packets in the
+ * request.
+ * @iso_packets: For ISO transactions, the sub packets in the request.
+ * @actual_bytes: Actual bytes transfer for this transaction.
+ * @stage: For control transactions, the current stage.
+ * @urb: URB.
+ */
+struct cvmx_usb_transaction {
+ struct list_head node;
+ enum cvmx_usb_transfer type;
+ u64 buffer;
+ int buffer_length;
+ u64 control_header;
+ int iso_start_frame;
+ int iso_number_packets;
+ struct cvmx_usb_iso_packet *iso_packets;
+ int xfersize;
+ int pktcnt;
+ int retries;
+ int actual_bytes;
+ enum cvmx_usb_stage stage;
+ struct urb *urb;
+};
+
+/**
+ * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon
+ * and some USB device. It contains a list of pending
+ * request to the device.
+ *
+ * @node: List node for pipe list
+ * @next: Pipe after this one in the list
+ * @transactions: List of pending transactions
+ * @interval: For periodic pipes, the interval between packets in
+ * frames
+ * @next_tx_frame: The next frame this pipe is allowed to transmit on
+ * @flags: State flags for this pipe
+ * @device_speed: Speed of device connected to this pipe
+ * @transfer_type: Type of transaction supported by this pipe
+ * @transfer_dir: IN or OUT. Ignored for Control
+ * @multi_count: Max packet in a row for the device
+ * @max_packet: The device's maximum packet size in bytes
+ * @device_addr: USB device address at other end of pipe
+ * @endpoint_num: USB endpoint number at other end of pipe
+ * @hub_device_addr: Hub address this device is connected to
+ * @hub_port: Hub port this device is connected to
+ * @pid_toggle: This toggles between 0/1 on every packet send to track
+ * the data pid needed
+ * @channel: Hardware DMA channel for this pipe
+ * @split_sc_frame: The low order bits of the frame number the split
+ * complete should be sent on
+ */
+struct cvmx_usb_pipe {
+ struct list_head node;
+ struct list_head transactions;
+ u64 interval;
+ u64 next_tx_frame;
+ enum cvmx_usb_pipe_flags flags;
+ enum cvmx_usb_speed device_speed;
+ enum cvmx_usb_transfer transfer_type;
+ enum cvmx_usb_direction transfer_dir;
+ int multi_count;
+ u16 max_packet;
+ u8 device_addr;
+ u8 endpoint_num;
+ u8 hub_device_addr;
+ u8 hub_port;
+ u8 pid_toggle;
+ u8 channel;
+ s8 split_sc_frame;
+};
+
+struct cvmx_usb_tx_fifo {
+ struct {
+ int channel;
+ int size;
+ u64 address;
+ } entry[MAX_CHANNELS + 1];
+ int head;
+ int tail;
+};
+
+/**
+ * struct octeon_hcd - the state of the USB block
+ *
+ * lock: Serialization lock.
+ * init_flags: Flags passed to initialize.
+ * index: Which USB block this is for.
+ * idle_hardware_channels: Bit set for every idle hardware channel.
+ * usbcx_hprt: Stored port status so we don't need to read a CSR to
+ * determine splits.
+ * pipe_for_channel: Map channels to pipes.
+ * pipe: Storage for pipes.
+ * indent: Used by debug output to indent functions.
+ * port_status: Last port status used for change notification.
+ * idle_pipes: List of open pipes that have no transactions.
+ * active_pipes: Active pipes indexed by transfer type.
+ * frame_number: Increments every SOF interrupt for time keeping.
+ * active_split: Points to the current active split, or NULL.
+ */
+struct octeon_hcd {
+ spinlock_t lock; /* serialization lock */
+ int init_flags;
+ int index;
+ int idle_hardware_channels;
+ union cvmx_usbcx_hprt usbcx_hprt;
+ struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS];
+ int indent;
+ struct cvmx_usb_port_status port_status;
+ struct list_head idle_pipes;
+ struct list_head active_pipes[4];
+ u64 frame_number;
+ struct cvmx_usb_transaction *active_split;
+ struct cvmx_usb_tx_fifo periodic;
+ struct cvmx_usb_tx_fifo nonperiodic;
+};
+
+/*
+ * This macro logically sets a single field in a CSR. It does the sequence
+ * read, modify, and write
+ */
+#define USB_SET_FIELD32(address, _union, field, value) \
+ do { \
+ union _union c; \
+ \
+ c.u32 = cvmx_usb_read_csr32(usb, address); \
+ c.s.field = value; \
+ cvmx_usb_write_csr32(usb, address, c.u32); \
+ } while (0)
+
+/* Returns the IO address to push/pop stuff data from the FIFOs */
+#define USB_FIFO_ADDRESS(channel, usb_index) \
+ (CVMX_USBCX_GOTGCTL(usb_index) + ((channel) + 1) * 0x1000)
+
+/**
+ * struct octeon_temp_buffer - a bounce buffer for USB transfers
+ * @orig_buffer: the original buffer passed by the USB stack
+ * @data: the newly allocated temporary buffer (excluding meta-data)
+ *
+ * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If
+ * the buffer is too short, we need to allocate a temporary one, and this struct
+ * represents it.
+ */
+struct octeon_temp_buffer {
+ void *orig_buffer;
+ u8 data[0];
+};
+
+static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p)
+{
+ return container_of((void *)p, struct usb_hcd, hcd_priv);
+}
+
+/**
+ * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer
+ * (if needed)
+ * @urb: URB.
+ * @mem_flags: Memory allocation flags.
+ *
+ * This function allocates a temporary bounce buffer whenever it's needed
+ * due to HW limitations.
+ */
+static int octeon_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags)
+{
+ struct octeon_temp_buffer *temp;
+
+ if (urb->num_sgs || urb->sg ||
+ (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) ||
+ !(urb->transfer_buffer_length % sizeof(u32)))
+ return 0;
+
+ temp = kmalloc(ALIGN(urb->transfer_buffer_length, sizeof(u32)) +
+ sizeof(*temp), mem_flags);
+ if (!temp)
+ return -ENOMEM;
+
+ temp->orig_buffer = urb->transfer_buffer;
+ if (usb_urb_dir_out(urb))
+ memcpy(temp->data, urb->transfer_buffer,
+ urb->transfer_buffer_length);
+ urb->transfer_buffer = temp->data;
+ urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
+
+ return 0;
+}
+
+/**
+ * octeon_free_temp_buffer - free a temporary buffer used by USB transfers.
+ * @urb: URB.
+ *
+ * Frees a buffer allocated by octeon_alloc_temp_buffer().
+ */
+static void octeon_free_temp_buffer(struct urb *urb)
+{
+ struct octeon_temp_buffer *temp;
+ size_t length;
+
+ if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
+ return;
+
+ temp = container_of(urb->transfer_buffer, struct octeon_temp_buffer,
+ data);
+ if (usb_urb_dir_in(urb)) {
+ if (usb_pipeisoc(urb->pipe))
+ length = urb->transfer_buffer_length;
+ else
+ length = urb->actual_length;
+
+ memcpy(temp->orig_buffer, urb->transfer_buffer, length);
+ }
+ urb->transfer_buffer = temp->orig_buffer;
+ urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
+ kfree(temp);
+}
+
+/**
+ * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma().
+ * @hcd: USB HCD structure.
+ * @urb: URB.
+ * @mem_flags: Memory allocation flags.
+ */
+static int octeon_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
+ gfp_t mem_flags)
+{
+ int ret;
+
+ ret = octeon_alloc_temp_buffer(urb, mem_flags);
+ if (ret)
+ return ret;
+
+ ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
+ if (ret)
+ octeon_free_temp_buffer(urb);
+
+ return ret;
+}
+
+/**
+ * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma()
+ * @hcd: USB HCD structure.
+ * @urb: URB.
+ */
+static void octeon_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
+{
+ usb_hcd_unmap_urb_for_dma(hcd, urb);
+ octeon_free_temp_buffer(urb);
+}
+
+/**
+ * Read a USB 32bit CSR. It performs the necessary address swizzle
+ * for 32bit CSRs and logs the value in a readable format if
+ * debugging is on.
+ *
+ * @usb: USB block this access is for
+ * @address: 64bit address to read
+ *
+ * Returns: Result of the read
+ */
+static inline u32 cvmx_usb_read_csr32(struct octeon_hcd *usb, u64 address)
+{
+ return cvmx_read64_uint32(address ^ 4);
+}
+
+/**
+ * Write a USB 32bit CSR. It performs the necessary address
+ * swizzle for 32bit CSRs and logs the value in a readable format
+ * if debugging is on.
+ *
+ * @usb: USB block this access is for
+ * @address: 64bit address to write
+ * @value: Value to write
+ */
+static inline void cvmx_usb_write_csr32(struct octeon_hcd *usb,
+ u64 address, u32 value)
+{
+ cvmx_write64_uint32(address ^ 4, value);
+ cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
+}
+
+/**
+ * Return non zero if this pipe connects to a non HIGH speed
+ * device through a high speed hub.
+ *
+ * @usb: USB block this access is for
+ * @pipe: Pipe to check
+ *
+ * Returns: Non zero if we need to do split transactions
+ */
+static inline int cvmx_usb_pipe_needs_split(struct octeon_hcd *usb,
+ struct cvmx_usb_pipe *pipe)
+{
+ return pipe->device_speed != CVMX_USB_SPEED_HIGH &&
+ usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH;
+}
+
+/**
+ * Trivial utility function to return the correct PID for a pipe
+ *
+ * @pipe: pipe to check
+ *
+ * Returns: PID for pipe
+ */
+static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe)
+{
+ if (pipe->pid_toggle)
+ return 2; /* Data1 */
+ return 0; /* Data0 */
+}
+
+/* Loops through register until txfflsh or rxfflsh become zero.*/
+static int cvmx_wait_tx_rx(struct octeon_hcd *usb, int fflsh_type)
+{
+ int result;
+ u64 address = CVMX_USBCX_GRSTCTL(usb->index);
+ u64 done = cvmx_get_cycle() + 100 *
+ (u64)octeon_get_clock_rate / 1000000;
+ union cvmx_usbcx_grstctl c;
+
+ while (1) {
+ c.u32 = cvmx_usb_read_csr32(usb, address);
+ if (fflsh_type == 0 && c.s.txfflsh == 0) {
+ result = 0;
+ break;
+ } else if (fflsh_type == 1 && c.s.rxfflsh == 0) {
+ result = 0;
+ break;
+ } else if (cvmx_get_cycle() > done) {
+ result = -1;
+ break;
+ }
+
+ __delay(100);
+ }
+ return result;
+}
+
+static void cvmx_fifo_setup(struct octeon_hcd *usb)
+{
+ union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3;
+ union cvmx_usbcx_gnptxfsiz npsiz;
+ union cvmx_usbcx_hptxfsiz psiz;
+
+ usbcx_ghwcfg3.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_GHWCFG3(usb->index));
+
+ /*
+ * Program the USBC_GRXFSIZ register to select the size of the receive
+ * FIFO (25%).
+ */
+ USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz,
+ rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4);
+
+ /*
+ * Program the USBC_GNPTXFSIZ register to select the size and the start
+ * address of the non-periodic transmit FIFO for nonperiodic
+ * transactions (50%).
+ */
+ npsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
+ npsiz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2;
+ npsiz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4;
+ cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), npsiz.u32);
+
+ /*
+ * Program the USBC_HPTXFSIZ register to select the size and start
+ * address of the periodic transmit FIFO for periodic transactions
+ * (25%).
+ */
+ psiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index));
+ psiz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4;
+ psiz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4;
+ cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), psiz.u32);
+
+ /* Flush all FIFOs */
+ USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
+ cvmx_usbcx_grstctl, txfnum, 0x10);
+ USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
+ cvmx_usbcx_grstctl, txfflsh, 1);
+ cvmx_wait_tx_rx(usb, 0);
+ USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
+ cvmx_usbcx_grstctl, rxfflsh, 1);
+ cvmx_wait_tx_rx(usb, 1);
+}
+
+/**
+ * Shutdown a USB port after a call to cvmx_usb_initialize().
+ * The port should be disabled with all pipes closed when this
+ * function is called.
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ *
+ * Returns: 0 or a negative error code.
+ */
+static int cvmx_usb_shutdown(struct octeon_hcd *usb)
+{
+ union cvmx_usbnx_clk_ctl usbn_clk_ctl;
+
+ /* Make sure all pipes are closed */
+ if (!list_empty(&usb->idle_pipes) ||
+ !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) ||
+ !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) ||
+ !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) ||
+ !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK]))
+ return -EBUSY;
+
+ /* Disable the clocks and put them in power on reset */
+ usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
+ usbn_clk_ctl.s.enable = 1;
+ usbn_clk_ctl.s.por = 1;
+ usbn_clk_ctl.s.hclk_rst = 1;
+ usbn_clk_ctl.s.prst = 0;
+ usbn_clk_ctl.s.hrst = 0;
+ cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
+ return 0;
+}
+
+/**
+ * Initialize a USB port for use. This must be called before any
+ * other access to the Octeon USB port is made. The port starts
+ * off in the disabled state.
+ *
+ * @dev: Pointer to struct device for logging purposes.
+ * @usb: Pointer to struct octeon_hcd.
+ *
+ * Returns: 0 or a negative error code.
+ */
+static int cvmx_usb_initialize(struct device *dev,
+ struct octeon_hcd *usb)
+{
+ int channel;
+ int divisor;
+ int retries = 0;
+ union cvmx_usbcx_hcfg usbcx_hcfg;
+ union cvmx_usbnx_clk_ctl usbn_clk_ctl;
+ union cvmx_usbcx_gintsts usbc_gintsts;
+ union cvmx_usbcx_gahbcfg usbcx_gahbcfg;
+ union cvmx_usbcx_gintmsk usbcx_gintmsk;
+ union cvmx_usbcx_gusbcfg usbcx_gusbcfg;
+ union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status;
+
+retry:
+ /*
+ * Power On Reset and PHY Initialization
+ *
+ * 1. Wait for DCOK to assert (nothing to do)
+ *
+ * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
+ * USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0
+ */
+ usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
+ usbn_clk_ctl.s.por = 1;
+ usbn_clk_ctl.s.hrst = 0;
+ usbn_clk_ctl.s.prst = 0;
+ usbn_clk_ctl.s.hclk_rst = 0;
+ usbn_clk_ctl.s.enable = 0;
+ /*
+ * 2b. Select the USB reference clock/crystal parameters by writing
+ * appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]
+ */
+ if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) {
+ /*
+ * The USB port uses 12/24/48MHz 2.5V board clock
+ * source at USB_XO. USB_XI should be tied to GND.
+ * Most Octeon evaluation boards require this setting
+ */
+ if (OCTEON_IS_MODEL(OCTEON_CN3XXX) ||
+ OCTEON_IS_MODEL(OCTEON_CN56XX) ||
+ OCTEON_IS_MODEL(OCTEON_CN50XX))
+ /* From CN56XX,CN50XX,CN31XX,CN30XX manuals */
+ usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */
+ else
+ /* From CN52XX manual */
+ usbn_clk_ctl.s.p_rtype = 1;
+
+ switch (usb->init_flags &
+ CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) {
+ case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:
+ usbn_clk_ctl.s.p_c_sel = 0;
+ break;
+ case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:
+ usbn_clk_ctl.s.p_c_sel = 1;
+ break;
+ case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:
+ usbn_clk_ctl.s.p_c_sel = 2;
+ break;
+ }
+ } else {
+ /*
+ * The USB port uses a 12MHz crystal as clock source
+ * at USB_XO and USB_XI
+ */
+ if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
+ /* From CN31XX,CN30XX manual */
+ usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */
+ else
+ /* From CN56XX,CN52XX,CN50XX manuals. */
+ usbn_clk_ctl.s.p_rtype = 0;
+
+ usbn_clk_ctl.s.p_c_sel = 0;
+ }
+ /*
+ * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
+ * setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down
+ * such that USB is as close as possible to 125Mhz
+ */
+ divisor = DIV_ROUND_UP(octeon_get_clock_rate(), 125000000);
+ /* Lower than 4 doesn't seem to work properly */
+ if (divisor < 4)
+ divisor = 4;
+ usbn_clk_ctl.s.divide = divisor;
+ usbn_clk_ctl.s.divide2 = 0;
+ cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
+
+ /* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
+ usbn_clk_ctl.s.hclk_rst = 1;
+ cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
+ /* 2e. Wait 64 core-clock cycles for HCLK to stabilize */
+ __delay(64);
+ /*
+ * 3. Program the power-on reset field in the USBN clock-control
+ * register:
+ * USBN_CLK_CTL[POR] = 0
+ */
+ usbn_clk_ctl.s.por = 0;
+ cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
+ /* 4. Wait 1 ms for PHY clock to start */
+ mdelay(1);
+ /*
+ * 5. Program the Reset input from automatic test equipment field in the
+ * USBP control and status register:
+ * USBN_USBP_CTL_STATUS[ATE_RESET] = 1
+ */
+ usbn_usbp_ctl_status.u64 =
+ cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index));
+ usbn_usbp_ctl_status.s.ate_reset = 1;
+ cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
+ usbn_usbp_ctl_status.u64);
+ /* 6. Wait 10 cycles */
+ __delay(10);
+ /*
+ * 7. Clear ATE_RESET field in the USBN clock-control register:
+ * USBN_USBP_CTL_STATUS[ATE_RESET] = 0
+ */
+ usbn_usbp_ctl_status.s.ate_reset = 0;
+ cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
+ usbn_usbp_ctl_status.u64);
+ /*
+ * 8. Program the PHY reset field in the USBN clock-control register:
+ * USBN_CLK_CTL[PRST] = 1
+ */
+ usbn_clk_ctl.s.prst = 1;
+ cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
+ /*
+ * 9. Program the USBP control and status register to select host or
+ * device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
+ * device
+ */
+ usbn_usbp_ctl_status.s.hst_mode = 0;
+ cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
+ usbn_usbp_ctl_status.u64);
+ /* 10. Wait 1 us */
+ udelay(1);
+ /*
+ * 11. Program the hreset_n field in the USBN clock-control register:
+ * USBN_CLK_CTL[HRST] = 1
+ */
+ usbn_clk_ctl.s.hrst = 1;
+ cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
+ /* 12. Proceed to USB core initialization */
+ usbn_clk_ctl.s.enable = 1;
+ cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
+ udelay(1);
+
+ /*
+ * USB Core Initialization
+ *
+ * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
+ * determine USB core configuration parameters.
+ *
+ * Nothing needed
+ *
+ * 2. Program the following fields in the global AHB configuration
+ * register (USBC_GAHBCFG)
+ * DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
+ * Burst length, USBC_GAHBCFG[HBSTLEN] = 0
+ * Nonperiodic TxFIFO empty level (slave mode only),
+ * USBC_GAHBCFG[NPTXFEMPLVL]
+ * Periodic TxFIFO empty level (slave mode only),
+ * USBC_GAHBCFG[PTXFEMPLVL]
+ * Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1
+ */
+ usbcx_gahbcfg.u32 = 0;
+ usbcx_gahbcfg.s.dmaen = !(usb->init_flags &
+ CVMX_USB_INITIALIZE_FLAGS_NO_DMA);
+ usbcx_gahbcfg.s.hbstlen = 0;
+ usbcx_gahbcfg.s.nptxfemplvl = 1;
+ usbcx_gahbcfg.s.ptxfemplvl = 1;
+ usbcx_gahbcfg.s.glblintrmsk = 1;
+ cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index),
+ usbcx_gahbcfg.u32);
+
+ /*
+ * 3. Program the following fields in USBC_GUSBCFG register.
+ * HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
+ * ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
+ * USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
+ * PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0
+ */
+ usbcx_gusbcfg.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_GUSBCFG(usb->index));
+ usbcx_gusbcfg.s.toutcal = 0;
+ usbcx_gusbcfg.s.ddrsel = 0;
+ usbcx_gusbcfg.s.usbtrdtim = 0x5;
+ usbcx_gusbcfg.s.phylpwrclksel = 0;
+ cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index),
+ usbcx_gusbcfg.u32);
+
+ /*
+ * 4. The software must unmask the following bits in the USBC_GINTMSK
+ * register.
+ * OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
+ * Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1
+ */
+ usbcx_gintmsk.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_GINTMSK(usb->index));
+ usbcx_gintmsk.s.otgintmsk = 1;
+ usbcx_gintmsk.s.modemismsk = 1;
+ usbcx_gintmsk.s.hchintmsk = 1;
+ usbcx_gintmsk.s.sofmsk = 0;
+ /* We need RX FIFO interrupts if we don't have DMA */
+ if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
+ usbcx_gintmsk.s.rxflvlmsk = 1;
+ cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index),
+ usbcx_gintmsk.u32);
+
+ /*
+ * Disable all channel interrupts. We'll enable them per channel later.
+ */
+ for (channel = 0; channel < 8; channel++)
+ cvmx_usb_write_csr32(usb,
+ CVMX_USBCX_HCINTMSKX(channel, usb->index),
+ 0);
+
+ /*
+ * Host Port Initialization
+ *
+ * 1. Program the host-port interrupt-mask field to unmask,
+ * USBC_GINTMSK[PRTINT] = 1
+ */
+ USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
+ cvmx_usbcx_gintmsk, prtintmsk, 1);
+ USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
+ cvmx_usbcx_gintmsk, disconnintmsk, 1);
+
+ /*
+ * 2. Program the USBC_HCFG register to select full-speed host
+ * or high-speed host.
+ */
+ usbcx_hcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index));
+ usbcx_hcfg.s.fslssupp = 0;
+ usbcx_hcfg.s.fslspclksel = 0;
+ cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32);
+
+ cvmx_fifo_setup(usb);
+
+ /*
+ * If the controller is getting port events right after the reset, it
+ * means the initialization failed. Try resetting the controller again
+ * in such case. This is seen to happen after cold boot on DSR-1000N.
+ */
+ usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_GINTSTS(usb->index));
+ cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
+ usbc_gintsts.u32);
+ dev_dbg(dev, "gintsts after reset: 0x%x\n", (int)usbc_gintsts.u32);
+ if (!usbc_gintsts.s.disconnint && !usbc_gintsts.s.prtint)
+ return 0;
+ if (retries++ >= 5)
+ return -EAGAIN;
+ dev_info(dev, "controller reset failed (gintsts=0x%x) - retrying\n",
+ (int)usbc_gintsts.u32);
+ msleep(50);
+ cvmx_usb_shutdown(usb);
+ msleep(50);
+ goto retry;
+}
+
+/**
+ * Reset a USB port. After this call succeeds, the USB port is
+ * online and servicing requests.
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ */
+static void cvmx_usb_reset_port(struct octeon_hcd *usb)
+{
+ usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_HPRT(usb->index));
+
+ /* Program the port reset bit to start the reset process */
+ USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
+ prtrst, 1);
+
+ /*
+ * Wait at least 50ms (high speed), or 10ms (full speed) for the reset
+ * process to complete.
+ */
+ mdelay(50);
+
+ /* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
+ USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
+ prtrst, 0);
+
+ /*
+ * Read the port speed field to get the enumerated speed,
+ * USBC_HPRT[PRTSPD].
+ */
+ usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_HPRT(usb->index));
+}
+
+/**
+ * Disable a USB port. After this call the USB port will not
+ * generate data transfers and will not generate events.
+ * Transactions in process will fail and call their
+ * associated callbacks.
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ *
+ * Returns: 0 or a negative error code.
+ */
+static int cvmx_usb_disable(struct octeon_hcd *usb)
+{
+ /* Disable the port */
+ USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
+ prtena, 1);
+ return 0;
+}
+
+/**
+ * Get the current state of the USB port. Use this call to
+ * determine if the usb port has anything connected, is enabled,
+ * or has some sort of error condition. The return value of this
+ * call has "changed" bits to signal of the value of some fields
+ * have changed between calls.
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ *
+ * Returns: Port status information
+ */
+static struct cvmx_usb_port_status cvmx_usb_get_status(struct octeon_hcd *usb)
+{
+ union cvmx_usbcx_hprt usbc_hprt;
+ struct cvmx_usb_port_status result;
+
+ memset(&result, 0, sizeof(result));
+
+ usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
+ result.port_enabled = usbc_hprt.s.prtena;
+ result.port_over_current = usbc_hprt.s.prtovrcurract;
+ result.port_powered = usbc_hprt.s.prtpwr;
+ result.port_speed = usbc_hprt.s.prtspd;
+ result.connected = usbc_hprt.s.prtconnsts;
+ result.connect_change =
+ result.connected != usb->port_status.connected;
+
+ return result;
+}
+
+/**
+ * Open a virtual pipe between the host and a USB device. A pipe
+ * must be opened before data can be transferred between a device
+ * and Octeon.
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ * @device_addr:
+ * USB device address to open the pipe to
+ * (0-127).
+ * @endpoint_num:
+ * USB endpoint number to open the pipe to
+ * (0-15).
+ * @device_speed:
+ * The speed of the device the pipe is going
+ * to. This must match the device's speed,
+ * which may be different than the port speed.
+ * @max_packet: The maximum packet length the device can
+ * transmit/receive (low speed=0-8, full
+ * speed=0-1023, high speed=0-1024). This value
+ * comes from the standard endpoint descriptor
+ * field wMaxPacketSize bits <10:0>.
+ * @transfer_type:
+ * The type of transfer this pipe is for.
+ * @transfer_dir:
+ * The direction the pipe is in. This is not
+ * used for control pipes.
+ * @interval: For ISOCHRONOUS and INTERRUPT transfers,
+ * this is how often the transfer is scheduled
+ * for. All other transfers should specify
+ * zero. The units are in frames (8000/sec at
+ * high speed, 1000/sec for full speed).
+ * @multi_count:
+ * For high speed devices, this is the maximum
+ * allowed number of packet per microframe.
+ * Specify zero for non high speed devices. This
+ * value comes from the standard endpoint descriptor
+ * field wMaxPacketSize bits <12:11>.
+ * @hub_device_addr:
+ * Hub device address this device is connected
+ * to. Devices connected directly to Octeon
+ * use zero. This is only used when the device
+ * is full/low speed behind a high speed hub.
+ * The address will be of the high speed hub,
+ * not and full speed hubs after it.
+ * @hub_port: Which port on the hub the device is
+ * connected. Use zero for devices connected
+ * directly to Octeon. Like hub_device_addr,
+ * this is only used for full/low speed
+ * devices behind a high speed hub.
+ *
+ * Returns: A non-NULL value is a pipe. NULL means an error.
+ */
+static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct octeon_hcd *usb,
+ int device_addr,
+ int endpoint_num,
+ enum cvmx_usb_speed
+ device_speed,
+ int max_packet,
+ enum cvmx_usb_transfer
+ transfer_type,
+ enum cvmx_usb_direction
+ transfer_dir,
+ int interval, int multi_count,
+ int hub_device_addr,
+ int hub_port)
+{
+ struct cvmx_usb_pipe *pipe;
+
+ pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC);
+ if (!pipe)
+ return NULL;
+ if ((device_speed == CVMX_USB_SPEED_HIGH) &&
+ (transfer_dir == CVMX_USB_DIRECTION_OUT) &&
+ (transfer_type == CVMX_USB_TRANSFER_BULK))
+ pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
+ pipe->device_addr = device_addr;
+ pipe->endpoint_num = endpoint_num;
+ pipe->device_speed = device_speed;
+ pipe->max_packet = max_packet;
+ pipe->transfer_type = transfer_type;
+ pipe->transfer_dir = transfer_dir;
+ INIT_LIST_HEAD(&pipe->transactions);
+
+ /*
+ * All pipes use interval to rate limit NAK processing. Force an
+ * interval if one wasn't supplied
+ */
+ if (!interval)
+ interval = 1;
+ if (cvmx_usb_pipe_needs_split(usb, pipe)) {
+ pipe->interval = interval * 8;
+ /* Force start splits to be schedule on uFrame 0 */
+ pipe->next_tx_frame = ((usb->frame_number + 7) & ~7) +
+ pipe->interval;
+ } else {
+ pipe->interval = interval;
+ pipe->next_tx_frame = usb->frame_number + pipe->interval;
+ }
+ pipe->multi_count = multi_count;
+ pipe->hub_device_addr = hub_device_addr;
+ pipe->hub_port = hub_port;
+ pipe->pid_toggle = 0;
+ pipe->split_sc_frame = -1;
+ list_add_tail(&pipe->node, &usb->idle_pipes);
+
+ /*
+ * We don't need to tell the hardware about this pipe yet since
+ * it doesn't have any submitted requests
+ */
+
+ return pipe;
+}
+
+/**
+ * Poll the RX FIFOs and remove data as needed. This function is only used
+ * in non DMA mode. It is very important that this function be called quickly
+ * enough to prevent FIFO overflow.
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ */
+static void cvmx_usb_poll_rx_fifo(struct octeon_hcd *usb)
+{
+ union cvmx_usbcx_grxstsph rx_status;
+ int channel;
+ int bytes;
+ u64 address;
+ u32 *ptr;
+
+ rx_status.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_GRXSTSPH(usb->index));
+ /* Only read data if IN data is there */
+ if (rx_status.s.pktsts != 2)
+ return;
+ /* Check if no data is available */
+ if (!rx_status.s.bcnt)
+ return;
+
+ channel = rx_status.s.chnum;
+ bytes = rx_status.s.bcnt;
+ if (!bytes)
+ return;
+
+ /* Get where the DMA engine would have written this data */
+ address = cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) +
+ channel * 8);
+
+ ptr = cvmx_phys_to_ptr(address);
+ cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8,
+ address + bytes);
+
+ /* Loop writing the FIFO data for this packet into memory */
+ while (bytes > 0) {
+ *ptr++ = cvmx_usb_read_csr32(usb,
+ USB_FIFO_ADDRESS(channel, usb->index));
+ bytes -= 4;
+ }
+ CVMX_SYNCW;
+}
+
+/**
+ * Fill the TX hardware fifo with data out of the software
+ * fifos
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ * @fifo: Software fifo to use
+ * @available: Amount of space in the hardware fifo
+ *
+ * Returns: Non zero if the hardware fifo was too small and needs
+ * to be serviced again.
+ */
+static int cvmx_usb_fill_tx_hw(struct octeon_hcd *usb,
+ struct cvmx_usb_tx_fifo *fifo, int available)
+{
+ /*
+ * We're done either when there isn't anymore space or the software FIFO
+ * is empty
+ */
+ while (available && (fifo->head != fifo->tail)) {
+ int i = fifo->tail;
+ const u32 *ptr = cvmx_phys_to_ptr(fifo->entry[i].address);
+ u64 csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel,
+ usb->index) ^ 4;
+ int words = available;
+
+ /* Limit the amount of data to what the SW fifo has */
+ if (fifo->entry[i].size <= available) {
+ words = fifo->entry[i].size;
+ fifo->tail++;
+ if (fifo->tail > MAX_CHANNELS)
+ fifo->tail = 0;
+ }
+
+ /* Update the next locations and counts */
+ available -= words;
+ fifo->entry[i].address += words * 4;
+ fifo->entry[i].size -= words;
+
+ /*
+ * Write the HW fifo data. The read every three writes is due
+ * to an errata on CN3XXX chips
+ */
+ while (words > 3) {
+ cvmx_write64_uint32(csr_address, *ptr++);
+ cvmx_write64_uint32(csr_address, *ptr++);
+ cvmx_write64_uint32(csr_address, *ptr++);
+ cvmx_read64_uint64(
+ CVMX_USBNX_DMA0_INB_CHN0(usb->index));
+ words -= 3;
+ }
+ cvmx_write64_uint32(csr_address, *ptr++);
+ if (--words) {
+ cvmx_write64_uint32(csr_address, *ptr++);
+ if (--words)
+ cvmx_write64_uint32(csr_address, *ptr++);
+ }
+ cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
+ }
+ return fifo->head != fifo->tail;
+}
+
+/**
+ * Check the hardware FIFOs and fill them as needed
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ */
+static void cvmx_usb_poll_tx_fifo(struct octeon_hcd *usb)
+{
+ if (usb->periodic.head != usb->periodic.tail) {
+ union cvmx_usbcx_hptxsts tx_status;
+
+ tx_status.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_HPTXSTS(usb->index));
+ if (cvmx_usb_fill_tx_hw(usb, &usb->periodic,
+ tx_status.s.ptxfspcavail))
+ USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
+ cvmx_usbcx_gintmsk, ptxfempmsk, 1);
+ else
+ USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
+ cvmx_usbcx_gintmsk, ptxfempmsk, 0);
+ }
+
+ if (usb->nonperiodic.head != usb->nonperiodic.tail) {
+ union cvmx_usbcx_gnptxsts tx_status;
+
+ tx_status.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_GNPTXSTS(usb->index));
+ if (cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic,
+ tx_status.s.nptxfspcavail))
+ USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
+ cvmx_usbcx_gintmsk, nptxfempmsk, 1);
+ else
+ USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
+ cvmx_usbcx_gintmsk, nptxfempmsk, 0);
+ }
+}
+
+/**
+ * Fill the TX FIFO with an outgoing packet
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ * @channel: Channel number to get packet from
+ */
+static void cvmx_usb_fill_tx_fifo(struct octeon_hcd *usb, int channel)
+{
+ union cvmx_usbcx_hccharx hcchar;
+ union cvmx_usbcx_hcspltx usbc_hcsplt;
+ union cvmx_usbcx_hctsizx usbc_hctsiz;
+ struct cvmx_usb_tx_fifo *fifo;
+
+ /* We only need to fill data on outbound channels */
+ hcchar.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_HCCHARX(channel, usb->index));
+ if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT)
+ return;
+
+ /* OUT Splits only have data on the start and not the complete */
+ usbc_hcsplt.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_HCSPLTX(channel, usb->index));
+ if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt)
+ return;
+
+ /*
+ * Find out how many bytes we need to fill and convert it into 32bit
+ * words.
+ */
+ usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_HCTSIZX(channel, usb->index));
+ if (!usbc_hctsiz.s.xfersize)
+ return;
+
+ if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) ||
+ (hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS))
+ fifo = &usb->periodic;
+ else
+ fifo = &usb->nonperiodic;
+
+ fifo->entry[fifo->head].channel = channel;
+ fifo->entry[fifo->head].address =
+ cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
+ channel * 8);
+ fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize + 3) >> 2;
+ fifo->head++;
+ if (fifo->head > MAX_CHANNELS)
+ fifo->head = 0;
+
+ cvmx_usb_poll_tx_fifo(usb);
+}
+
+/**
+ * Perform channel specific setup for Control transactions. All
+ * the generic stuff will already have been done in cvmx_usb_start_channel().
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ * @channel: Channel to setup
+ * @pipe: Pipe for control transaction
+ */
+static void cvmx_usb_start_channel_control(struct octeon_hcd *usb,
+ int channel,
+ struct cvmx_usb_pipe *pipe)
+{
+ struct usb_hcd *hcd = octeon_to_hcd(usb);
+ struct device *dev = hcd->self.controller;
+ struct cvmx_usb_transaction *transaction =
+ list_first_entry(&pipe->transactions, typeof(*transaction),
+ node);
+ struct usb_ctrlrequest *header =
+ cvmx_phys_to_ptr(transaction->control_header);
+ int bytes_to_transfer = transaction->buffer_length -
+ transaction->actual_bytes;
+ int packets_to_transfer;
+ union cvmx_usbcx_hctsizx usbc_hctsiz;
+
+ usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_HCTSIZX(channel, usb->index));
+
+ switch (transaction->stage) {
+ case CVMX_USB_STAGE_NON_CONTROL:
+ case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
+ dev_err(dev, "%s: ERROR - Non control stage\n", __func__);
+ break;
+ case CVMX_USB_STAGE_SETUP:
+ usbc_hctsiz.s.pid = 3; /* Setup */
+ bytes_to_transfer = sizeof(*header);
+ /* All Control operations start with a setup going OUT */
+ USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
+ cvmx_usbcx_hccharx, epdir,
+ CVMX_USB_DIRECTION_OUT);
+ /*
+ * Setup send the control header instead of the buffer data. The
+ * buffer data will be used in the next stage
+ */
+ cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
+ channel * 8,
+ transaction->control_header);
+ break;
+ case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
+ usbc_hctsiz.s.pid = 3; /* Setup */
+ bytes_to_transfer = 0;
+ /* All Control operations start with a setup going OUT */
+ USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
+ cvmx_usbcx_hccharx, epdir,
+ CVMX_USB_DIRECTION_OUT);
+
+ USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
+ cvmx_usbcx_hcspltx, compsplt, 1);
+ break;
+ case CVMX_USB_STAGE_DATA:
+ usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
+ if (cvmx_usb_pipe_needs_split(usb, pipe)) {
+ if (header->bRequestType & USB_DIR_IN)
+ bytes_to_transfer = 0;
+ else if (bytes_to_transfer > pipe->max_packet)
+ bytes_to_transfer = pipe->max_packet;
+ }
+ USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
+ cvmx_usbcx_hccharx, epdir,
+ ((header->bRequestType & USB_DIR_IN) ?
+ CVMX_USB_DIRECTION_IN :
+ CVMX_USB_DIRECTION_OUT));
+ break;
+ case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
+ usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
+ if (!(header->bRequestType & USB_DIR_IN))
+ bytes_to_transfer = 0;
+ USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
+ cvmx_usbcx_hccharx, epdir,
+ ((header->bRequestType & USB_DIR_IN) ?
+ CVMX_USB_DIRECTION_IN :
+ CVMX_USB_DIRECTION_OUT));
+ USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
+ cvmx_usbcx_hcspltx, compsplt, 1);
+ break;
+ case CVMX_USB_STAGE_STATUS:
+ usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
+ bytes_to_transfer = 0;
+ USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
+ cvmx_usbcx_hccharx, epdir,
+ ((header->bRequestType & USB_DIR_IN) ?
+ CVMX_USB_DIRECTION_OUT :
+ CVMX_USB_DIRECTION_IN));
+ break;
+ case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
+ usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
+ bytes_to_transfer = 0;
+ USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
+ cvmx_usbcx_hccharx, epdir,
+ ((header->bRequestType & USB_DIR_IN) ?
+ CVMX_USB_DIRECTION_OUT :
+ CVMX_USB_DIRECTION_IN));
+ USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
+ cvmx_usbcx_hcspltx, compsplt, 1);
+ break;
+ }
+
+ /*
+ * Make sure the transfer never exceeds the byte limit of the hardware.
+ * Further bytes will be sent as continued transactions
+ */
+ if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
+ /* Round MAX_TRANSFER_BYTES to a multiple of out packet size */
+ bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet;
+ bytes_to_transfer *= pipe->max_packet;
+ }
+
+ /*
+ * Calculate the number of packets to transfer. If the length is zero
+ * we still need to transfer one packet
+ */
+ packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer,
+ pipe->max_packet);
+ if (packets_to_transfer == 0) {
+ packets_to_transfer = 1;
+ } else if ((packets_to_transfer > 1) &&
+ (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
+ /*
+ * Limit to one packet when not using DMA. Channels must be
+ * restarted between every packet for IN transactions, so there
+ * is no reason to do multiple packets in a row
+ */
+ packets_to_transfer = 1;
+ bytes_to_transfer = packets_to_transfer * pipe->max_packet;
+ } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
+ /*
+ * Limit the number of packet and data transferred to what the
+ * hardware can handle
+ */
+ packets_to_transfer = MAX_TRANSFER_PACKETS;
+ bytes_to_transfer = packets_to_transfer * pipe->max_packet;
+ }
+
+ usbc_hctsiz.s.xfersize = bytes_to_transfer;
+ usbc_hctsiz.s.pktcnt = packets_to_transfer;
+
+ cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index),
+ usbc_hctsiz.u32);
+}
+
+/**
+ * Start a channel to perform the pipe's head transaction
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ * @channel: Channel to setup
+ * @pipe: Pipe to start
+ */
+static void cvmx_usb_start_channel(struct octeon_hcd *usb, int channel,
+ struct cvmx_usb_pipe *pipe)
+{
+ struct cvmx_usb_transaction *transaction =
+ list_first_entry(&pipe->transactions, typeof(*transaction),
+ node);
+
+ /* Make sure all writes to the DMA region get flushed */
+ CVMX_SYNCW;
+
+ /* Attach the channel to the pipe */
+ usb->pipe_for_channel[channel] = pipe;
+ pipe->channel = channel;
+ pipe->flags |= CVMX_USB_PIPE_FLAGS_SCHEDULED;
+
+ /* Mark this channel as in use */
+ usb->idle_hardware_channels &= ~(1 << channel);
+
+ /* Enable the channel interrupt bits */
+ {
+ union cvmx_usbcx_hcintx usbc_hcint;
+ union cvmx_usbcx_hcintmskx usbc_hcintmsk;
+ union cvmx_usbcx_haintmsk usbc_haintmsk;
+
+ /* Clear all channel status bits */
+ usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_HCINTX(channel, usb->index));
+
+ cvmx_usb_write_csr32(usb,
+ CVMX_USBCX_HCINTX(channel, usb->index),
+ usbc_hcint.u32);
+
+ usbc_hcintmsk.u32 = 0;
+ usbc_hcintmsk.s.chhltdmsk = 1;
+ if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
+ /*
+ * Channels need these extra interrupts when we aren't
+ * in DMA mode.
+ */
+ usbc_hcintmsk.s.datatglerrmsk = 1;
+ usbc_hcintmsk.s.frmovrunmsk = 1;
+ usbc_hcintmsk.s.bblerrmsk = 1;
+ usbc_hcintmsk.s.xacterrmsk = 1;
+ if (cvmx_usb_pipe_needs_split(usb, pipe)) {
+ /*
+ * Splits don't generate xfercompl, so we need
+ * ACK and NYET.
+ */
+ usbc_hcintmsk.s.nyetmsk = 1;
+ usbc_hcintmsk.s.ackmsk = 1;
+ }
+ usbc_hcintmsk.s.nakmsk = 1;
+ usbc_hcintmsk.s.stallmsk = 1;
+ usbc_hcintmsk.s.xfercomplmsk = 1;
+ }
+ cvmx_usb_write_csr32(usb,
+ CVMX_USBCX_HCINTMSKX(channel, usb->index),
+ usbc_hcintmsk.u32);
+
+ /* Enable the channel interrupt to propagate */
+ usbc_haintmsk.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_HAINTMSK(usb->index));
+ usbc_haintmsk.s.haintmsk |= 1 << channel;
+ cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index),
+ usbc_haintmsk.u32);
+ }
+
+ /* Setup the location the DMA engine uses. */
+ {
+ u64 reg;
+ u64 dma_address = transaction->buffer +
+ transaction->actual_bytes;
+
+ if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
+ dma_address = transaction->buffer +
+ transaction->iso_packets[0].offset +
+ transaction->actual_bytes;
+
+ if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)
+ reg = CVMX_USBNX_DMA0_OUTB_CHN0(usb->index);
+ else
+ reg = CVMX_USBNX_DMA0_INB_CHN0(usb->index);
+ cvmx_write64_uint64(reg + channel * 8, dma_address);
+ }
+
+ /* Setup both the size of the transfer and the SPLIT characteristics */
+ {
+ union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0};
+ union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0};
+ int packets_to_transfer;
+ int bytes_to_transfer = transaction->buffer_length -
+ transaction->actual_bytes;
+
+ /*
+ * ISOCHRONOUS transactions store each individual transfer size
+ * in the packet structure, not the global buffer_length
+ */
+ if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
+ bytes_to_transfer =
+ transaction->iso_packets[0].length -
+ transaction->actual_bytes;
+
+ /*
+ * We need to do split transactions when we are talking to non
+ * high speed devices that are behind a high speed hub
+ */
+ if (cvmx_usb_pipe_needs_split(usb, pipe)) {
+ /*
+ * On the start split phase (stage is even) record the
+ * frame number we will need to send the split complete.
+ * We only store the lower two bits since the time ahead
+ * can only be two frames
+ */
+ if ((transaction->stage & 1) == 0) {
+ if (transaction->type == CVMX_USB_TRANSFER_BULK)
+ pipe->split_sc_frame =
+ (usb->frame_number + 1) & 0x7f;
+ else
+ pipe->split_sc_frame =
+ (usb->frame_number + 2) & 0x7f;
+ } else {
+ pipe->split_sc_frame = -1;
+ }
+
+ usbc_hcsplt.s.spltena = 1;
+ usbc_hcsplt.s.hubaddr = pipe->hub_device_addr;
+ usbc_hcsplt.s.prtaddr = pipe->hub_port;
+ usbc_hcsplt.s.compsplt = (transaction->stage ==
+ CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE);
+
+ /*
+ * SPLIT transactions can only ever transmit one data
+ * packet so limit the transfer size to the max packet
+ * size
+ */
+ if (bytes_to_transfer > pipe->max_packet)
+ bytes_to_transfer = pipe->max_packet;
+
+ /*
+ * ISOCHRONOUS OUT splits are unique in that they limit
+ * data transfers to 188 byte chunks representing the
+ * begin/middle/end of the data or all
+ */
+ if (!usbc_hcsplt.s.compsplt &&
+ (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
+ (pipe->transfer_type ==
+ CVMX_USB_TRANSFER_ISOCHRONOUS)) {
+ /*
+ * Clear the split complete frame number as
+ * there isn't going to be a split complete
+ */
+ pipe->split_sc_frame = -1;
+ /*
+ * See if we've started this transfer and sent
+ * data
+ */
+ if (transaction->actual_bytes == 0) {
+ /*
+ * Nothing sent yet, this is either a
+ * begin or the entire payload
+ */
+ if (bytes_to_transfer <= 188)
+ /* Entire payload in one go */
+ usbc_hcsplt.s.xactpos = 3;
+ else
+ /* First part of payload */
+ usbc_hcsplt.s.xactpos = 2;
+ } else {
+ /*
+ * Continuing the previous data, we must
+ * either be in the middle or at the end
+ */
+ if (bytes_to_transfer <= 188)
+ /* End of payload */
+ usbc_hcsplt.s.xactpos = 1;
+ else
+ /* Middle of payload */
+ usbc_hcsplt.s.xactpos = 0;
+ }
+ /*
+ * Again, the transfer size is limited to 188
+ * bytes
+ */
+ if (bytes_to_transfer > 188)
+ bytes_to_transfer = 188;
+ }
+ }
+
+ /*
+ * Make sure the transfer never exceeds the byte limit of the
+ * hardware. Further bytes will be sent as continued
+ * transactions
+ */
+ if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
+ /*
+ * Round MAX_TRANSFER_BYTES to a multiple of out packet
+ * size
+ */
+ bytes_to_transfer = MAX_TRANSFER_BYTES /
+ pipe->max_packet;
+ bytes_to_transfer *= pipe->max_packet;
+ }
+
+ /*
+ * Calculate the number of packets to transfer. If the length is
+ * zero we still need to transfer one packet
+ */
+ packets_to_transfer =
+ DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet);
+ if (packets_to_transfer == 0) {
+ packets_to_transfer = 1;
+ } else if ((packets_to_transfer > 1) &&
+ (usb->init_flags &
+ CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
+ /*
+ * Limit to one packet when not using DMA. Channels must
+ * be restarted between every packet for IN
+ * transactions, so there is no reason to do multiple
+ * packets in a row
+ */
+ packets_to_transfer = 1;
+ bytes_to_transfer = packets_to_transfer *
+ pipe->max_packet;
+ } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
+ /*
+ * Limit the number of packet and data transferred to
+ * what the hardware can handle
+ */
+ packets_to_transfer = MAX_TRANSFER_PACKETS;
+ bytes_to_transfer = packets_to_transfer *
+ pipe->max_packet;
+ }
+
+ usbc_hctsiz.s.xfersize = bytes_to_transfer;
+ usbc_hctsiz.s.pktcnt = packets_to_transfer;
+
+ /* Update the DATA0/DATA1 toggle */
+ usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
+ /*
+ * High speed pipes may need a hardware ping before they start
+ */
+ if (pipe->flags & CVMX_USB_PIPE_FLAGS_NEED_PING)
+ usbc_hctsiz.s.dopng = 1;
+
+ cvmx_usb_write_csr32(usb,
+ CVMX_USBCX_HCSPLTX(channel, usb->index),
+ usbc_hcsplt.u32);
+ cvmx_usb_write_csr32(usb,
+ CVMX_USBCX_HCTSIZX(channel, usb->index),
+ usbc_hctsiz.u32);
+ }
+
+ /* Setup the Host Channel Characteristics Register */
+ {
+ union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0};
+
+ /*
+ * Set the startframe odd/even properly. This is only used for
+ * periodic
+ */
+ usbc_hcchar.s.oddfrm = usb->frame_number & 1;
+
+ /*
+ * Set the number of back to back packets allowed by this
+ * endpoint. Split transactions interpret "ec" as the number of
+ * immediate retries of failure. These retries happen too
+ * quickly, so we disable these entirely for splits
+ */
+ if (cvmx_usb_pipe_needs_split(usb, pipe))
+ usbc_hcchar.s.ec = 1;
+ else if (pipe->multi_count < 1)
+ usbc_hcchar.s.ec = 1;
+ else if (pipe->multi_count > 3)
+ usbc_hcchar.s.ec = 3;
+ else
+ usbc_hcchar.s.ec = pipe->multi_count;
+
+ /* Set the rest of the endpoint specific settings */
+ usbc_hcchar.s.devaddr = pipe->device_addr;
+ usbc_hcchar.s.eptype = transaction->type;
+ usbc_hcchar.s.lspddev =
+ (pipe->device_speed == CVMX_USB_SPEED_LOW);
+ usbc_hcchar.s.epdir = pipe->transfer_dir;
+ usbc_hcchar.s.epnum = pipe->endpoint_num;
+ usbc_hcchar.s.mps = pipe->max_packet;
+ cvmx_usb_write_csr32(usb,
+ CVMX_USBCX_HCCHARX(channel, usb->index),
+ usbc_hcchar.u32);
+ }
+
+ /* Do transaction type specific fixups as needed */
+ switch (transaction->type) {
+ case CVMX_USB_TRANSFER_CONTROL:
+ cvmx_usb_start_channel_control(usb, channel, pipe);
+ break;
+ case CVMX_USB_TRANSFER_BULK:
+ case CVMX_USB_TRANSFER_INTERRUPT:
+ break;
+ case CVMX_USB_TRANSFER_ISOCHRONOUS:
+ if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
+ /*
+ * ISO transactions require different PIDs depending on
+ * direction and how many packets are needed
+ */
+ if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
+ if (pipe->multi_count < 2) /* Need DATA0 */
+ USB_SET_FIELD32(
+ CVMX_USBCX_HCTSIZX(channel,
+ usb->index),
+ cvmx_usbcx_hctsizx, pid, 0);
+ else /* Need MDATA */
+ USB_SET_FIELD32(
+ CVMX_USBCX_HCTSIZX(channel,
+ usb->index),
+ cvmx_usbcx_hctsizx, pid, 3);
+ }
+ }
+ break;
+ }
+ {
+ union cvmx_usbcx_hctsizx usbc_hctsiz = { .u32 =
+ cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_HCTSIZX(channel,
+ usb->index))
+ };
+ transaction->xfersize = usbc_hctsiz.s.xfersize;
+ transaction->pktcnt = usbc_hctsiz.s.pktcnt;
+ }
+ /* Remember when we start a split transaction */
+ if (cvmx_usb_pipe_needs_split(usb, pipe))
+ usb->active_split = transaction;
+ USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
+ cvmx_usbcx_hccharx, chena, 1);
+ if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
+ cvmx_usb_fill_tx_fifo(usb, channel);
+}
+
+/**
+ * Find a pipe that is ready to be scheduled to hardware.
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ * @xfer_type: Transfer type
+ *
+ * Returns: Pipe or NULL if none are ready
+ */
+static struct cvmx_usb_pipe *cvmx_usb_find_ready_pipe(struct octeon_hcd *usb,
+ enum cvmx_usb_transfer xfer_type)
+{
+ struct list_head *list = usb->active_pipes + xfer_type;
+ u64 current_frame = usb->frame_number;
+ struct cvmx_usb_pipe *pipe;
+
+ list_for_each_entry(pipe, list, node) {
+ struct cvmx_usb_transaction *t =
+ list_first_entry(&pipe->transactions, typeof(*t),
+ node);
+ if (!(pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED) && t &&
+ (pipe->next_tx_frame <= current_frame) &&
+ ((pipe->split_sc_frame == -1) ||
+ ((((int)current_frame - pipe->split_sc_frame) & 0x7f) <
+ 0x40)) &&
+ (!usb->active_split || (usb->active_split == t))) {
+ prefetch(t);
+ return pipe;
+ }
+ }
+ return NULL;
+}
+
+static struct cvmx_usb_pipe *cvmx_usb_next_pipe(struct octeon_hcd *usb,
+ int is_sof)
+{
+ struct cvmx_usb_pipe *pipe;
+
+ /* Find a pipe needing service. */
+ if (is_sof) {
+ /*
+ * Only process periodic pipes on SOF interrupts. This way we
+ * are sure that the periodic data is sent in the beginning of
+ * the frame.
+ */
+ pipe = cvmx_usb_find_ready_pipe(usb,
+ CVMX_USB_TRANSFER_ISOCHRONOUS);
+ if (pipe)
+ return pipe;
+ pipe = cvmx_usb_find_ready_pipe(usb,
+ CVMX_USB_TRANSFER_INTERRUPT);
+ if (pipe)
+ return pipe;
+ }
+ pipe = cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_CONTROL);
+ if (pipe)
+ return pipe;
+ return cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_BULK);
+}
+
+/**
+ * Called whenever a pipe might need to be scheduled to the
+ * hardware.
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ * @is_sof: True if this schedule was called on a SOF interrupt.
+ */
+static void cvmx_usb_schedule(struct octeon_hcd *usb, int is_sof)
+{
+ int channel;
+ struct cvmx_usb_pipe *pipe;
+ int need_sof;
+ enum cvmx_usb_transfer ttype;
+
+ if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
+ /*
+ * Without DMA we need to be careful to not schedule something
+ * at the end of a frame and cause an overrun.
+ */
+ union cvmx_usbcx_hfnum hfnum = {
+ .u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_HFNUM(usb->index))
+ };
+
+ union cvmx_usbcx_hfir hfir = {
+ .u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_HFIR(usb->index))
+ };
+
+ if (hfnum.s.frrem < hfir.s.frint / 4)
+ goto done;
+ }
+
+ while (usb->idle_hardware_channels) {
+ /* Find an idle channel */
+ channel = __fls(usb->idle_hardware_channels);
+ if (unlikely(channel > 7))
+ break;
+
+ pipe = cvmx_usb_next_pipe(usb, is_sof);
+ if (!pipe)
+ break;
+
+ cvmx_usb_start_channel(usb, channel, pipe);
+ }
+
+done:
+ /*
+ * Only enable SOF interrupts when we have transactions pending in the
+ * future that might need to be scheduled
+ */
+ need_sof = 0;
+ for (ttype = CVMX_USB_TRANSFER_CONTROL;
+ ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) {
+ list_for_each_entry(pipe, &usb->active_pipes[ttype], node) {
+ if (pipe->next_tx_frame > usb->frame_number) {
+ need_sof = 1;
+ break;
+ }
+ }
+ }
+ USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
+ cvmx_usbcx_gintmsk, sofmsk, need_sof);
+}
+
+static void octeon_usb_urb_complete_callback(struct octeon_hcd *usb,
+ enum cvmx_usb_status status,
+ struct cvmx_usb_pipe *pipe,
+ struct cvmx_usb_transaction
+ *transaction,
+ int bytes_transferred,
+ struct urb *urb)
+{
+ struct usb_hcd *hcd = octeon_to_hcd(usb);
+ struct device *dev = hcd->self.controller;
+
+ if (likely(status == CVMX_USB_STATUS_OK))
+ urb->actual_length = bytes_transferred;
+ else
+ urb->actual_length = 0;
+
+ urb->hcpriv = NULL;
+
+ /* For Isochronous transactions we need to update the URB packet status
+ * list from data in our private copy
+ */
+ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
+ int i;
+ /*
+ * The pointer to the private list is stored in the setup_packet
+ * field.
+ */
+ struct cvmx_usb_iso_packet *iso_packet =
+ (struct cvmx_usb_iso_packet *)urb->setup_packet;
+ /* Recalculate the transfer size by adding up each packet */
+ urb->actual_length = 0;
+ for (i = 0; i < urb->number_of_packets; i++) {
+ if (iso_packet[i].status == CVMX_USB_STATUS_OK) {
+ urb->iso_frame_desc[i].status = 0;
+ urb->iso_frame_desc[i].actual_length =
+ iso_packet[i].length;
+ urb->actual_length +=
+ urb->iso_frame_desc[i].actual_length;
+ } else {
+ dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n",
+ i, urb->number_of_packets,
+ iso_packet[i].status, pipe,
+ transaction, iso_packet[i].length);
+ urb->iso_frame_desc[i].status = -EREMOTEIO;
+ }
+ }
+ /* Free the private list now that we don't need it anymore */
+ kfree(iso_packet);
+ urb->setup_packet = NULL;
+ }
+
+ switch (status) {
+ case CVMX_USB_STATUS_OK:
+ urb->status = 0;
+ break;
+ case CVMX_USB_STATUS_CANCEL:
+ if (urb->status == 0)
+ urb->status = -ENOENT;
+ break;
+ case CVMX_USB_STATUS_STALL:
+ dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n",
+ pipe, transaction, bytes_transferred);
+ urb->status = -EPIPE;
+ break;
+ case CVMX_USB_STATUS_BABBLEERR:
+ dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n",
+ pipe, transaction, bytes_transferred);
+ urb->status = -EPIPE;
+ break;
+ case CVMX_USB_STATUS_SHORT:
+ dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n",
+ pipe, transaction, bytes_transferred);
+ urb->status = -EREMOTEIO;
+ break;
+ case CVMX_USB_STATUS_ERROR:
+ case CVMX_USB_STATUS_XACTERR:
+ case CVMX_USB_STATUS_DATATGLERR:
+ case CVMX_USB_STATUS_FRAMEERR:
+ dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n",
+ status, pipe, transaction, bytes_transferred);
+ urb->status = -EPROTO;
+ break;
+ }
+ usb_hcd_unlink_urb_from_ep(octeon_to_hcd(usb), urb);
+ spin_unlock(&usb->lock);
+ usb_hcd_giveback_urb(octeon_to_hcd(usb), urb, urb->status);
+ spin_lock(&usb->lock);
+}
+
+/**
+ * Signal the completion of a transaction and free it. The
+ * transaction will be removed from the pipe transaction list.
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ * @pipe: Pipe the transaction is on
+ * @transaction:
+ * Transaction that completed
+ * @complete_code:
+ * Completion code
+ */
+static void cvmx_usb_complete(struct octeon_hcd *usb,
+ struct cvmx_usb_pipe *pipe,
+ struct cvmx_usb_transaction *transaction,
+ enum cvmx_usb_status complete_code)
+{
+ /* If this was a split then clear our split in progress marker */
+ if (usb->active_split == transaction)
+ usb->active_split = NULL;
+
+ /*
+ * Isochronous transactions need extra processing as they might not be
+ * done after a single data transfer
+ */
+ if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) {
+ /* Update the number of bytes transferred in this ISO packet */
+ transaction->iso_packets[0].length = transaction->actual_bytes;
+ transaction->iso_packets[0].status = complete_code;
+
+ /*
+ * If there are more ISOs pending and we succeeded, schedule the
+ * next one
+ */
+ if ((transaction->iso_number_packets > 1) &&
+ (complete_code == CVMX_USB_STATUS_OK)) {
+ /* No bytes transferred for this packet as of yet */
+ transaction->actual_bytes = 0;
+ /* One less ISO waiting to transfer */
+ transaction->iso_number_packets--;
+ /* Increment to the next location in our packet array */
+ transaction->iso_packets++;
+ transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
+ return;
+ }
+ }
+
+ /* Remove the transaction from the pipe list */
+ list_del(&transaction->node);
+ if (list_empty(&pipe->transactions))
+ list_move_tail(&pipe->node, &usb->idle_pipes);
+ octeon_usb_urb_complete_callback(usb, complete_code, pipe,
+ transaction,
+ transaction->actual_bytes,
+ transaction->urb);
+ kfree(transaction);
+}
+
+/**
+ * Submit a usb transaction to a pipe. Called for all types
+ * of transactions.
+ *
+ * @usb:
+ * @pipe: Which pipe to submit to.
+ * @type: Transaction type
+ * @buffer: User buffer for the transaction
+ * @buffer_length:
+ * User buffer's length in bytes
+ * @control_header:
+ * For control transactions, the 8 byte standard header
+ * @iso_start_frame:
+ * For ISO transactions, the start frame
+ * @iso_number_packets:
+ * For ISO, the number of packet in the transaction.
+ * @iso_packets:
+ * A description of each ISO packet
+ * @urb: URB for the callback
+ *
+ * Returns: Transaction or NULL on failure.
+ */
+static struct cvmx_usb_transaction *cvmx_usb_submit_transaction(
+ struct octeon_hcd *usb,
+ struct cvmx_usb_pipe *pipe,
+ enum cvmx_usb_transfer type,
+ u64 buffer,
+ int buffer_length,
+ u64 control_header,
+ int iso_start_frame,
+ int iso_number_packets,
+ struct cvmx_usb_iso_packet *iso_packets,
+ struct urb *urb)
+{
+ struct cvmx_usb_transaction *transaction;
+
+ if (unlikely(pipe->transfer_type != type))
+ return NULL;
+
+ transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC);
+ if (unlikely(!transaction))
+ return NULL;
+
+ transaction->type = type;
+ transaction->buffer = buffer;
+ transaction->buffer_length = buffer_length;
+ transaction->control_header = control_header;
+ /* FIXME: This is not used, implement it. */
+ transaction->iso_start_frame = iso_start_frame;
+ transaction->iso_number_packets = iso_number_packets;
+ transaction->iso_packets = iso_packets;
+ transaction->urb = urb;
+ if (transaction->type == CVMX_USB_TRANSFER_CONTROL)
+ transaction->stage = CVMX_USB_STAGE_SETUP;
+ else
+ transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
+
+ if (!list_empty(&pipe->transactions)) {
+ list_add_tail(&transaction->node, &pipe->transactions);
+ } else {
+ list_add_tail(&transaction->node, &pipe->transactions);
+ list_move_tail(&pipe->node,
+ &usb->active_pipes[pipe->transfer_type]);
+
+ /*
+ * We may need to schedule the pipe if this was the head of the
+ * pipe.
+ */
+ cvmx_usb_schedule(usb, 0);
+ }
+
+ return transaction;
+}
+
+/**
+ * Call to submit a USB Bulk transfer to a pipe.
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ * @pipe: Handle to the pipe for the transfer.
+ * @urb: URB.
+ *
+ * Returns: A submitted transaction or NULL on failure.
+ */
+static struct cvmx_usb_transaction *cvmx_usb_submit_bulk(
+ struct octeon_hcd *usb,
+ struct cvmx_usb_pipe *pipe,
+ struct urb *urb)
+{
+ return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK,
+ urb->transfer_dma,
+ urb->transfer_buffer_length,
+ 0, /* control_header */
+ 0, /* iso_start_frame */
+ 0, /* iso_number_packets */
+ NULL, /* iso_packets */
+ urb);
+}
+
+/**
+ * Call to submit a USB Interrupt transfer to a pipe.
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ * @pipe: Handle to the pipe for the transfer.
+ * @urb: URB returned when the callback is called.
+ *
+ * Returns: A submitted transaction or NULL on failure.
+ */
+static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt(
+ struct octeon_hcd *usb,
+ struct cvmx_usb_pipe *pipe,
+ struct urb *urb)
+{
+ return cvmx_usb_submit_transaction(usb, pipe,
+ CVMX_USB_TRANSFER_INTERRUPT,
+ urb->transfer_dma,
+ urb->transfer_buffer_length,
+ 0, /* control_header */
+ 0, /* iso_start_frame */
+ 0, /* iso_number_packets */
+ NULL, /* iso_packets */
+ urb);
+}
+
+/**
+ * Call to submit a USB Control transfer to a pipe.
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ * @pipe: Handle to the pipe for the transfer.
+ * @urb: URB.
+ *
+ * Returns: A submitted transaction or NULL on failure.
+ */
+static struct cvmx_usb_transaction *cvmx_usb_submit_control(
+ struct octeon_hcd *usb,
+ struct cvmx_usb_pipe *pipe,
+ struct urb *urb)
+{
+ int buffer_length = urb->transfer_buffer_length;
+ u64 control_header = urb->setup_dma;
+ struct usb_ctrlrequest *header = cvmx_phys_to_ptr(control_header);
+
+ if ((header->bRequestType & USB_DIR_IN) == 0)
+ buffer_length = le16_to_cpu(header->wLength);
+
+ return cvmx_usb_submit_transaction(usb, pipe,
+ CVMX_USB_TRANSFER_CONTROL,
+ urb->transfer_dma, buffer_length,
+ control_header,
+ 0, /* iso_start_frame */
+ 0, /* iso_number_packets */
+ NULL, /* iso_packets */
+ urb);
+}
+
+/**
+ * Call to submit a USB Isochronous transfer to a pipe.
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ * @pipe: Handle to the pipe for the transfer.
+ * @urb: URB returned when the callback is called.
+ *
+ * Returns: A submitted transaction or NULL on failure.
+ */
+static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous(
+ struct octeon_hcd *usb,
+ struct cvmx_usb_pipe *pipe,
+ struct urb *urb)
+{
+ struct cvmx_usb_iso_packet *packets;
+
+ packets = (struct cvmx_usb_iso_packet *)urb->setup_packet;
+ return cvmx_usb_submit_transaction(usb, pipe,
+ CVMX_USB_TRANSFER_ISOCHRONOUS,
+ urb->transfer_dma,
+ urb->transfer_buffer_length,
+ 0, /* control_header */
+ urb->start_frame,
+ urb->number_of_packets,
+ packets, urb);
+}
+
+/**
+ * Cancel one outstanding request in a pipe. Canceling a request
+ * can fail if the transaction has already completed before cancel
+ * is called. Even after a successful cancel call, it may take
+ * a frame or two for the cvmx_usb_poll() function to call the
+ * associated callback.
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ * @pipe: Pipe to cancel requests in.
+ * @transaction: Transaction to cancel, returned by the submit function.
+ *
+ * Returns: 0 or a negative error code.
+ */
+static int cvmx_usb_cancel(struct octeon_hcd *usb,
+ struct cvmx_usb_pipe *pipe,
+ struct cvmx_usb_transaction *transaction)
+{
+ /*
+ * If the transaction is the HEAD of the queue and scheduled. We need to
+ * treat it special
+ */
+ if (list_first_entry(&pipe->transactions, typeof(*transaction), node) ==
+ transaction && (pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED)) {
+ union cvmx_usbcx_hccharx usbc_hcchar;
+
+ usb->pipe_for_channel[pipe->channel] = NULL;
+ pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
+
+ CVMX_SYNCW;
+
+ usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_HCCHARX(pipe->channel, usb->index));
+ /*
+ * If the channel isn't enabled then the transaction already
+ * completed.
+ */
+ if (usbc_hcchar.s.chena) {
+ usbc_hcchar.s.chdis = 1;
+ cvmx_usb_write_csr32(usb,
+ CVMX_USBCX_HCCHARX(pipe->channel,
+ usb->index),
+ usbc_hcchar.u32);
+ }
+ }
+ cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_CANCEL);
+ return 0;
+}
+
+/**
+ * Cancel all outstanding requests in a pipe. Logically all this
+ * does is call cvmx_usb_cancel() in a loop.
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ * @pipe: Pipe to cancel requests in.
+ *
+ * Returns: 0 or a negative error code.
+ */
+static int cvmx_usb_cancel_all(struct octeon_hcd *usb,
+ struct cvmx_usb_pipe *pipe)
+{
+ struct cvmx_usb_transaction *transaction, *next;
+
+ /* Simply loop through and attempt to cancel each transaction */
+ list_for_each_entry_safe(transaction, next, &pipe->transactions, node) {
+ int result = cvmx_usb_cancel(usb, pipe, transaction);
+
+ if (unlikely(result != 0))
+ return result;
+ }
+ return 0;
+}
+
+/**
+ * Close a pipe created with cvmx_usb_open_pipe().
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ * @pipe: Pipe to close.
+ *
+ * Returns: 0 or a negative error code. EBUSY is returned if the pipe has
+ * outstanding transfers.
+ */
+static int cvmx_usb_close_pipe(struct octeon_hcd *usb,
+ struct cvmx_usb_pipe *pipe)
+{
+ /* Fail if the pipe has pending transactions */
+ if (!list_empty(&pipe->transactions))
+ return -EBUSY;
+
+ list_del(&pipe->node);
+ kfree(pipe);
+
+ return 0;
+}
+
+/**
+ * Get the current USB protocol level frame number. The frame
+ * number is always in the range of 0-0x7ff.
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ *
+ * Returns: USB frame number
+ */
+static int cvmx_usb_get_frame_number(struct octeon_hcd *usb)
+{
+ union cvmx_usbcx_hfnum usbc_hfnum;
+
+ usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
+
+ return usbc_hfnum.s.frnum;
+}
+
+static void cvmx_usb_transfer_control(struct octeon_hcd *usb,
+ struct cvmx_usb_pipe *pipe,
+ struct cvmx_usb_transaction *transaction,
+ union cvmx_usbcx_hccharx usbc_hcchar,
+ int buffer_space_left,
+ int bytes_in_last_packet)
+{
+ switch (transaction->stage) {
+ case CVMX_USB_STAGE_NON_CONTROL:
+ case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
+ /* This should be impossible */
+ cvmx_usb_complete(usb, pipe, transaction,
+ CVMX_USB_STATUS_ERROR);
+ break;
+ case CVMX_USB_STAGE_SETUP:
+ pipe->pid_toggle = 1;
+ if (cvmx_usb_pipe_needs_split(usb, pipe)) {
+ transaction->stage =
+ CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE;
+ } else {
+ struct usb_ctrlrequest *header =
+ cvmx_phys_to_ptr(transaction->control_header);
+ if (header->wLength)
+ transaction->stage = CVMX_USB_STAGE_DATA;
+ else
+ transaction->stage = CVMX_USB_STAGE_STATUS;
+ }
+ break;
+ case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
+ {
+ struct usb_ctrlrequest *header =
+ cvmx_phys_to_ptr(transaction->control_header);
+ if (header->wLength)
+ transaction->stage = CVMX_USB_STAGE_DATA;
+ else
+ transaction->stage = CVMX_USB_STAGE_STATUS;
+ }
+ break;
+ case CVMX_USB_STAGE_DATA:
+ if (cvmx_usb_pipe_needs_split(usb, pipe)) {
+ transaction->stage = CVMX_USB_STAGE_DATA_SPLIT_COMPLETE;
+ /*
+ * For setup OUT data that are splits,
+ * the hardware doesn't appear to count
+ * transferred data. Here we manually
+ * update the data transferred
+ */
+ if (!usbc_hcchar.s.epdir) {
+ if (buffer_space_left < pipe->max_packet)
+ transaction->actual_bytes +=
+ buffer_space_left;
+ else
+ transaction->actual_bytes +=
+ pipe->max_packet;
+ }
+ } else if ((buffer_space_left == 0) ||
+ (bytes_in_last_packet < pipe->max_packet)) {
+ pipe->pid_toggle = 1;
+ transaction->stage = CVMX_USB_STAGE_STATUS;
+ }
+ break;
+ case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
+ if ((buffer_space_left == 0) ||
+ (bytes_in_last_packet < pipe->max_packet)) {
+ pipe->pid_toggle = 1;
+ transaction->stage = CVMX_USB_STAGE_STATUS;
+ } else {
+ transaction->stage = CVMX_USB_STAGE_DATA;
+ }
+ break;
+ case CVMX_USB_STAGE_STATUS:
+ if (cvmx_usb_pipe_needs_split(usb, pipe))
+ transaction->stage =
+ CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE;
+ else
+ cvmx_usb_complete(usb, pipe, transaction,
+ CVMX_USB_STATUS_OK);
+ break;
+ case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
+ cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
+ break;
+ }
+}
+
+static void cvmx_usb_transfer_bulk(struct octeon_hcd *usb,
+ struct cvmx_usb_pipe *pipe,
+ struct cvmx_usb_transaction *transaction,
+ union cvmx_usbcx_hcintx usbc_hcint,
+ int buffer_space_left,
+ int bytes_in_last_packet)
+{
+ /*
+ * The only time a bulk transfer isn't complete when it finishes with
+ * an ACK is during a split transaction. For splits we need to continue
+ * the transfer if more data is needed.
+ */
+ if (cvmx_usb_pipe_needs_split(usb, pipe)) {
+ if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL)
+ transaction->stage =
+ CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
+ else if (buffer_space_left &&
+ (bytes_in_last_packet == pipe->max_packet))
+ transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
+ else
+ cvmx_usb_complete(usb, pipe, transaction,
+ CVMX_USB_STATUS_OK);
+ } else {
+ if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
+ (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
+ (usbc_hcint.s.nak))
+ pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
+ if (!buffer_space_left ||
+ (bytes_in_last_packet < pipe->max_packet))
+ cvmx_usb_complete(usb, pipe, transaction,
+ CVMX_USB_STATUS_OK);
+ }
+}
+
+static void cvmx_usb_transfer_intr(struct octeon_hcd *usb,
+ struct cvmx_usb_pipe *pipe,
+ struct cvmx_usb_transaction *transaction,
+ int buffer_space_left,
+ int bytes_in_last_packet)
+{
+ if (cvmx_usb_pipe_needs_split(usb, pipe)) {
+ if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL) {
+ transaction->stage =
+ CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
+ } else if (buffer_space_left &&
+ (bytes_in_last_packet == pipe->max_packet)) {
+ transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
+ } else {
+ pipe->next_tx_frame += pipe->interval;
+ cvmx_usb_complete(usb, pipe, transaction,
+ CVMX_USB_STATUS_OK);
+ }
+ } else if (!buffer_space_left ||
+ (bytes_in_last_packet < pipe->max_packet)) {
+ pipe->next_tx_frame += pipe->interval;
+ cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
+ }
+}
+
+static void cvmx_usb_transfer_isoc(struct octeon_hcd *usb,
+ struct cvmx_usb_pipe *pipe,
+ struct cvmx_usb_transaction *transaction,
+ int buffer_space_left,
+ int bytes_in_last_packet,
+ int bytes_this_transfer)
+{
+ if (cvmx_usb_pipe_needs_split(usb, pipe)) {
+ /*
+ * ISOCHRONOUS OUT splits don't require a complete split stage.
+ * Instead they use a sequence of begin OUT splits to transfer
+ * the data 188 bytes at a time. Once the transfer is complete,
+ * the pipe sleeps until the next schedule interval.
+ */
+ if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
+ /*
+ * If no space left or this wasn't a max size packet
+ * then this transfer is complete. Otherwise start it
+ * again to send the next 188 bytes
+ */
+ if (!buffer_space_left || (bytes_this_transfer < 188)) {
+ pipe->next_tx_frame += pipe->interval;
+ cvmx_usb_complete(usb, pipe, transaction,
+ CVMX_USB_STATUS_OK);
+ }
+ return;
+ }
+ if (transaction->stage ==
+ CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) {
+ /*
+ * We are in the incoming data phase. Keep getting data
+ * until we run out of space or get a small packet
+ */
+ if ((buffer_space_left == 0) ||
+ (bytes_in_last_packet < pipe->max_packet)) {
+ pipe->next_tx_frame += pipe->interval;
+ cvmx_usb_complete(usb, pipe, transaction,
+ CVMX_USB_STATUS_OK);
+ }
+ } else {
+ transaction->stage =
+ CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
+ }
+ } else {
+ pipe->next_tx_frame += pipe->interval;
+ cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
+ }
+}
+
+/**
+ * Poll a channel for status
+ *
+ * @usb: USB device
+ * @channel: Channel to poll
+ *
+ * Returns: Zero on success
+ */
+static int cvmx_usb_poll_channel(struct octeon_hcd *usb, int channel)
+{
+ struct usb_hcd *hcd = octeon_to_hcd(usb);
+ struct device *dev = hcd->self.controller;
+ union cvmx_usbcx_hcintx usbc_hcint;
+ union cvmx_usbcx_hctsizx usbc_hctsiz;
+ union cvmx_usbcx_hccharx usbc_hcchar;
+ struct cvmx_usb_pipe *pipe;
+ struct cvmx_usb_transaction *transaction;
+ int bytes_this_transfer;
+ int bytes_in_last_packet;
+ int packets_processed;
+ int buffer_space_left;
+
+ /* Read the interrupt status bits for the channel */
+ usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_HCINTX(channel, usb->index));
+
+ if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
+ usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_HCCHARX(channel, usb->index));
+
+ if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) {
+ /*
+ * There seems to be a bug in CN31XX which can cause
+ * interrupt IN transfers to get stuck until we do a
+ * write of HCCHARX without changing things
+ */
+ cvmx_usb_write_csr32(usb,
+ CVMX_USBCX_HCCHARX(channel,
+ usb->index),
+ usbc_hcchar.u32);
+ return 0;
+ }
+
+ /*
+ * In non DMA mode the channels don't halt themselves. We need
+ * to manually disable channels that are left running
+ */
+ if (!usbc_hcint.s.chhltd) {
+ if (usbc_hcchar.s.chena) {
+ union cvmx_usbcx_hcintmskx hcintmsk;
+ /* Disable all interrupts except CHHLTD */
+ hcintmsk.u32 = 0;
+ hcintmsk.s.chhltdmsk = 1;
+ cvmx_usb_write_csr32(usb,
+ CVMX_USBCX_HCINTMSKX(channel, usb->index),
+ hcintmsk.u32);
+ usbc_hcchar.s.chdis = 1;
+ cvmx_usb_write_csr32(usb,
+ CVMX_USBCX_HCCHARX(channel, usb->index),
+ usbc_hcchar.u32);
+ return 0;
+ } else if (usbc_hcint.s.xfercompl) {
+ /*
+ * Successful IN/OUT with transfer complete.
+ * Channel halt isn't needed.
+ */
+ } else {
+ dev_err(dev, "USB%d: Channel %d interrupt without halt\n",
+ usb->index, channel);
+ return 0;
+ }
+ }
+ } else {
+ /*
+ * There is are no interrupts that we need to process when the
+ * channel is still running
+ */
+ if (!usbc_hcint.s.chhltd)
+ return 0;
+ }
+
+ /* Disable the channel interrupts now that it is done */
+ cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0);
+ usb->idle_hardware_channels |= (1 << channel);
+
+ /* Make sure this channel is tied to a valid pipe */
+ pipe = usb->pipe_for_channel[channel];
+ prefetch(pipe);
+ if (!pipe)
+ return 0;
+ transaction = list_first_entry(&pipe->transactions,
+ typeof(*transaction),
+ node);
+ prefetch(transaction);
+
+ /*
+ * Disconnect this pipe from the HW channel. Later the schedule
+ * function will figure out which pipe needs to go
+ */
+ usb->pipe_for_channel[channel] = NULL;
+ pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
+
+ /*
+ * Read the channel config info so we can figure out how much data
+ * transferred
+ */
+ usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_HCCHARX(channel, usb->index));
+ usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_HCTSIZX(channel, usb->index));
+
+ /*
+ * Calculating the number of bytes successfully transferred is dependent
+ * on the transfer direction
+ */
+ packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt;
+ if (usbc_hcchar.s.epdir) {
+ /*
+ * IN transactions are easy. For every byte received the
+ * hardware decrements xfersize. All we need to do is subtract
+ * the current value of xfersize from its starting value and we
+ * know how many bytes were written to the buffer
+ */
+ bytes_this_transfer = transaction->xfersize -
+ usbc_hctsiz.s.xfersize;
+ } else {
+ /*
+ * OUT transaction don't decrement xfersize. Instead pktcnt is
+ * decremented on every successful packet send. The hardware
+ * does this when it receives an ACK, or NYET. If it doesn't
+ * receive one of these responses pktcnt doesn't change
+ */
+ bytes_this_transfer = packets_processed * usbc_hcchar.s.mps;
+ /*
+ * The last packet may not be a full transfer if we didn't have
+ * enough data
+ */
+ if (bytes_this_transfer > transaction->xfersize)
+ bytes_this_transfer = transaction->xfersize;
+ }
+ /* Figure out how many bytes were in the last packet of the transfer */
+ if (packets_processed)
+ bytes_in_last_packet = bytes_this_transfer -
+ (packets_processed - 1) * usbc_hcchar.s.mps;
+ else
+ bytes_in_last_packet = bytes_this_transfer;
+
+ /*
+ * As a special case, setup transactions output the setup header, not
+ * the user's data. For this reason we don't count setup data as bytes
+ * transferred
+ */
+ if ((transaction->stage == CVMX_USB_STAGE_SETUP) ||
+ (transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE))
+ bytes_this_transfer = 0;
+
+ /*
+ * Add the bytes transferred to the running total. It is important that
+ * bytes_this_transfer doesn't count any data that needs to be
+ * retransmitted
+ */
+ transaction->actual_bytes += bytes_this_transfer;
+ if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
+ buffer_space_left = transaction->iso_packets[0].length -
+ transaction->actual_bytes;
+ else
+ buffer_space_left = transaction->buffer_length -
+ transaction->actual_bytes;
+
+ /*
+ * We need to remember the PID toggle state for the next transaction.
+ * The hardware already updated it for the next transaction
+ */
+ pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0);
+
+ /*
+ * For high speed bulk out, assume the next transaction will need to do
+ * a ping before proceeding. If this isn't true the ACK processing below
+ * will clear this flag
+ */
+ if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
+ (pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
+ (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT))
+ pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
+
+ if (WARN_ON_ONCE(bytes_this_transfer < 0)) {
+ /*
+ * In some rare cases the DMA engine seems to get stuck and
+ * keeps substracting same byte count over and over again. In
+ * such case we just need to fail every transaction.
+ */
+ cvmx_usb_complete(usb, pipe, transaction,
+ CVMX_USB_STATUS_ERROR);
+ return 0;
+ }
+
+ if (usbc_hcint.s.stall) {
+ /*
+ * STALL as a response means this transaction cannot be
+ * completed because the device can't process transactions. Tell
+ * the user. Any data that was transferred will be counted on
+ * the actual bytes transferred
+ */
+ pipe->pid_toggle = 0;
+ cvmx_usb_complete(usb, pipe, transaction,
+ CVMX_USB_STATUS_STALL);
+ } else if (usbc_hcint.s.xacterr) {
+ /*
+ * XactErr as a response means the device signaled
+ * something wrong with the transfer. For example, PID
+ * toggle errors cause these.
+ */
+ cvmx_usb_complete(usb, pipe, transaction,
+ CVMX_USB_STATUS_XACTERR);
+ } else if (usbc_hcint.s.bblerr) {
+ /* Babble Error (BblErr) */
+ cvmx_usb_complete(usb, pipe, transaction,
+ CVMX_USB_STATUS_BABBLEERR);
+ } else if (usbc_hcint.s.datatglerr) {
+ /* Data toggle error */
+ cvmx_usb_complete(usb, pipe, transaction,
+ CVMX_USB_STATUS_DATATGLERR);
+ } else if (usbc_hcint.s.nyet) {
+ /*
+ * NYET as a response is only allowed in three cases: as a
+ * response to a ping, as a response to a split transaction, and
+ * as a response to a bulk out. The ping case is handled by
+ * hardware, so we only have splits and bulk out
+ */
+ if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
+ transaction->retries = 0;
+ /*
+ * If there is more data to go then we need to try
+ * again. Otherwise this transaction is complete
+ */
+ if ((buffer_space_left == 0) ||
+ (bytes_in_last_packet < pipe->max_packet))
+ cvmx_usb_complete(usb, pipe,
+ transaction,
+ CVMX_USB_STATUS_OK);
+ } else {
+ /*
+ * Split transactions retry the split complete 4 times
+ * then rewind to the start split and do the entire
+ * transactions again
+ */
+ transaction->retries++;
+ if ((transaction->retries & 0x3) == 0) {
+ /*
+ * Rewind to the beginning of the transaction by
+ * anding off the split complete bit
+ */
+ transaction->stage &= ~1;
+ pipe->split_sc_frame = -1;
+ }
+ }
+ } else if (usbc_hcint.s.ack) {
+ transaction->retries = 0;
+ /*
+ * The ACK bit can only be checked after the other error bits.
+ * This is because a multi packet transfer may succeed in a
+ * number of packets and then get a different response on the
+ * last packet. In this case both ACK and the last response bit
+ * will be set. If none of the other response bits is set, then
+ * the last packet must have been an ACK
+ *
+ * Since we got an ACK, we know we don't need to do a ping on
+ * this pipe
+ */
+ pipe->flags &= ~CVMX_USB_PIPE_FLAGS_NEED_PING;
+
+ switch (transaction->type) {
+ case CVMX_USB_TRANSFER_CONTROL:
+ cvmx_usb_transfer_control(usb, pipe, transaction,
+ usbc_hcchar,
+ buffer_space_left,
+ bytes_in_last_packet);
+ break;
+ case CVMX_USB_TRANSFER_BULK:
+ cvmx_usb_transfer_bulk(usb, pipe, transaction,
+ usbc_hcint, buffer_space_left,
+ bytes_in_last_packet);
+ break;
+ case CVMX_USB_TRANSFER_INTERRUPT:
+ cvmx_usb_transfer_intr(usb, pipe, transaction,
+ buffer_space_left,
+ bytes_in_last_packet);
+ break;
+ case CVMX_USB_TRANSFER_ISOCHRONOUS:
+ cvmx_usb_transfer_isoc(usb, pipe, transaction,
+ buffer_space_left,
+ bytes_in_last_packet,
+ bytes_this_transfer);
+ break;
+ }
+ } else if (usbc_hcint.s.nak) {
+ /*
+ * If this was a split then clear our split in progress marker.
+ */
+ if (usb->active_split == transaction)
+ usb->active_split = NULL;
+ /*
+ * NAK as a response means the device couldn't accept the
+ * transaction, but it should be retried in the future. Rewind
+ * to the beginning of the transaction by anding off the split
+ * complete bit. Retry in the next interval
+ */
+ transaction->retries = 0;
+ transaction->stage &= ~1;
+ pipe->next_tx_frame += pipe->interval;
+ if (pipe->next_tx_frame < usb->frame_number)
+ pipe->next_tx_frame = usb->frame_number +
+ pipe->interval -
+ (usb->frame_number - pipe->next_tx_frame) %
+ pipe->interval;
+ } else {
+ struct cvmx_usb_port_status port;
+
+ port = cvmx_usb_get_status(usb);
+ if (port.port_enabled) {
+ /* We'll retry the exact same transaction again */
+ transaction->retries++;
+ } else {
+ /*
+ * We get channel halted interrupts with no result bits
+ * sets when the cable is unplugged
+ */
+ cvmx_usb_complete(usb, pipe, transaction,
+ CVMX_USB_STATUS_ERROR);
+ }
+ }
+ return 0;
+}
+
+static void octeon_usb_port_callback(struct octeon_hcd *usb)
+{
+ spin_unlock(&usb->lock);
+ usb_hcd_poll_rh_status(octeon_to_hcd(usb));
+ spin_lock(&usb->lock);
+}
+
+/**
+ * Poll the USB block for status and call all needed callback
+ * handlers. This function is meant to be called in the interrupt
+ * handler for the USB controller. It can also be called
+ * periodically in a loop for non-interrupt based operation.
+ *
+ * @usb: USB device state populated by cvmx_usb_initialize().
+ *
+ * Returns: 0 or a negative error code.
+ */
+static int cvmx_usb_poll(struct octeon_hcd *usb)
+{
+ union cvmx_usbcx_hfnum usbc_hfnum;
+ union cvmx_usbcx_gintsts usbc_gintsts;
+
+ prefetch_range(usb, sizeof(*usb));
+
+ /* Update the frame counter */
+ usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
+ if ((usb->frame_number & 0x3fff) > usbc_hfnum.s.frnum)
+ usb->frame_number += 0x4000;
+ usb->frame_number &= ~0x3fffull;
+ usb->frame_number |= usbc_hfnum.s.frnum;
+
+ /* Read the pending interrupts */
+ usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_GINTSTS(usb->index));
+
+ /* Clear the interrupts now that we know about them */
+ cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
+ usbc_gintsts.u32);
+
+ if (usbc_gintsts.s.rxflvl) {
+ /*
+ * RxFIFO Non-Empty (RxFLvl)
+ * Indicates that there is at least one packet pending to be
+ * read from the RxFIFO.
+ *
+ * In DMA mode this is handled by hardware
+ */
+ if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
+ cvmx_usb_poll_rx_fifo(usb);
+ }
+ if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) {
+ /* Fill the Tx FIFOs when not in DMA mode */
+ if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
+ cvmx_usb_poll_tx_fifo(usb);
+ }
+ if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) {
+ union cvmx_usbcx_hprt usbc_hprt;
+ /*
+ * Disconnect Detected Interrupt (DisconnInt)
+ * Asserted when a device disconnect is detected.
+ *
+ * Host Port Interrupt (PrtInt)
+ * The core sets this bit to indicate a change in port status of
+ * one of the O2P USB core ports in Host mode. The application
+ * must read the Host Port Control and Status (HPRT) register to
+ * determine the exact event that caused this interrupt. The
+ * application must clear the appropriate status bit in the Host
+ * Port Control and Status register to clear this bit.
+ *
+ * Call the user's port callback
+ */
+ octeon_usb_port_callback(usb);
+ /* Clear the port change bits */
+ usbc_hprt.u32 =
+ cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
+ usbc_hprt.s.prtena = 0;
+ cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index),
+ usbc_hprt.u32);
+ }
+ if (usbc_gintsts.s.hchint) {
+ /*
+ * Host Channels Interrupt (HChInt)
+ * The core sets this bit to indicate that an interrupt is
+ * pending on one of the channels of the core (in Host mode).
+ * The application must read the Host All Channels Interrupt
+ * (HAINT) register to determine the exact number of the channel
+ * on which the interrupt occurred, and then read the
+ * corresponding Host Channel-n Interrupt (HCINTn) register to
+ * determine the exact cause of the interrupt. The application
+ * must clear the appropriate status bit in the HCINTn register
+ * to clear this bit.
+ */
+ union cvmx_usbcx_haint usbc_haint;
+
+ usbc_haint.u32 = cvmx_usb_read_csr32(usb,
+ CVMX_USBCX_HAINT(usb->index));
+ while (usbc_haint.u32) {
+ int channel;
+
+ channel = __fls(usbc_haint.u32);
+ cvmx_usb_poll_channel(usb, channel);
+ usbc_haint.u32 ^= 1 << channel;
+ }
+ }
+
+ cvmx_usb_schedule(usb, usbc_gintsts.s.sof);
+
+ return 0;
+}
+
+/* convert between an HCD pointer and the corresponding struct octeon_hcd */
+static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd)
+{
+ return (struct octeon_hcd *)(hcd->hcd_priv);
+}
+
+static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd)
+{
+ struct octeon_hcd *usb = hcd_to_octeon(hcd);
+ unsigned long flags;
+
+ spin_lock_irqsave(&usb->lock, flags);
+ cvmx_usb_poll(usb);
+ spin_unlock_irqrestore(&usb->lock, flags);
+ return IRQ_HANDLED;
+}
+
+static int octeon_usb_start(struct usb_hcd *hcd)
+{
+ hcd->state = HC_STATE_RUNNING;
+ return 0;
+}
+
+static void octeon_usb_stop(struct usb_hcd *hcd)
+{
+ hcd->state = HC_STATE_HALT;
+}
+
+static int octeon_usb_get_frame_number(struct usb_hcd *hcd)
+{
+ struct octeon_hcd *usb = hcd_to_octeon(hcd);
+
+ return cvmx_usb_get_frame_number(usb);
+}
+
+static int octeon_usb_urb_enqueue(struct usb_hcd *hcd,
+ struct urb *urb,
+ gfp_t mem_flags)
+{
+ struct octeon_hcd *usb = hcd_to_octeon(hcd);
+ struct device *dev = hcd->self.controller;
+ struct cvmx_usb_transaction *transaction = NULL;
+ struct cvmx_usb_pipe *pipe;
+ unsigned long flags;
+ struct cvmx_usb_iso_packet *iso_packet;
+ struct usb_host_endpoint *ep = urb->ep;
+ int rc;
+
+ urb->status = 0;
+ spin_lock_irqsave(&usb->lock, flags);
+
+ rc = usb_hcd_link_urb_to_ep(hcd, urb);
+ if (rc) {
+ spin_unlock_irqrestore(&usb->lock, flags);
+ return rc;
+ }
+
+ if (!ep->hcpriv) {
+ enum cvmx_usb_transfer transfer_type;
+ enum cvmx_usb_speed speed;
+ int split_device = 0;
+ int split_port = 0;
+
+ switch (usb_pipetype(urb->pipe)) {
+ case PIPE_ISOCHRONOUS:
+ transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS;
+ break;
+ case PIPE_INTERRUPT:
+ transfer_type = CVMX_USB_TRANSFER_INTERRUPT;
+ break;
+ case PIPE_CONTROL:
+ transfer_type = CVMX_USB_TRANSFER_CONTROL;
+ break;
+ default:
+ transfer_type = CVMX_USB_TRANSFER_BULK;
+ break;
+ }
+ switch (urb->dev->speed) {
+ case USB_SPEED_LOW:
+ speed = CVMX_USB_SPEED_LOW;
+ break;
+ case USB_SPEED_FULL:
+ speed = CVMX_USB_SPEED_FULL;
+ break;
+ default:
+ speed = CVMX_USB_SPEED_HIGH;
+ break;
+ }
+ /*
+ * For slow devices on high speed ports we need to find the hub
+ * that does the speed translation so we know where to send the
+ * split transactions.
+ */
+ if (speed != CVMX_USB_SPEED_HIGH) {
+ /*
+ * Start at this device and work our way up the usb
+ * tree.
+ */
+ struct usb_device *dev = urb->dev;
+
+ while (dev->parent) {
+ /*
+ * If our parent is high speed then he'll
+ * receive the splits.
+ */
+ if (dev->parent->speed == USB_SPEED_HIGH) {
+ split_device = dev->parent->devnum;
+ split_port = dev->portnum;
+ break;
+ }
+ /*
+ * Move up the tree one level. If we make it all
+ * the way up the tree, then the port must not
+ * be in high speed mode and we don't need a
+ * split.
+ */
+ dev = dev->parent;
+ }
+ }
+ pipe = cvmx_usb_open_pipe(usb, usb_pipedevice(urb->pipe),
+ usb_pipeendpoint(urb->pipe), speed,
+ le16_to_cpu(ep->desc.wMaxPacketSize)
+ & 0x7ff,
+ transfer_type,
+ usb_pipein(urb->pipe) ?
+ CVMX_USB_DIRECTION_IN :
+ CVMX_USB_DIRECTION_OUT,
+ urb->interval,
+ (le16_to_cpu(ep->desc.wMaxPacketSize)
+ >> 11) & 0x3,
+ split_device, split_port);
+ if (!pipe) {
+ usb_hcd_unlink_urb_from_ep(hcd, urb);
+ spin_unlock_irqrestore(&usb->lock, flags);
+ dev_dbg(dev, "Failed to create pipe\n");
+ return -ENOMEM;
+ }
+ ep->hcpriv = pipe;
+ } else {
+ pipe = ep->hcpriv;
+ }
+
+ switch (usb_pipetype(urb->pipe)) {
+ case PIPE_ISOCHRONOUS:
+ dev_dbg(dev, "Submit isochronous to %d.%d\n",
+ usb_pipedevice(urb->pipe),
+ usb_pipeendpoint(urb->pipe));
+ /*
+ * Allocate a structure to use for our private list of
+ * isochronous packets.
+ */
+ iso_packet = kmalloc_array(urb->number_of_packets,
+ sizeof(struct cvmx_usb_iso_packet),
+ GFP_ATOMIC);
+ if (iso_packet) {
+ int i;
+ /* Fill the list with the data from the URB */
+ for (i = 0; i < urb->number_of_packets; i++) {
+ iso_packet[i].offset =
+ urb->iso_frame_desc[i].offset;
+ iso_packet[i].length =
+ urb->iso_frame_desc[i].length;
+ iso_packet[i].status = CVMX_USB_STATUS_ERROR;
+ }
+ /*
+ * Store a pointer to the list in the URB setup_packet
+ * field. We know this currently isn't being used and
+ * this saves us a bunch of logic.
+ */
+ urb->setup_packet = (char *)iso_packet;
+ transaction = cvmx_usb_submit_isochronous(usb,
+ pipe, urb);
+ /*
+ * If submit failed we need to free our private packet
+ * list.
+ */
+ if (!transaction) {
+ urb->setup_packet = NULL;
+ kfree(iso_packet);
+ }
+ }
+ break;
+ case PIPE_INTERRUPT:
+ dev_dbg(dev, "Submit interrupt to %d.%d\n",
+ usb_pipedevice(urb->pipe),
+ usb_pipeendpoint(urb->pipe));
+ transaction = cvmx_usb_submit_interrupt(usb, pipe, urb);
+ break;
+ case PIPE_CONTROL:
+ dev_dbg(dev, "Submit control to %d.%d\n",
+ usb_pipedevice(urb->pipe),
+ usb_pipeendpoint(urb->pipe));
+ transaction = cvmx_usb_submit_control(usb, pipe, urb);
+ break;
+ case PIPE_BULK:
+ dev_dbg(dev, "Submit bulk to %d.%d\n",
+ usb_pipedevice(urb->pipe),
+ usb_pipeendpoint(urb->pipe));
+ transaction = cvmx_usb_submit_bulk(usb, pipe, urb);
+ break;
+ }
+ if (!transaction) {
+ usb_hcd_unlink_urb_from_ep(hcd, urb);
+ spin_unlock_irqrestore(&usb->lock, flags);
+ dev_dbg(dev, "Failed to submit\n");
+ return -ENOMEM;
+ }
+ urb->hcpriv = transaction;
+ spin_unlock_irqrestore(&usb->lock, flags);
+ return 0;
+}
+
+static int octeon_usb_urb_dequeue(struct usb_hcd *hcd,
+ struct urb *urb,
+ int status)
+{
+ struct octeon_hcd *usb = hcd_to_octeon(hcd);
+ unsigned long flags;
+ int rc;
+
+ if (!urb->dev)
+ return -EINVAL;
+
+ spin_lock_irqsave(&usb->lock, flags);
+
+ rc = usb_hcd_check_unlink_urb(hcd, urb, status);
+ if (rc)
+ goto out;
+
+ urb->status = status;
+ cvmx_usb_cancel(usb, urb->ep->hcpriv, urb->hcpriv);
+
+out:
+ spin_unlock_irqrestore(&usb->lock, flags);
+
+ return rc;
+}
+
+static void octeon_usb_endpoint_disable(struct usb_hcd *hcd,
+ struct usb_host_endpoint *ep)
+{
+ struct device *dev = hcd->self.controller;
+
+ if (ep->hcpriv) {
+ struct octeon_hcd *usb = hcd_to_octeon(hcd);
+ struct cvmx_usb_pipe *pipe = ep->hcpriv;
+ unsigned long flags;
+
+ spin_lock_irqsave(&usb->lock, flags);
+ cvmx_usb_cancel_all(usb, pipe);
+ if (cvmx_usb_close_pipe(usb, pipe))
+ dev_dbg(dev, "Closing pipe %p failed\n", pipe);
+ spin_unlock_irqrestore(&usb->lock, flags);
+ ep->hcpriv = NULL;
+ }
+}
+
+static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf)
+{
+ struct octeon_hcd *usb = hcd_to_octeon(hcd);
+ struct cvmx_usb_port_status port_status;
+ unsigned long flags;
+
+ spin_lock_irqsave(&usb->lock, flags);
+ port_status = cvmx_usb_get_status(usb);
+ spin_unlock_irqrestore(&usb->lock, flags);
+ buf[0] = port_status.connect_change << 1;
+
+ return buf[0] != 0;
+}
+
+static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
+ u16 wIndex, char *buf, u16 wLength)
+{
+ struct octeon_hcd *usb = hcd_to_octeon(hcd);
+ struct device *dev = hcd->self.controller;
+ struct cvmx_usb_port_status usb_port_status;
+ int port_status;
+ struct usb_hub_descriptor *desc;
+ unsigned long flags;
+
+ switch (typeReq) {
+ case ClearHubFeature:
+ dev_dbg(dev, "ClearHubFeature\n");
+ switch (wValue) {
+ case C_HUB_LOCAL_POWER:
+ case C_HUB_OVER_CURRENT:
+ /* Nothing required here */
+ break;
+ default:
+ return -EINVAL;
+ }
+ break;
+ case ClearPortFeature:
+ dev_dbg(dev, "ClearPortFeature\n");
+ if (wIndex != 1) {
+ dev_dbg(dev, " INVALID\n");
+ return -EINVAL;
+ }
+
+ switch (wValue) {
+ case USB_PORT_FEAT_ENABLE:
+ dev_dbg(dev, " ENABLE\n");
+ spin_lock_irqsave(&usb->lock, flags);
+ cvmx_usb_disable(usb);
+ spin_unlock_irqrestore(&usb->lock, flags);
+ break;
+ case USB_PORT_FEAT_SUSPEND:
+ dev_dbg(dev, " SUSPEND\n");
+ /* Not supported on Octeon */
+ break;
+ case USB_PORT_FEAT_POWER:
+ dev_dbg(dev, " POWER\n");
+ /* Not supported on Octeon */
+ break;
+ case USB_PORT_FEAT_INDICATOR:
+ dev_dbg(dev, " INDICATOR\n");
+ /* Port inidicator not supported */
+ break;
+ case USB_PORT_FEAT_C_CONNECTION:
+ dev_dbg(dev, " C_CONNECTION\n");
+ /* Clears drivers internal connect status change flag */
+ spin_lock_irqsave(&usb->lock, flags);
+ usb->port_status = cvmx_usb_get_status(usb);
+ spin_unlock_irqrestore(&usb->lock, flags);
+ break;
+ case USB_PORT_FEAT_C_RESET:
+ dev_dbg(dev, " C_RESET\n");
+ /*
+ * Clears the driver's internal Port Reset Change flag.
+ */
+ spin_lock_irqsave(&usb->lock, flags);
+ usb->port_status = cvmx_usb_get_status(usb);
+ spin_unlock_irqrestore(&usb->lock, flags);
+ break;
+ case USB_PORT_FEAT_C_ENABLE:
+ dev_dbg(dev, " C_ENABLE\n");
+ /*
+ * Clears the driver's internal Port Enable/Disable
+ * Change flag.
+ */
+ spin_lock_irqsave(&usb->lock, flags);
+ usb->port_status = cvmx_usb_get_status(usb);
+ spin_unlock_irqrestore(&usb->lock, flags);
+ break;
+ case USB_PORT_FEAT_C_SUSPEND:
+ dev_dbg(dev, " C_SUSPEND\n");
+ /*
+ * Clears the driver's internal Port Suspend Change
+ * flag, which is set when resume signaling on the host
+ * port is complete.
+ */
+ break;
+ case USB_PORT_FEAT_C_OVER_CURRENT:
+ dev_dbg(dev, " C_OVER_CURRENT\n");
+ /* Clears the driver's overcurrent Change flag */
+ spin_lock_irqsave(&usb->lock, flags);
+ usb->port_status = cvmx_usb_get_status(usb);
+ spin_unlock_irqrestore(&usb->lock, flags);
+ break;
+ default:
+ dev_dbg(dev, " UNKNOWN\n");
+ return -EINVAL;
+ }
+ break;
+ case GetHubDescriptor:
+ dev_dbg(dev, "GetHubDescriptor\n");
+ desc = (struct usb_hub_descriptor *)buf;
+ desc->bDescLength = 9;
+ desc->bDescriptorType = 0x29;
+ desc->bNbrPorts = 1;
+ desc->wHubCharacteristics = cpu_to_le16(0x08);
+ desc->bPwrOn2PwrGood = 1;
+ desc->bHubContrCurrent = 0;
+ desc->u.hs.DeviceRemovable[0] = 0;
+ desc->u.hs.DeviceRemovable[1] = 0xff;
+ break;
+ case GetHubStatus:
+ dev_dbg(dev, "GetHubStatus\n");
+ *(__le32 *)buf = 0;
+ break;
+ case GetPortStatus:
+ dev_dbg(dev, "GetPortStatus\n");
+ if (wIndex != 1) {
+ dev_dbg(dev, " INVALID\n");
+ return -EINVAL;
+ }
+
+ spin_lock_irqsave(&usb->lock, flags);
+ usb_port_status = cvmx_usb_get_status(usb);
+ spin_unlock_irqrestore(&usb->lock, flags);
+ port_status = 0;
+
+ if (usb_port_status.connect_change) {
+ port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
+ dev_dbg(dev, " C_CONNECTION\n");
+ }
+
+ if (usb_port_status.port_enabled) {
+ port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
+ dev_dbg(dev, " C_ENABLE\n");
+ }
+
+ if (usb_port_status.connected) {
+ port_status |= (1 << USB_PORT_FEAT_CONNECTION);
+ dev_dbg(dev, " CONNECTION\n");
+ }
+
+ if (usb_port_status.port_enabled) {
+ port_status |= (1 << USB_PORT_FEAT_ENABLE);
+ dev_dbg(dev, " ENABLE\n");
+ }
+
+ if (usb_port_status.port_over_current) {
+ port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
+ dev_dbg(dev, " OVER_CURRENT\n");
+ }
+
+ if (usb_port_status.port_powered) {
+ port_status |= (1 << USB_PORT_FEAT_POWER);
+ dev_dbg(dev, " POWER\n");
+ }
+
+ if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) {
+ port_status |= USB_PORT_STAT_HIGH_SPEED;
+ dev_dbg(dev, " HIGHSPEED\n");
+ } else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) {
+ port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
+ dev_dbg(dev, " LOWSPEED\n");
+ }
+
+ *((__le32 *)buf) = cpu_to_le32(port_status);
+ break;
+ case SetHubFeature:
+ dev_dbg(dev, "SetHubFeature\n");
+ /* No HUB features supported */
+ break;
+ case SetPortFeature:
+ dev_dbg(dev, "SetPortFeature\n");
+ if (wIndex != 1) {
+ dev_dbg(dev, " INVALID\n");
+ return -EINVAL;
+ }
+
+ switch (wValue) {
+ case USB_PORT_FEAT_SUSPEND:
+ dev_dbg(dev, " SUSPEND\n");
+ return -EINVAL;
+ case USB_PORT_FEAT_POWER:
+ dev_dbg(dev, " POWER\n");
+ /*
+ * Program the port power bit to drive VBUS on the USB.
+ */
+ spin_lock_irqsave(&usb->lock, flags);
+ USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index),
+ cvmx_usbcx_hprt, prtpwr, 1);
+ spin_unlock_irqrestore(&usb->lock, flags);
+ return 0;
+ case USB_PORT_FEAT_RESET:
+ dev_dbg(dev, " RESET\n");
+ spin_lock_irqsave(&usb->lock, flags);
+ cvmx_usb_reset_port(usb);
+ spin_unlock_irqrestore(&usb->lock, flags);
+ return 0;
+ case USB_PORT_FEAT_INDICATOR:
+ dev_dbg(dev, " INDICATOR\n");
+ /* Not supported */
+ break;
+ default:
+ dev_dbg(dev, " UNKNOWN\n");
+ return -EINVAL;
+ }
+ break;
+ default:
+ dev_dbg(dev, "Unknown root hub request\n");
+ return -EINVAL;
+ }
+ return 0;
+}
+
+static const struct hc_driver octeon_hc_driver = {
+ .description = "Octeon USB",
+ .product_desc = "Octeon Host Controller",
+ .hcd_priv_size = sizeof(struct octeon_hcd),
+ .irq = octeon_usb_irq,
+ .flags = HCD_MEMORY | HCD_DMA | HCD_USB2,
+ .start = octeon_usb_start,
+ .stop = octeon_usb_stop,
+ .urb_enqueue = octeon_usb_urb_enqueue,
+ .urb_dequeue = octeon_usb_urb_dequeue,
+ .endpoint_disable = octeon_usb_endpoint_disable,
+ .get_frame_number = octeon_usb_get_frame_number,
+ .hub_status_data = octeon_usb_hub_status_data,
+ .hub_control = octeon_usb_hub_control,
+ .map_urb_for_dma = octeon_map_urb_for_dma,
+ .unmap_urb_for_dma = octeon_unmap_urb_for_dma,
+};
+
+static int octeon_usb_probe(struct platform_device *pdev)
+{
+ int status;
+ int initialize_flags;
+ int usb_num;
+ struct resource *res_mem;
+ struct device_node *usbn_node;
+ int irq = platform_get_irq(pdev, 0);
+ struct device *dev = &pdev->dev;
+ struct octeon_hcd *usb;
+ struct usb_hcd *hcd;
+ u32 clock_rate = 48000000;
+ bool is_crystal_clock = false;
+ const char *clock_type;
+ int i;
+
+ if (!dev->of_node) {
+ dev_err(dev, "Error: empty of_node\n");
+ return -ENXIO;
+ }
+ usbn_node = dev->of_node->parent;
+
+ i = of_property_read_u32(usbn_node,
+ "clock-frequency", &clock_rate);
+ if (i)
+ i = of_property_read_u32(usbn_node,
+ "refclk-frequency", &clock_rate);
+ if (i) {
+ dev_err(dev, "No USBN \"clock-frequency\"\n");
+ return -ENXIO;
+ }
+ switch (clock_rate) {
+ case 12000000:
+ initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ;
+ break;
+ case 24000000:
+ initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ;
+ break;
+ case 48000000:
+ initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ;
+ break;
+ default:
+ dev_err(dev, "Illegal USBN \"clock-frequency\" %u\n",
+ clock_rate);
+ return -ENXIO;
+ }
+
+ i = of_property_read_string(usbn_node,
+ "cavium,refclk-type", &clock_type);
+ if (i)
+ i = of_property_read_string(usbn_node,
+ "refclk-type", &clock_type);
+
+ if (!i && strcmp("crystal", clock_type) == 0)
+ is_crystal_clock = true;
+
+ if (is_crystal_clock)
+ initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI;
+ else
+ initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND;
+
+ res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!res_mem) {
+ dev_err(dev, "found no memory resource\n");
+ return -ENXIO;
+ }
+ usb_num = (res_mem->start >> 44) & 1;
+
+ if (irq < 0) {
+ /* Defective device tree, but we know how to fix it. */
+ irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56;
+
+ irq = irq_create_mapping(NULL, hwirq);
+ }
+
+ /*
+ * Set the DMA mask to 64bits so we get buffers already translated for
+ * DMA.
+ */
+ i = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(64));
+ if (i)
+ return i;
+
+ /*
+ * Only cn52XX and cn56XX have DWC_OTG USB hardware and the
+ * IOB priority registers. Under heavy network load USB
+ * hardware can be starved by the IOB causing a crash. Give
+ * it a priority boost if it has been waiting more than 400
+ * cycles to avoid this situation.
+ *
+ * Testing indicates that a cnt_val of 8192 is not sufficient,
+ * but no failures are seen with 4096. We choose a value of
+ * 400 to give a safety factor of 10.
+ */
+ if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) {
+ union cvmx_iob_n2c_l2c_pri_cnt pri_cnt;
+
+ pri_cnt.u64 = 0;
+ pri_cnt.s.cnt_enb = 1;
+ pri_cnt.s.cnt_val = 400;
+ cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64);
+ }
+
+ hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev));
+ if (!hcd) {
+ dev_dbg(dev, "Failed to allocate memory for HCD\n");
+ return -1;
+ }
+ hcd->uses_new_polling = 1;
+ usb = (struct octeon_hcd *)hcd->hcd_priv;
+
+ spin_lock_init(&usb->lock);
+
+ usb->init_flags = initialize_flags;
+
+ /* Initialize the USB state structure */
+ usb->index = usb_num;
+ INIT_LIST_HEAD(&usb->idle_pipes);
+ for (i = 0; i < ARRAY_SIZE(usb->active_pipes); i++)
+ INIT_LIST_HEAD(&usb->active_pipes[i]);
+
+ /* Due to an errata, CN31XX doesn't support DMA */
+ if (OCTEON_IS_MODEL(OCTEON_CN31XX)) {
+ usb->init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA;
+ /* Only use one channel with non DMA */
+ usb->idle_hardware_channels = 0x1;
+ } else if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
+ /* CN5XXX have an errata with channel 3 */
+ usb->idle_hardware_channels = 0xf7;
+ } else {
+ usb->idle_hardware_channels = 0xff;
+ }
+
+ status = cvmx_usb_initialize(dev, usb);
+ if (status) {
+ dev_dbg(dev, "USB initialization failed with %d\n", status);
+ usb_put_hcd(hcd);
+ return -1;
+ }
+
+ status = usb_add_hcd(hcd, irq, 0);
+ if (status) {
+ dev_dbg(dev, "USB add HCD failed with %d\n", status);
+ usb_put_hcd(hcd);
+ return -1;
+ }
+ device_wakeup_enable(hcd->self.controller);
+
+ dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq);
+
+ return 0;
+}
+
+static int octeon_usb_remove(struct platform_device *pdev)
+{
+ int status;
+ struct device *dev = &pdev->dev;
+ struct usb_hcd *hcd = dev_get_drvdata(dev);
+ struct octeon_hcd *usb = hcd_to_octeon(hcd);
+ unsigned long flags;
+
+ usb_remove_hcd(hcd);
+ spin_lock_irqsave(&usb->lock, flags);
+ status = cvmx_usb_shutdown(usb);
+ spin_unlock_irqrestore(&usb->lock, flags);
+ if (status)
+ dev_dbg(dev, "USB shutdown failed with %d\n", status);
+
+ usb_put_hcd(hcd);
+
+ return 0;
+}
+
+static const struct of_device_id octeon_usb_match[] = {
+ {
+ .compatible = "cavium,octeon-5750-usbc",
+ },
+ {},
+};
+MODULE_DEVICE_TABLE(of, octeon_usb_match);
+
+static struct platform_driver octeon_usb_driver = {
+ .driver = {
+ .name = "octeon-hcd",
+ .of_match_table = octeon_usb_match,
+ },
+ .probe = octeon_usb_probe,
+ .remove = octeon_usb_remove,
+};
+
+static int __init octeon_usb_driver_init(void)
+{
+ if (usb_disabled())
+ return 0;
+
+ return platform_driver_register(&octeon_usb_driver);
+}
+module_init(octeon_usb_driver_init);
+
+static void __exit octeon_usb_driver_exit(void)
+{
+ if (usb_disabled())
+ return;
+
+ platform_driver_unregister(&octeon_usb_driver);
+}
+module_exit(octeon_usb_driver_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>");
+MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");
--- /dev/null
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Octeon HCD hardware register definitions.
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * Some parts of the code were originally released under BSD license:
+ *
+ * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
+ * reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials provided
+ * with the distribution.
+ *
+ * * Neither the name of Cavium Networks nor the names of
+ * its contributors may be used to endorse or promote products
+ * derived from this software without specific prior written
+ * permission.
+ *
+ * This Software, including technical data, may be subject to U.S. export
+ * control laws, including the U.S. Export Administration Act and its associated
+ * regulations, and may be subject to export or import regulations in other
+ * countries.
+ *
+ * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
+ * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
+ * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
+ * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
+ * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
+ * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
+ * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
+ * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
+ * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
+ * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
+ */
+
+#ifndef __OCTEON_HCD_H__
+#define __OCTEON_HCD_H__
+
+#include <asm/bitfield.h>
+
+#define CVMX_USBCXBASE 0x00016F0010000000ull
+#define CVMX_USBCXREG1(reg, bid) \
+ (CVMX_ADD_IO_SEG(CVMX_USBCXBASE | reg) + \
+ ((bid) & 1) * 0x100000000000ull)
+#define CVMX_USBCXREG2(reg, bid, off) \
+ (CVMX_ADD_IO_SEG(CVMX_USBCXBASE | reg) + \
+ (((off) & 7) + ((bid) & 1) * 0x8000000000ull) * 32)
+
+#define CVMX_USBCX_GAHBCFG(bid) CVMX_USBCXREG1(0x008, bid)
+#define CVMX_USBCX_GHWCFG3(bid) CVMX_USBCXREG1(0x04c, bid)
+#define CVMX_USBCX_GINTMSK(bid) CVMX_USBCXREG1(0x018, bid)
+#define CVMX_USBCX_GINTSTS(bid) CVMX_USBCXREG1(0x014, bid)
+#define CVMX_USBCX_GNPTXFSIZ(bid) CVMX_USBCXREG1(0x028, bid)
+#define CVMX_USBCX_GNPTXSTS(bid) CVMX_USBCXREG1(0x02c, bid)
+#define CVMX_USBCX_GOTGCTL(bid) CVMX_USBCXREG1(0x000, bid)
+#define CVMX_USBCX_GRSTCTL(bid) CVMX_USBCXREG1(0x010, bid)
+#define CVMX_USBCX_GRXFSIZ(bid) CVMX_USBCXREG1(0x024, bid)
+#define CVMX_USBCX_GRXSTSPH(bid) CVMX_USBCXREG1(0x020, bid)
+#define CVMX_USBCX_GUSBCFG(bid) CVMX_USBCXREG1(0x00c, bid)
+#define CVMX_USBCX_HAINT(bid) CVMX_USBCXREG1(0x414, bid)
+#define CVMX_USBCX_HAINTMSK(bid) CVMX_USBCXREG1(0x418, bid)
+#define CVMX_USBCX_HCCHARX(off, bid) CVMX_USBCXREG2(0x500, bid, off)
+#define CVMX_USBCX_HCFG(bid) CVMX_USBCXREG1(0x400, bid)
+#define CVMX_USBCX_HCINTMSKX(off, bid) CVMX_USBCXREG2(0x50c, bid, off)
+#define CVMX_USBCX_HCINTX(off, bid) CVMX_USBCXREG2(0x508, bid, off)
+#define CVMX_USBCX_HCSPLTX(off, bid) CVMX_USBCXREG2(0x504, bid, off)
+#define CVMX_USBCX_HCTSIZX(off, bid) CVMX_USBCXREG2(0x510, bid, off)
+#define CVMX_USBCX_HFIR(bid) CVMX_USBCXREG1(0x404, bid)
+#define CVMX_USBCX_HFNUM(bid) CVMX_USBCXREG1(0x408, bid)
+#define CVMX_USBCX_HPRT(bid) CVMX_USBCXREG1(0x440, bid)
+#define CVMX_USBCX_HPTXFSIZ(bid) CVMX_USBCXREG1(0x100, bid)
+#define CVMX_USBCX_HPTXSTS(bid) CVMX_USBCXREG1(0x410, bid)
+
+#define CVMX_USBNXBID1(bid) (((bid) & 1) * 0x10000000ull)
+#define CVMX_USBNXBID2(bid) (((bid) & 1) * 0x100000000000ull)
+
+#define CVMX_USBNXREG1(reg, bid) \
+ (CVMX_ADD_IO_SEG(0x0001180068000000ull | reg) + CVMX_USBNXBID1(bid))
+#define CVMX_USBNXREG2(reg, bid) \
+ (CVMX_ADD_IO_SEG(0x00016F0000000000ull | reg) + CVMX_USBNXBID2(bid))
+
+#define CVMX_USBNX_CLK_CTL(bid) CVMX_USBNXREG1(0x10, bid)
+#define CVMX_USBNX_DMA0_INB_CHN0(bid) CVMX_USBNXREG2(0x818, bid)
+#define CVMX_USBNX_DMA0_OUTB_CHN0(bid) CVMX_USBNXREG2(0x858, bid)
+#define CVMX_USBNX_USBP_CTL_STATUS(bid) CVMX_USBNXREG1(0x18, bid)
+
+/**
+ * cvmx_usbc#_gahbcfg
+ *
+ * Core AHB Configuration Register (GAHBCFG)
+ *
+ * This register can be used to configure the core after power-on or a change in
+ * mode of operation. This register mainly contains AHB system-related
+ * configuration parameters. The AHB is the processor interface to the O2P USB
+ * core. In general, software need not know about this interface except to
+ * program the values as specified.
+ *
+ * The application must program this register as part of the O2P USB core
+ * initialization. Do not change this register after the initial programming.
+ */
+union cvmx_usbcx_gahbcfg {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_gahbcfg_s
+ * @ptxfemplvl: Periodic TxFIFO Empty Level (PTxFEmpLvl)
+ * Software should set this bit to 0x1.
+ * Indicates when the Periodic TxFIFO Empty Interrupt bit in the
+ * Core Interrupt register (GINTSTS.PTxFEmp) is triggered. This
+ * bit is used only in Slave mode.
+ * * 1'b0: GINTSTS.PTxFEmp interrupt indicates that the Periodic
+ * TxFIFO is half empty
+ * * 1'b1: GINTSTS.PTxFEmp interrupt indicates that the Periodic
+ * TxFIFO is completely empty
+ * @nptxfemplvl: Non-Periodic TxFIFO Empty Level (NPTxFEmpLvl)
+ * Software should set this bit to 0x1.
+ * Indicates when the Non-Periodic TxFIFO Empty Interrupt bit in
+ * the Core Interrupt register (GINTSTS.NPTxFEmp) is triggered.
+ * This bit is used only in Slave mode.
+ * * 1'b0: GINTSTS.NPTxFEmp interrupt indicates that the Non-
+ * Periodic TxFIFO is half empty
+ * * 1'b1: GINTSTS.NPTxFEmp interrupt indicates that the Non-
+ * Periodic TxFIFO is completely empty
+ * @dmaen: DMA Enable (DMAEn)
+ * * 1'b0: Core operates in Slave mode
+ * * 1'b1: Core operates in a DMA mode
+ * @hbstlen: Burst Length/Type (HBstLen)
+ * This field has not effect and should be left as 0x0.
+ * @glblintrmsk: Global Interrupt Mask (GlblIntrMsk)
+ * Software should set this field to 0x1.
+ * The application uses this bit to mask or unmask the interrupt
+ * line assertion to itself. Irrespective of this bit's setting,
+ * the interrupt status registers are updated by the core.
+ * * 1'b0: Mask the interrupt assertion to the application.
+ * * 1'b1: Unmask the interrupt assertion to the application.
+ */
+ struct cvmx_usbcx_gahbcfg_s {
+ __BITFIELD_FIELD(u32 reserved_9_31 : 23,
+ __BITFIELD_FIELD(u32 ptxfemplvl : 1,
+ __BITFIELD_FIELD(u32 nptxfemplvl : 1,
+ __BITFIELD_FIELD(u32 reserved_6_6 : 1,
+ __BITFIELD_FIELD(u32 dmaen : 1,
+ __BITFIELD_FIELD(u32 hbstlen : 4,
+ __BITFIELD_FIELD(u32 glblintrmsk : 1,
+ ;)))))))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_ghwcfg3
+ *
+ * User HW Config3 Register (GHWCFG3)
+ *
+ * This register contains the configuration options of the O2P USB core.
+ */
+union cvmx_usbcx_ghwcfg3 {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_ghwcfg3_s
+ * @dfifodepth: DFIFO Depth (DfifoDepth)
+ * This value is in terms of 32-bit words.
+ * * Minimum value is 32
+ * * Maximum value is 32768
+ * @ahbphysync: AHB and PHY Synchronous (AhbPhySync)
+ * Indicates whether AHB and PHY clocks are synchronous to
+ * each other.
+ * * 1'b0: No
+ * * 1'b1: Yes
+ * This bit is tied to 1.
+ * @rsttype: Reset Style for Clocked always Blocks in RTL (RstType)
+ * * 1'b0: Asynchronous reset is used in the core
+ * * 1'b1: Synchronous reset is used in the core
+ * @optfeature: Optional Features Removed (OptFeature)
+ * Indicates whether the User ID register, GPIO interface ports,
+ * and SOF toggle and counter ports were removed for gate count
+ * optimization.
+ * @vendor_control_interface_support: Vendor Control Interface Support
+ * * 1'b0: Vendor Control Interface is not available on the core.
+ * * 1'b1: Vendor Control Interface is available.
+ * @i2c_selection: I2C Selection
+ * * 1'b0: I2C Interface is not available on the core.
+ * * 1'b1: I2C Interface is available on the core.
+ * @otgen: OTG Function Enabled (OtgEn)
+ * The application uses this bit to indicate the O2P USB core's
+ * OTG capabilities.
+ * * 1'b0: Not OTG capable
+ * * 1'b1: OTG Capable
+ * @pktsizewidth: Width of Packet Size Counters (PktSizeWidth)
+ * * 3'b000: 4 bits
+ * * 3'b001: 5 bits
+ * * 3'b010: 6 bits
+ * * 3'b011: 7 bits
+ * * 3'b100: 8 bits
+ * * 3'b101: 9 bits
+ * * 3'b110: 10 bits
+ * * Others: Reserved
+ * @xfersizewidth: Width of Transfer Size Counters (XferSizeWidth)
+ * * 4'b0000: 11 bits
+ * * 4'b0001: 12 bits
+ * - ...
+ * * 4'b1000: 19 bits
+ * * Others: Reserved
+ */
+ struct cvmx_usbcx_ghwcfg3_s {
+ __BITFIELD_FIELD(u32 dfifodepth : 16,
+ __BITFIELD_FIELD(u32 reserved_13_15 : 3,
+ __BITFIELD_FIELD(u32 ahbphysync : 1,
+ __BITFIELD_FIELD(u32 rsttype : 1,
+ __BITFIELD_FIELD(u32 optfeature : 1,
+ __BITFIELD_FIELD(u32 vendor_control_interface_support : 1,
+ __BITFIELD_FIELD(u32 i2c_selection : 1,
+ __BITFIELD_FIELD(u32 otgen : 1,
+ __BITFIELD_FIELD(u32 pktsizewidth : 3,
+ __BITFIELD_FIELD(u32 xfersizewidth : 4,
+ ;))))))))))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_gintmsk
+ *
+ * Core Interrupt Mask Register (GINTMSK)
+ *
+ * This register works with the Core Interrupt register to interrupt the
+ * application. When an interrupt bit is masked, the interrupt associated with
+ * that bit will not be generated. However, the Core Interrupt (GINTSTS)
+ * register bit corresponding to that interrupt will still be set.
+ * Mask interrupt: 1'b0, Unmask interrupt: 1'b1
+ */
+union cvmx_usbcx_gintmsk {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_gintmsk_s
+ * @wkupintmsk: Resume/Remote Wakeup Detected Interrupt Mask
+ * (WkUpIntMsk)
+ * @sessreqintmsk: Session Request/New Session Detected Interrupt Mask
+ * (SessReqIntMsk)
+ * @disconnintmsk: Disconnect Detected Interrupt Mask (DisconnIntMsk)
+ * @conidstschngmsk: Connector ID Status Change Mask (ConIDStsChngMsk)
+ * @ptxfempmsk: Periodic TxFIFO Empty Mask (PTxFEmpMsk)
+ * @hchintmsk: Host Channels Interrupt Mask (HChIntMsk)
+ * @prtintmsk: Host Port Interrupt Mask (PrtIntMsk)
+ * @fetsuspmsk: Data Fetch Suspended Mask (FetSuspMsk)
+ * @incomplpmsk: Incomplete Periodic Transfer Mask (incomplPMsk)
+ * Incomplete Isochronous OUT Transfer Mask
+ * (incompISOOUTMsk)
+ * @incompisoinmsk: Incomplete Isochronous IN Transfer Mask
+ * (incompISOINMsk)
+ * @oepintmsk: OUT Endpoints Interrupt Mask (OEPIntMsk)
+ * @inepintmsk: IN Endpoints Interrupt Mask (INEPIntMsk)
+ * @epmismsk: Endpoint Mismatch Interrupt Mask (EPMisMsk)
+ * @eopfmsk: End of Periodic Frame Interrupt Mask (EOPFMsk)
+ * @isooutdropmsk: Isochronous OUT Packet Dropped Interrupt Mask
+ * (ISOOutDropMsk)
+ * @enumdonemsk: Enumeration Done Mask (EnumDoneMsk)
+ * @usbrstmsk: USB Reset Mask (USBRstMsk)
+ * @usbsuspmsk: USB Suspend Mask (USBSuspMsk)
+ * @erlysuspmsk: Early Suspend Mask (ErlySuspMsk)
+ * @i2cint: I2C Interrupt Mask (I2CINT)
+ * @ulpickintmsk: ULPI Carkit Interrupt Mask (ULPICKINTMsk)
+ * I2C Carkit Interrupt Mask (I2CCKINTMsk)
+ * @goutnakeffmsk: Global OUT NAK Effective Mask (GOUTNakEffMsk)
+ * @ginnakeffmsk: Global Non-Periodic IN NAK Effective Mask
+ * (GINNakEffMsk)
+ * @nptxfempmsk: Non-Periodic TxFIFO Empty Mask (NPTxFEmpMsk)
+ * @rxflvlmsk: Receive FIFO Non-Empty Mask (RxFLvlMsk)
+ * @sofmsk: Start of (micro)Frame Mask (SofMsk)
+ * @otgintmsk: OTG Interrupt Mask (OTGIntMsk)
+ * @modemismsk: Mode Mismatch Interrupt Mask (ModeMisMsk)
+ */
+ struct cvmx_usbcx_gintmsk_s {
+ __BITFIELD_FIELD(u32 wkupintmsk : 1,
+ __BITFIELD_FIELD(u32 sessreqintmsk : 1,
+ __BITFIELD_FIELD(u32 disconnintmsk : 1,
+ __BITFIELD_FIELD(u32 conidstschngmsk : 1,
+ __BITFIELD_FIELD(u32 reserved_27_27 : 1,
+ __BITFIELD_FIELD(u32 ptxfempmsk : 1,
+ __BITFIELD_FIELD(u32 hchintmsk : 1,
+ __BITFIELD_FIELD(u32 prtintmsk : 1,
+ __BITFIELD_FIELD(u32 reserved_23_23 : 1,
+ __BITFIELD_FIELD(u32 fetsuspmsk : 1,
+ __BITFIELD_FIELD(u32 incomplpmsk : 1,
+ __BITFIELD_FIELD(u32 incompisoinmsk : 1,
+ __BITFIELD_FIELD(u32 oepintmsk : 1,
+ __BITFIELD_FIELD(u32 inepintmsk : 1,
+ __BITFIELD_FIELD(u32 epmismsk : 1,
+ __BITFIELD_FIELD(u32 reserved_16_16 : 1,
+ __BITFIELD_FIELD(u32 eopfmsk : 1,
+ __BITFIELD_FIELD(u32 isooutdropmsk : 1,
+ __BITFIELD_FIELD(u32 enumdonemsk : 1,
+ __BITFIELD_FIELD(u32 usbrstmsk : 1,
+ __BITFIELD_FIELD(u32 usbsuspmsk : 1,
+ __BITFIELD_FIELD(u32 erlysuspmsk : 1,
+ __BITFIELD_FIELD(u32 i2cint : 1,
+ __BITFIELD_FIELD(u32 ulpickintmsk : 1,
+ __BITFIELD_FIELD(u32 goutnakeffmsk : 1,
+ __BITFIELD_FIELD(u32 ginnakeffmsk : 1,
+ __BITFIELD_FIELD(u32 nptxfempmsk : 1,
+ __BITFIELD_FIELD(u32 rxflvlmsk : 1,
+ __BITFIELD_FIELD(u32 sofmsk : 1,
+ __BITFIELD_FIELD(u32 otgintmsk : 1,
+ __BITFIELD_FIELD(u32 modemismsk : 1,
+ __BITFIELD_FIELD(u32 reserved_0_0 : 1,
+ ;))))))))))))))))))))))))))))))))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_gintsts
+ *
+ * Core Interrupt Register (GINTSTS)
+ *
+ * This register interrupts the application for system-level events in the
+ * current mode of operation (Device mode or Host mode). It is shown in
+ * Interrupt. Some of the bits in this register are valid only in Host mode,
+ * while others are valid in Device mode only. This register also indicates the
+ * current mode of operation. In order to clear the interrupt status bits of
+ * type R_SS_WC, the application must write 1'b1 into the bit. The FIFO status
+ * interrupts are read only; once software reads from or writes to the FIFO
+ * while servicing these interrupts, FIFO interrupt conditions are cleared
+ * automatically.
+ */
+union cvmx_usbcx_gintsts {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_gintsts_s
+ * @wkupint: Resume/Remote Wakeup Detected Interrupt (WkUpInt)
+ * In Device mode, this interrupt is asserted when a resume is
+ * detected on the USB. In Host mode, this interrupt is asserted
+ * when a remote wakeup is detected on the USB.
+ * For more information on how to use this interrupt, see "Partial
+ * Power-Down and Clock Gating Programming Model" on
+ * page 353.
+ * @sessreqint: Session Request/New Session Detected Interrupt
+ * (SessReqInt)
+ * In Host mode, this interrupt is asserted when a session request
+ * is detected from the device. In Device mode, this interrupt is
+ * asserted when the utmiotg_bvalid signal goes high.
+ * For more information on how to use this interrupt, see "Partial
+ * Power-Down and Clock Gating Programming Model" on
+ * page 353.
+ * @disconnint: Disconnect Detected Interrupt (DisconnInt)
+ * Asserted when a device disconnect is detected.
+ * @conidstschng: Connector ID Status Change (ConIDStsChng)
+ * The core sets this bit when there is a change in connector ID
+ * status.
+ * @ptxfemp: Periodic TxFIFO Empty (PTxFEmp)
+ * Asserted when the Periodic Transmit FIFO is either half or
+ * completely empty and there is space for at least one entry to be
+ * written in the Periodic Request Queue. The half or completely
+ * empty status is determined by the Periodic TxFIFO Empty Level
+ * bit in the Core AHB Configuration register
+ * (GAHBCFG.PTxFEmpLvl).
+ * @hchint: Host Channels Interrupt (HChInt)
+ * The core sets this bit to indicate that an interrupt is pending
+ * on one of the channels of the core (in Host mode). The
+ * application must read the Host All Channels Interrupt (HAINT)
+ * register to determine the exact number of the channel on which
+ * the interrupt occurred, and then read the corresponding Host
+ * Channel-n Interrupt (HCINTn) register to determine the exact
+ * cause of the interrupt. The application must clear the
+ * appropriate status bit in the HCINTn register to clear this bit.
+ * @prtint: Host Port Interrupt (PrtInt)
+ * The core sets this bit to indicate a change in port status of
+ * one of the O2P USB core ports in Host mode. The application must
+ * read the Host Port Control and Status (HPRT) register to
+ * determine the exact event that caused this interrupt. The
+ * application must clear the appropriate status bit in the Host
+ * Port Control and Status register to clear this bit.
+ * @fetsusp: Data Fetch Suspended (FetSusp)
+ * This interrupt is valid only in DMA mode. This interrupt
+ * indicates that the core has stopped fetching data for IN
+ * endpoints due to the unavailability of TxFIFO space or Request
+ * Queue space. This interrupt is used by the application for an
+ * endpoint mismatch algorithm.
+ * @incomplp: Incomplete Periodic Transfer (incomplP)
+ * In Host mode, the core sets this interrupt bit when there are
+ * incomplete periodic transactions still pending which are
+ * scheduled for the current microframe.
+ * Incomplete Isochronous OUT Transfer (incompISOOUT)
+ * The Device mode, the core sets this interrupt to indicate that
+ * there is at least one isochronous OUT endpoint on which the
+ * transfer is not completed in the current microframe. This
+ * interrupt is asserted along with the End of Periodic Frame
+ * Interrupt (EOPF) bit in this register.
+ * @incompisoin: Incomplete Isochronous IN Transfer (incompISOIN)
+ * The core sets this interrupt to indicate that there is at least
+ * one isochronous IN endpoint on which the transfer is not
+ * completed in the current microframe. This interrupt is asserted
+ * along with the End of Periodic Frame Interrupt (EOPF) bit in
+ * this register.
+ * @oepint: OUT Endpoints Interrupt (OEPInt)
+ * The core sets this bit to indicate that an interrupt is pending
+ * on one of the OUT endpoints of the core (in Device mode). The
+ * application must read the Device All Endpoints Interrupt
+ * (DAINT) register to determine the exact number of the OUT
+ * endpoint on which the interrupt occurred, and then read the
+ * corresponding Device OUT Endpoint-n Interrupt (DOEPINTn)
+ * register to determine the exact cause of the interrupt. The
+ * application must clear the appropriate status bit in the
+ * corresponding DOEPINTn register to clear this bit.
+ * @iepint: IN Endpoints Interrupt (IEPInt)
+ * The core sets this bit to indicate that an interrupt is pending
+ * on one of the IN endpoints of the core (in Device mode). The
+ * application must read the Device All Endpoints Interrupt
+ * (DAINT) register to determine the exact number of the IN
+ * endpoint on which the interrupt occurred, and then read the
+ * corresponding Device IN Endpoint-n Interrupt (DIEPINTn)
+ * register to determine the exact cause of the interrupt. The
+ * application must clear the appropriate status bit in the
+ * corresponding DIEPINTn register to clear this bit.
+ * @epmis: Endpoint Mismatch Interrupt (EPMis)
+ * Indicates that an IN token has been received for a non-periodic
+ * endpoint, but the data for another endpoint is present in the
+ * top of the Non-Periodic Transmit FIFO and the IN endpoint
+ * mismatch count programmed by the application has expired.
+ * @eopf: End of Periodic Frame Interrupt (EOPF)
+ * Indicates that the period specified in the Periodic Frame
+ * Interval field of the Device Configuration register
+ * (DCFG.PerFrInt) has been reached in the current microframe.
+ * @isooutdrop: Isochronous OUT Packet Dropped Interrupt (ISOOutDrop)
+ * The core sets this bit when it fails to write an isochronous OUT
+ * packet into the RxFIFO because the RxFIFO doesn't have
+ * enough space to accommodate a maximum packet size packet
+ * for the isochronous OUT endpoint.
+ * @enumdone: Enumeration Done (EnumDone)
+ * The core sets this bit to indicate that speed enumeration is
+ * complete. The application must read the Device Status (DSTS)
+ * register to obtain the enumerated speed.
+ * @usbrst: USB Reset (USBRst)
+ * The core sets this bit to indicate that a reset is detected on
+ * the USB.
+ * @usbsusp: USB Suspend (USBSusp)
+ * The core sets this bit to indicate that a suspend was detected
+ * on the USB. The core enters the Suspended state when there
+ * is no activity on the phy_line_state_i signal for an extended
+ * period of time.
+ * @erlysusp: Early Suspend (ErlySusp)
+ * The core sets this bit to indicate that an Idle state has been
+ * detected on the USB for 3 ms.
+ * @i2cint: I2C Interrupt (I2CINT)
+ * This bit is always 0x0.
+ * @ulpickint: ULPI Carkit Interrupt (ULPICKINT)
+ * This bit is always 0x0.
+ * @goutnakeff: Global OUT NAK Effective (GOUTNakEff)
+ * Indicates that the Set Global OUT NAK bit in the Device Control
+ * register (DCTL.SGOUTNak), set by the application, has taken
+ * effect in the core. This bit can be cleared by writing the Clear
+ * Global OUT NAK bit in the Device Control register
+ * (DCTL.CGOUTNak).
+ * @ginnakeff: Global IN Non-Periodic NAK Effective (GINNakEff)
+ * Indicates that the Set Global Non-Periodic IN NAK bit in the
+ * Device Control register (DCTL.SGNPInNak), set by the
+ * application, has taken effect in the core. That is, the core has
+ * sampled the Global IN NAK bit set by the application. This bit
+ * can be cleared by clearing the Clear Global Non-Periodic IN
+ * NAK bit in the Device Control register (DCTL.CGNPInNak).
+ * This interrupt does not necessarily mean that a NAK handshake
+ * is sent out on the USB. The STALL bit takes precedence over
+ * the NAK bit.
+ * @nptxfemp: Non-Periodic TxFIFO Empty (NPTxFEmp)
+ * This interrupt is asserted when the Non-Periodic TxFIFO is
+ * either half or completely empty, and there is space for at least
+ * one entry to be written to the Non-Periodic Transmit Request
+ * Queue. The half or completely empty status is determined by
+ * the Non-Periodic TxFIFO Empty Level bit in the Core AHB
+ * Configuration register (GAHBCFG.NPTxFEmpLvl).
+ * @rxflvl: RxFIFO Non-Empty (RxFLvl)
+ * Indicates that there is at least one packet pending to be read
+ * from the RxFIFO.
+ * @sof: Start of (micro)Frame (Sof)
+ * In Host mode, the core sets this bit to indicate that an SOF
+ * (FS), micro-SOF (HS), or Keep-Alive (LS) is transmitted on the
+ * USB. The application must write a 1 to this bit to clear the
+ * interrupt.
+ * In Device mode, in the core sets this bit to indicate that an
+ * SOF token has been received on the USB. The application can read
+ * the Device Status register to get the current (micro)frame
+ * number. This interrupt is seen only when the core is operating
+ * at either HS or FS.
+ * @otgint: OTG Interrupt (OTGInt)
+ * The core sets this bit to indicate an OTG protocol event. The
+ * application must read the OTG Interrupt Status (GOTGINT)
+ * register to determine the exact event that caused this
+ * interrupt. The application must clear the appropriate status bit
+ * in the GOTGINT register to clear this bit.
+ * @modemis: Mode Mismatch Interrupt (ModeMis)
+ * The core sets this bit when the application is trying to access:
+ * * A Host mode register, when the core is operating in Device
+ * mode
+ * * A Device mode register, when the core is operating in Host
+ * mode
+ * The register access is completed on the AHB with an OKAY
+ * response, but is ignored by the core internally and doesn't
+ * affect the operation of the core.
+ * @curmod: Current Mode of Operation (CurMod)
+ * Indicates the current mode of operation.
+ * * 1'b0: Device mode
+ * * 1'b1: Host mode
+ */
+ struct cvmx_usbcx_gintsts_s {
+ __BITFIELD_FIELD(u32 wkupint : 1,
+ __BITFIELD_FIELD(u32 sessreqint : 1,
+ __BITFIELD_FIELD(u32 disconnint : 1,
+ __BITFIELD_FIELD(u32 conidstschng : 1,
+ __BITFIELD_FIELD(u32 reserved_27_27 : 1,
+ __BITFIELD_FIELD(u32 ptxfemp : 1,
+ __BITFIELD_FIELD(u32 hchint : 1,
+ __BITFIELD_FIELD(u32 prtint : 1,
+ __BITFIELD_FIELD(u32 reserved_23_23 : 1,
+ __BITFIELD_FIELD(u32 fetsusp : 1,
+ __BITFIELD_FIELD(u32 incomplp : 1,
+ __BITFIELD_FIELD(u32 incompisoin : 1,
+ __BITFIELD_FIELD(u32 oepint : 1,
+ __BITFIELD_FIELD(u32 iepint : 1,
+ __BITFIELD_FIELD(u32 epmis : 1,
+ __BITFIELD_FIELD(u32 reserved_16_16 : 1,
+ __BITFIELD_FIELD(u32 eopf : 1,
+ __BITFIELD_FIELD(u32 isooutdrop : 1,
+ __BITFIELD_FIELD(u32 enumdone : 1,
+ __BITFIELD_FIELD(u32 usbrst : 1,
+ __BITFIELD_FIELD(u32 usbsusp : 1,
+ __BITFIELD_FIELD(u32 erlysusp : 1,
+ __BITFIELD_FIELD(u32 i2cint : 1,
+ __BITFIELD_FIELD(u32 ulpickint : 1,
+ __BITFIELD_FIELD(u32 goutnakeff : 1,
+ __BITFIELD_FIELD(u32 ginnakeff : 1,
+ __BITFIELD_FIELD(u32 nptxfemp : 1,
+ __BITFIELD_FIELD(u32 rxflvl : 1,
+ __BITFIELD_FIELD(u32 sof : 1,
+ __BITFIELD_FIELD(u32 otgint : 1,
+ __BITFIELD_FIELD(u32 modemis : 1,
+ __BITFIELD_FIELD(u32 curmod : 1,
+ ;))))))))))))))))))))))))))))))))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_gnptxfsiz
+ *
+ * Non-Periodic Transmit FIFO Size Register (GNPTXFSIZ)
+ *
+ * The application can program the RAM size and the memory start address for the
+ * Non-Periodic TxFIFO.
+ */
+union cvmx_usbcx_gnptxfsiz {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_gnptxfsiz_s
+ * @nptxfdep: Non-Periodic TxFIFO Depth (NPTxFDep)
+ * This value is in terms of 32-bit words.
+ * Minimum value is 16
+ * Maximum value is 32768
+ * @nptxfstaddr: Non-Periodic Transmit RAM Start Address (NPTxFStAddr)
+ * This field contains the memory start address for Non-Periodic
+ * Transmit FIFO RAM.
+ */
+ struct cvmx_usbcx_gnptxfsiz_s {
+ __BITFIELD_FIELD(u32 nptxfdep : 16,
+ __BITFIELD_FIELD(u32 nptxfstaddr : 16,
+ ;))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_gnptxsts
+ *
+ * Non-Periodic Transmit FIFO/Queue Status Register (GNPTXSTS)
+ *
+ * This read-only register contains the free space information for the
+ * Non-Periodic TxFIFO and the Non-Periodic Transmit Request Queue.
+ */
+union cvmx_usbcx_gnptxsts {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_gnptxsts_s
+ * @nptxqtop: Top of the Non-Periodic Transmit Request Queue (NPTxQTop)
+ * Entry in the Non-Periodic Tx Request Queue that is currently
+ * being processed by the MAC.
+ * * Bits [30:27]: Channel/endpoint number
+ * * Bits [26:25]:
+ * - 2'b00: IN/OUT token
+ * - 2'b01: Zero-length transmit packet (device IN/host OUT)
+ * - 2'b10: PING/CSPLIT token
+ * - 2'b11: Channel halt command
+ * * Bit [24]: Terminate (last entry for selected channel/endpoint)
+ * @nptxqspcavail: Non-Periodic Transmit Request Queue Space Available
+ * (NPTxQSpcAvail)
+ * Indicates the amount of free space available in the Non-
+ * Periodic Transmit Request Queue. This queue holds both IN
+ * and OUT requests in Host mode. Device mode has only IN
+ * requests.
+ * * 8'h0: Non-Periodic Transmit Request Queue is full
+ * * 8'h1: 1 location available
+ * * 8'h2: 2 locations available
+ * * n: n locations available (0..8)
+ * * Others: Reserved
+ * @nptxfspcavail: Non-Periodic TxFIFO Space Avail (NPTxFSpcAvail)
+ * Indicates the amount of free space available in the Non-
+ * Periodic TxFIFO.
+ * Values are in terms of 32-bit words.
+ * * 16'h0: Non-Periodic TxFIFO is full
+ * * 16'h1: 1 word available
+ * * 16'h2: 2 words available
+ * * 16'hn: n words available (where 0..32768)
+ * * 16'h8000: 32768 words available
+ * * Others: Reserved
+ */
+ struct cvmx_usbcx_gnptxsts_s {
+ __BITFIELD_FIELD(u32 reserved_31_31 : 1,
+ __BITFIELD_FIELD(u32 nptxqtop : 7,
+ __BITFIELD_FIELD(u32 nptxqspcavail : 8,
+ __BITFIELD_FIELD(u32 nptxfspcavail : 16,
+ ;))))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_grstctl
+ *
+ * Core Reset Register (GRSTCTL)
+ *
+ * The application uses this register to reset various hardware features inside
+ * the core.
+ */
+union cvmx_usbcx_grstctl {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_grstctl_s
+ * @ahbidle: AHB Master Idle (AHBIdle)
+ * Indicates that the AHB Master State Machine is in the IDLE
+ * condition.
+ * @dmareq: DMA Request Signal (DMAReq)
+ * Indicates that the DMA request is in progress. Used for debug.
+ * @txfnum: TxFIFO Number (TxFNum)
+ * This is the FIFO number that must be flushed using the TxFIFO
+ * Flush bit. This field must not be changed until the core clears
+ * the TxFIFO Flush bit.
+ * * 5'h0: Non-Periodic TxFIFO flush
+ * * 5'h1: Periodic TxFIFO 1 flush in Device mode or Periodic
+ * TxFIFO flush in Host mode
+ * * 5'h2: Periodic TxFIFO 2 flush in Device mode
+ * - ...
+ * * 5'hF: Periodic TxFIFO 15 flush in Device mode
+ * * 5'h10: Flush all the Periodic and Non-Periodic TxFIFOs in the
+ * core
+ * @txfflsh: TxFIFO Flush (TxFFlsh)
+ * This bit selectively flushes a single or all transmit FIFOs, but
+ * cannot do so if the core is in the midst of a transaction.
+ * The application must only write this bit after checking that the
+ * core is neither writing to the TxFIFO nor reading from the
+ * TxFIFO.
+ * The application must wait until the core clears this bit before
+ * performing any operations. This bit takes 8 clocks (of phy_clk
+ * or hclk, whichever is slower) to clear.
+ * @rxfflsh: RxFIFO Flush (RxFFlsh)
+ * The application can flush the entire RxFIFO using this bit, but
+ * must first ensure that the core is not in the middle of a
+ * transaction.
+ * The application must only write to this bit after checking that
+ * the core is neither reading from the RxFIFO nor writing to the
+ * RxFIFO.
+ * The application must wait until the bit is cleared before
+ * performing any other operations. This bit will take 8 clocks
+ * (slowest of PHY or AHB clock) to clear.
+ * @intknqflsh: IN Token Sequence Learning Queue Flush (INTknQFlsh)
+ * The application writes this bit to flush the IN Token Sequence
+ * Learning Queue.
+ * @frmcntrrst: Host Frame Counter Reset (FrmCntrRst)
+ * The application writes this bit to reset the (micro)frame number
+ * counter inside the core. When the (micro)frame counter is reset,
+ * the subsequent SOF sent out by the core will have a
+ * (micro)frame number of 0.
+ * @hsftrst: HClk Soft Reset (HSftRst)
+ * The application uses this bit to flush the control logic in the
+ * AHB Clock domain. Only AHB Clock Domain pipelines are reset.
+ * * FIFOs are not flushed with this bit.
+ * * All state machines in the AHB clock domain are reset to the
+ * Idle state after terminating the transactions on the AHB,
+ * following the protocol.
+ * * CSR control bits used by the AHB clock domain state
+ * machines are cleared.
+ * * To clear this interrupt, status mask bits that control the
+ * interrupt status and are generated by the AHB clock domain
+ * state machine are cleared.
+ * * Because interrupt status bits are not cleared, the application
+ * can get the status of any core events that occurred after it set
+ * this bit.
+ * This is a self-clearing bit that the core clears after all
+ * necessary logic is reset in the core. This may take several
+ * clocks, depending on the core's current state.
+ * @csftrst: Core Soft Reset (CSftRst)
+ * Resets the hclk and phy_clock domains as follows:
+ * * Clears the interrupts and all the CSR registers except the
+ * following register bits:
+ * - PCGCCTL.RstPdwnModule
+ * - PCGCCTL.GateHclk
+ * - PCGCCTL.PwrClmp
+ * - PCGCCTL.StopPPhyLPwrClkSelclk
+ * - GUSBCFG.PhyLPwrClkSel
+ * - GUSBCFG.DDRSel
+ * - GUSBCFG.PHYSel
+ * - GUSBCFG.FSIntf
+ * - GUSBCFG.ULPI_UTMI_Sel
+ * - GUSBCFG.PHYIf
+ * - HCFG.FSLSPclkSel
+ * - DCFG.DevSpd
+ * * All module state machines (except the AHB Slave Unit) are
+ * reset to the IDLE state, and all the transmit FIFOs and the
+ * receive FIFO are flushed.
+ * * Any transactions on the AHB Master are terminated as soon
+ * as possible, after gracefully completing the last data phase of
+ * an AHB transfer. Any transactions on the USB are terminated
+ * immediately.
+ * The application can write to this bit any time it wants to reset
+ * the core. This is a self-clearing bit and the core clears this
+ * bit after all the necessary logic is reset in the core, which
+ * may take several clocks, depending on the current state of the
+ * core. Once this bit is cleared software should wait at least 3
+ * PHY clocks before doing any access to the PHY domain
+ * (synchronization delay). Software should also should check that
+ * bit 31 of this register is 1 (AHB Master is IDLE) before
+ * starting any operation.
+ * Typically software reset is used during software development
+ * and also when you dynamically change the PHY selection bits
+ * in the USB configuration registers listed above. When you
+ * change the PHY, the corresponding clock for the PHY is
+ * selected and used in the PHY domain. Once a new clock is
+ * selected, the PHY domain has to be reset for proper operation.
+ */
+ struct cvmx_usbcx_grstctl_s {
+ __BITFIELD_FIELD(u32 ahbidle : 1,
+ __BITFIELD_FIELD(u32 dmareq : 1,
+ __BITFIELD_FIELD(u32 reserved_11_29 : 19,
+ __BITFIELD_FIELD(u32 txfnum : 5,
+ __BITFIELD_FIELD(u32 txfflsh : 1,
+ __BITFIELD_FIELD(u32 rxfflsh : 1,
+ __BITFIELD_FIELD(u32 intknqflsh : 1,
+ __BITFIELD_FIELD(u32 frmcntrrst : 1,
+ __BITFIELD_FIELD(u32 hsftrst : 1,
+ __BITFIELD_FIELD(u32 csftrst : 1,
+ ;))))))))))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_grxfsiz
+ *
+ * Receive FIFO Size Register (GRXFSIZ)
+ *
+ * The application can program the RAM size that must be allocated to the
+ * RxFIFO.
+ */
+union cvmx_usbcx_grxfsiz {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_grxfsiz_s
+ * @rxfdep: RxFIFO Depth (RxFDep)
+ * This value is in terms of 32-bit words.
+ * * Minimum value is 16
+ * * Maximum value is 32768
+ */
+ struct cvmx_usbcx_grxfsiz_s {
+ __BITFIELD_FIELD(u32 reserved_16_31 : 16,
+ __BITFIELD_FIELD(u32 rxfdep : 16,
+ ;))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_grxstsph
+ *
+ * Receive Status Read and Pop Register, Host Mode (GRXSTSPH)
+ *
+ * A read to the Receive Status Read and Pop register returns and additionally
+ * pops the top data entry out of the RxFIFO.
+ * This Description is only valid when the core is in Host Mode. For Device Mode
+ * use USBC_GRXSTSPD instead.
+ * NOTE: GRXSTSPH and GRXSTSPD are physically the same register and share the
+ * same offset in the O2P USB core. The offset difference shown in this
+ * document is for software clarity and is actually ignored by the
+ * hardware.
+ */
+union cvmx_usbcx_grxstsph {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_grxstsph_s
+ * @pktsts: Packet Status (PktSts)
+ * Indicates the status of the received packet
+ * * 4'b0010: IN data packet received
+ * * 4'b0011: IN transfer completed (triggers an interrupt)
+ * * 4'b0101: Data toggle error (triggers an interrupt)
+ * * 4'b0111: Channel halted (triggers an interrupt)
+ * * Others: Reserved
+ * @dpid: Data PID (DPID)
+ * * 2'b00: DATA0
+ * * 2'b10: DATA1
+ * * 2'b01: DATA2
+ * * 2'b11: MDATA
+ * @bcnt: Byte Count (BCnt)
+ * Indicates the byte count of the received IN data packet
+ * @chnum: Channel Number (ChNum)
+ * Indicates the channel number to which the current received
+ * packet belongs.
+ */
+ struct cvmx_usbcx_grxstsph_s {
+ __BITFIELD_FIELD(u32 reserved_21_31 : 11,
+ __BITFIELD_FIELD(u32 pktsts : 4,
+ __BITFIELD_FIELD(u32 dpid : 2,
+ __BITFIELD_FIELD(u32 bcnt : 11,
+ __BITFIELD_FIELD(u32 chnum : 4,
+ ;)))))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_gusbcfg
+ *
+ * Core USB Configuration Register (GUSBCFG)
+ *
+ * This register can be used to configure the core after power-on or a changing
+ * to Host mode or Device mode. It contains USB and USB-PHY related
+ * configuration parameters. The application must program this register before
+ * starting any transactions on either the AHB or the USB. Do not make changes
+ * to this register after the initial programming.
+ */
+union cvmx_usbcx_gusbcfg {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_gusbcfg_s
+ * @otgi2csel: UTMIFS or I2C Interface Select (OtgI2CSel)
+ * This bit is always 0x0.
+ * @phylpwrclksel: PHY Low-Power Clock Select (PhyLPwrClkSel)
+ * Software should set this bit to 0x0.
+ * Selects either 480-MHz or 48-MHz (low-power) PHY mode. In
+ * FS and LS modes, the PHY can usually operate on a 48-MHz
+ * clock to save power.
+ * * 1'b0: 480-MHz Internal PLL clock
+ * * 1'b1: 48-MHz External Clock
+ * In 480 MHz mode, the UTMI interface operates at either 60 or
+ * 30-MHz, depending upon whether 8- or 16-bit data width is
+ * selected. In 48-MHz mode, the UTMI interface operates at 48
+ * MHz in FS mode and at either 48 or 6 MHz in LS mode
+ * (depending on the PHY vendor).
+ * This bit drives the utmi_fsls_low_power core output signal, and
+ * is valid only for UTMI+ PHYs.
+ * @usbtrdtim: USB Turnaround Time (USBTrdTim)
+ * Sets the turnaround time in PHY clocks.
+ * Specifies the response time for a MAC request to the Packet
+ * FIFO Controller (PFC) to fetch data from the DFIFO (SPRAM).
+ * This must be programmed to 0x5.
+ * @hnpcap: HNP-Capable (HNPCap)
+ * This bit is always 0x0.
+ * @srpcap: SRP-Capable (SRPCap)
+ * This bit is always 0x0.
+ * @ddrsel: ULPI DDR Select (DDRSel)
+ * Software should set this bit to 0x0.
+ * @physel: USB 2.0 High-Speed PHY or USB 1.1 Full-Speed Serial
+ * Software should set this bit to 0x0.
+ * @fsintf: Full-Speed Serial Interface Select (FSIntf)
+ * Software should set this bit to 0x0.
+ * @ulpi_utmi_sel: ULPI or UTMI+ Select (ULPI_UTMI_Sel)
+ * This bit is always 0x0.
+ * @phyif: PHY Interface (PHYIf)
+ * This bit is always 0x1.
+ * @toutcal: HS/FS Timeout Calibration (TOutCal)
+ * The number of PHY clocks that the application programs in this
+ * field is added to the high-speed/full-speed interpacket timeout
+ * duration in the core to account for any additional delays
+ * introduced by the PHY. This may be required, since the delay
+ * introduced by the PHY in generating the linestate condition may
+ * vary from one PHY to another.
+ * The USB standard timeout value for high-speed operation is
+ * 736 to 816 (inclusive) bit times. The USB standard timeout
+ * value for full-speed operation is 16 to 18 (inclusive) bit
+ * times. The application must program this field based on the
+ * speed of enumeration. The number of bit times added per PHY
+ * clock are:
+ * High-speed operation:
+ * * One 30-MHz PHY clock = 16 bit times
+ * * One 60-MHz PHY clock = 8 bit times
+ * Full-speed operation:
+ * * One 30-MHz PHY clock = 0.4 bit times
+ * * One 60-MHz PHY clock = 0.2 bit times
+ * * One 48-MHz PHY clock = 0.25 bit times
+ */
+ struct cvmx_usbcx_gusbcfg_s {
+ __BITFIELD_FIELD(u32 reserved_17_31 : 15,
+ __BITFIELD_FIELD(u32 otgi2csel : 1,
+ __BITFIELD_FIELD(u32 phylpwrclksel : 1,
+ __BITFIELD_FIELD(u32 reserved_14_14 : 1,
+ __BITFIELD_FIELD(u32 usbtrdtim : 4,
+ __BITFIELD_FIELD(u32 hnpcap : 1,
+ __BITFIELD_FIELD(u32 srpcap : 1,
+ __BITFIELD_FIELD(u32 ddrsel : 1,
+ __BITFIELD_FIELD(u32 physel : 1,
+ __BITFIELD_FIELD(u32 fsintf : 1,
+ __BITFIELD_FIELD(u32 ulpi_utmi_sel : 1,
+ __BITFIELD_FIELD(u32 phyif : 1,
+ __BITFIELD_FIELD(u32 toutcal : 3,
+ ;)))))))))))))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_haint
+ *
+ * Host All Channels Interrupt Register (HAINT)
+ *
+ * When a significant event occurs on a channel, the Host All Channels Interrupt
+ * register interrupts the application using the Host Channels Interrupt bit of
+ * the Core Interrupt register (GINTSTS.HChInt). This is shown in Interrupt.
+ * There is one interrupt bit per channel, up to a maximum of 16 bits. Bits in
+ * this register are set and cleared when the application sets and clears bits
+ * in the corresponding Host Channel-n Interrupt register.
+ */
+union cvmx_usbcx_haint {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_haint_s
+ * @haint: Channel Interrupts (HAINT)
+ * One bit per channel: Bit 0 for Channel 0, bit 15 for Channel 15
+ */
+ struct cvmx_usbcx_haint_s {
+ __BITFIELD_FIELD(u32 reserved_16_31 : 16,
+ __BITFIELD_FIELD(u32 haint : 16,
+ ;))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_haintmsk
+ *
+ * Host All Channels Interrupt Mask Register (HAINTMSK)
+ *
+ * The Host All Channel Interrupt Mask register works with the Host All Channel
+ * Interrupt register to interrupt the application when an event occurs on a
+ * channel. There is one interrupt mask bit per channel, up to a maximum of 16
+ * bits.
+ * Mask interrupt: 1'b0 Unmask interrupt: 1'b1
+ */
+union cvmx_usbcx_haintmsk {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_haintmsk_s
+ * @haintmsk: Channel Interrupt Mask (HAINTMsk)
+ * One bit per channel: Bit 0 for channel 0, bit 15 for channel 15
+ */
+ struct cvmx_usbcx_haintmsk_s {
+ __BITFIELD_FIELD(u32 reserved_16_31 : 16,
+ __BITFIELD_FIELD(u32 haintmsk : 16,
+ ;))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_hcchar#
+ *
+ * Host Channel-n Characteristics Register (HCCHAR)
+ *
+ */
+union cvmx_usbcx_hccharx {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_hccharx_s
+ * @chena: Channel Enable (ChEna)
+ * This field is set by the application and cleared by the OTG
+ * host.
+ * * 1'b0: Channel disabled
+ * * 1'b1: Channel enabled
+ * @chdis: Channel Disable (ChDis)
+ * The application sets this bit to stop transmitting/receiving
+ * data on a channel, even before the transfer for that channel is
+ * complete. The application must wait for the Channel Disabled
+ * interrupt before treating the channel as disabled.
+ * @oddfrm: Odd Frame (OddFrm)
+ * This field is set (reset) by the application to indicate that
+ * the OTG host must perform a transfer in an odd (micro)frame.
+ * This field is applicable for only periodic (isochronous and
+ * interrupt) transactions.
+ * * 1'b0: Even (micro)frame
+ * * 1'b1: Odd (micro)frame
+ * @devaddr: Device Address (DevAddr)
+ * This field selects the specific device serving as the data
+ * source or sink.
+ * @ec: Multi Count (MC) / Error Count (EC)
+ * When the Split Enable bit of the Host Channel-n Split Control
+ * register (HCSPLTn.SpltEna) is reset (1'b0), this field indicates
+ * to the host the number of transactions that should be executed
+ * per microframe for this endpoint.
+ * * 2'b00: Reserved. This field yields undefined results.
+ * * 2'b01: 1 transaction
+ * * 2'b10: 2 transactions to be issued for this endpoint per
+ * microframe
+ * * 2'b11: 3 transactions to be issued for this endpoint per
+ * microframe
+ * When HCSPLTn.SpltEna is set (1'b1), this field indicates the
+ * number of immediate retries to be performed for a periodic split
+ * transactions on transaction errors. This field must be set to at
+ * least 2'b01.
+ * @eptype: Endpoint Type (EPType)
+ * Indicates the transfer type selected.
+ * * 2'b00: Control
+ * * 2'b01: Isochronous
+ * * 2'b10: Bulk
+ * * 2'b11: Interrupt
+ * @lspddev: Low-Speed Device (LSpdDev)
+ * This field is set by the application to indicate that this
+ * channel is communicating to a low-speed device.
+ * @epdir: Endpoint Direction (EPDir)
+ * Indicates whether the transaction is IN or OUT.
+ * * 1'b0: OUT
+ * * 1'b1: IN
+ * @epnum: Endpoint Number (EPNum)
+ * Indicates the endpoint number on the device serving as the
+ * data source or sink.
+ * @mps: Maximum Packet Size (MPS)
+ * Indicates the maximum packet size of the associated endpoint.
+ */
+ struct cvmx_usbcx_hccharx_s {
+ __BITFIELD_FIELD(u32 chena : 1,
+ __BITFIELD_FIELD(u32 chdis : 1,
+ __BITFIELD_FIELD(u32 oddfrm : 1,
+ __BITFIELD_FIELD(u32 devaddr : 7,
+ __BITFIELD_FIELD(u32 ec : 2,
+ __BITFIELD_FIELD(u32 eptype : 2,
+ __BITFIELD_FIELD(u32 lspddev : 1,
+ __BITFIELD_FIELD(u32 reserved_16_16 : 1,
+ __BITFIELD_FIELD(u32 epdir : 1,
+ __BITFIELD_FIELD(u32 epnum : 4,
+ __BITFIELD_FIELD(u32 mps : 11,
+ ;)))))))))))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_hcfg
+ *
+ * Host Configuration Register (HCFG)
+ *
+ * This register configures the core after power-on. Do not make changes to this
+ * register after initializing the host.
+ */
+union cvmx_usbcx_hcfg {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_hcfg_s
+ * @fslssupp: FS- and LS-Only Support (FSLSSupp)
+ * The application uses this bit to control the core's enumeration
+ * speed. Using this bit, the application can make the core
+ * enumerate as a FS host, even if the connected device supports
+ * HS traffic. Do not make changes to this field after initial
+ * programming.
+ * * 1'b0: HS/FS/LS, based on the maximum speed supported by
+ * the connected device
+ * * 1'b1: FS/LS-only, even if the connected device can support HS
+ * @fslspclksel: FS/LS PHY Clock Select (FSLSPclkSel)
+ * When the core is in FS Host mode
+ * * 2'b00: PHY clock is running at 30/60 MHz
+ * * 2'b01: PHY clock is running at 48 MHz
+ * * Others: Reserved
+ * When the core is in LS Host mode
+ * * 2'b00: PHY clock is running at 30/60 MHz. When the
+ * UTMI+/ULPI PHY Low Power mode is not selected, use
+ * 30/60 MHz.
+ * * 2'b01: PHY clock is running at 48 MHz. When the UTMI+
+ * PHY Low Power mode is selected, use 48MHz if the PHY
+ * supplies a 48 MHz clock during LS mode.
+ * * 2'b10: PHY clock is running at 6 MHz. In USB 1.1 FS mode,
+ * use 6 MHz when the UTMI+ PHY Low Power mode is
+ * selected and the PHY supplies a 6 MHz clock during LS
+ * mode. If you select a 6 MHz clock during LS mode, you must
+ * do a soft reset.
+ * * 2'b11: Reserved
+ */
+ struct cvmx_usbcx_hcfg_s {
+ __BITFIELD_FIELD(u32 reserved_3_31 : 29,
+ __BITFIELD_FIELD(u32 fslssupp : 1,
+ __BITFIELD_FIELD(u32 fslspclksel : 2,
+ ;)))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_hcint#
+ *
+ * Host Channel-n Interrupt Register (HCINT)
+ *
+ * This register indicates the status of a channel with respect to USB- and
+ * AHB-related events. The application must read this register when the Host
+ * Channels Interrupt bit of the Core Interrupt register (GINTSTS.HChInt) is
+ * set. Before the application can read this register, it must first read
+ * the Host All Channels Interrupt (HAINT) register to get the exact channel
+ * number for the Host Channel-n Interrupt register. The application must clear
+ * the appropriate bit in this register to clear the corresponding bits in the
+ * HAINT and GINTSTS registers.
+ */
+union cvmx_usbcx_hcintx {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_hcintx_s
+ * @datatglerr: Data Toggle Error (DataTglErr)
+ * @frmovrun: Frame Overrun (FrmOvrun)
+ * @bblerr: Babble Error (BblErr)
+ * @xacterr: Transaction Error (XactErr)
+ * @nyet: NYET Response Received Interrupt (NYET)
+ * @ack: ACK Response Received Interrupt (ACK)
+ * @nak: NAK Response Received Interrupt (NAK)
+ * @stall: STALL Response Received Interrupt (STALL)
+ * @ahberr: This bit is always 0x0.
+ * @chhltd: Channel Halted (ChHltd)
+ * Indicates the transfer completed abnormally either because of
+ * any USB transaction error or in response to disable request by
+ * the application.
+ * @xfercompl: Transfer Completed (XferCompl)
+ * Transfer completed normally without any errors.
+ */
+ struct cvmx_usbcx_hcintx_s {
+ __BITFIELD_FIELD(u32 reserved_11_31 : 21,
+ __BITFIELD_FIELD(u32 datatglerr : 1,
+ __BITFIELD_FIELD(u32 frmovrun : 1,
+ __BITFIELD_FIELD(u32 bblerr : 1,
+ __BITFIELD_FIELD(u32 xacterr : 1,
+ __BITFIELD_FIELD(u32 nyet : 1,
+ __BITFIELD_FIELD(u32 ack : 1,
+ __BITFIELD_FIELD(u32 nak : 1,
+ __BITFIELD_FIELD(u32 stall : 1,
+ __BITFIELD_FIELD(u32 ahberr : 1,
+ __BITFIELD_FIELD(u32 chhltd : 1,
+ __BITFIELD_FIELD(u32 xfercompl : 1,
+ ;))))))))))))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_hcintmsk#
+ *
+ * Host Channel-n Interrupt Mask Register (HCINTMSKn)
+ *
+ * This register reflects the mask for each channel status described in the
+ * previous section.
+ * Mask interrupt: 1'b0 Unmask interrupt: 1'b1
+ */
+union cvmx_usbcx_hcintmskx {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_hcintmskx_s
+ * @datatglerrmsk: Data Toggle Error Mask (DataTglErrMsk)
+ * @frmovrunmsk: Frame Overrun Mask (FrmOvrunMsk)
+ * @bblerrmsk: Babble Error Mask (BblErrMsk)
+ * @xacterrmsk: Transaction Error Mask (XactErrMsk)
+ * @nyetmsk: NYET Response Received Interrupt Mask (NyetMsk)
+ * @ackmsk: ACK Response Received Interrupt Mask (AckMsk)
+ * @nakmsk: NAK Response Received Interrupt Mask (NakMsk)
+ * @stallmsk: STALL Response Received Interrupt Mask (StallMsk)
+ * @ahberrmsk: AHB Error Mask (AHBErrMsk)
+ * @chhltdmsk: Channel Halted Mask (ChHltdMsk)
+ * @xfercomplmsk: Transfer Completed Mask (XferComplMsk)
+ */
+ struct cvmx_usbcx_hcintmskx_s {
+ __BITFIELD_FIELD(u32 reserved_11_31 : 21,
+ __BITFIELD_FIELD(u32 datatglerrmsk : 1,
+ __BITFIELD_FIELD(u32 frmovrunmsk : 1,
+ __BITFIELD_FIELD(u32 bblerrmsk : 1,
+ __BITFIELD_FIELD(u32 xacterrmsk : 1,
+ __BITFIELD_FIELD(u32 nyetmsk : 1,
+ __BITFIELD_FIELD(u32 ackmsk : 1,
+ __BITFIELD_FIELD(u32 nakmsk : 1,
+ __BITFIELD_FIELD(u32 stallmsk : 1,
+ __BITFIELD_FIELD(u32 ahberrmsk : 1,
+ __BITFIELD_FIELD(u32 chhltdmsk : 1,
+ __BITFIELD_FIELD(u32 xfercomplmsk : 1,
+ ;))))))))))))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_hcsplt#
+ *
+ * Host Channel-n Split Control Register (HCSPLT)
+ *
+ */
+union cvmx_usbcx_hcspltx {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_hcspltx_s
+ * @spltena: Split Enable (SpltEna)
+ * The application sets this field to indicate that this channel is
+ * enabled to perform split transactions.
+ * @compsplt: Do Complete Split (CompSplt)
+ * The application sets this field to request the OTG host to
+ * perform a complete split transaction.
+ * @xactpos: Transaction Position (XactPos)
+ * This field is used to determine whether to send all, first,
+ * middle, or last payloads with each OUT transaction.
+ * * 2'b11: All. This is the entire data payload is of this
+ * transaction (which is less than or equal to 188 bytes).
+ * * 2'b10: Begin. This is the first data payload of this
+ * transaction (which is larger than 188 bytes).
+ * * 2'b00: Mid. This is the middle payload of this transaction
+ * (which is larger than 188 bytes).
+ * * 2'b01: End. This is the last payload of this transaction
+ * (which is larger than 188 bytes).
+ * @hubaddr: Hub Address (HubAddr)
+ * This field holds the device address of the transaction
+ * translator's hub.
+ * @prtaddr: Port Address (PrtAddr)
+ * This field is the port number of the recipient transaction
+ * translator.
+ */
+ struct cvmx_usbcx_hcspltx_s {
+ __BITFIELD_FIELD(u32 spltena : 1,
+ __BITFIELD_FIELD(u32 reserved_17_30 : 14,
+ __BITFIELD_FIELD(u32 compsplt : 1,
+ __BITFIELD_FIELD(u32 xactpos : 2,
+ __BITFIELD_FIELD(u32 hubaddr : 7,
+ __BITFIELD_FIELD(u32 prtaddr : 7,
+ ;))))))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_hctsiz#
+ *
+ * Host Channel-n Transfer Size Register (HCTSIZ)
+ *
+ */
+union cvmx_usbcx_hctsizx {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_hctsizx_s
+ * @dopng: Do Ping (DoPng)
+ * Setting this field to 1 directs the host to do PING protocol.
+ * @pid: PID (Pid)
+ * The application programs this field with the type of PID to use
+ * for the initial transaction. The host will maintain this field
+ * for the rest of the transfer.
+ * * 2'b00: DATA0
+ * * 2'b01: DATA2
+ * * 2'b10: DATA1
+ * * 2'b11: MDATA (non-control)/SETUP (control)
+ * @pktcnt: Packet Count (PktCnt)
+ * This field is programmed by the application with the expected
+ * number of packets to be transmitted (OUT) or received (IN).
+ * The host decrements this count on every successful
+ * transmission or reception of an OUT/IN packet. Once this count
+ * reaches zero, the application is interrupted to indicate normal
+ * completion.
+ * @xfersize: Transfer Size (XferSize)
+ * For an OUT, this field is the number of data bytes the host will
+ * send during the transfer.
+ * For an IN, this field is the buffer size that the application
+ * has reserved for the transfer. The application is expected to
+ * program this field as an integer multiple of the maximum packet
+ * size for IN transactions (periodic and non-periodic).
+ */
+ struct cvmx_usbcx_hctsizx_s {
+ __BITFIELD_FIELD(u32 dopng : 1,
+ __BITFIELD_FIELD(u32 pid : 2,
+ __BITFIELD_FIELD(u32 pktcnt : 10,
+ __BITFIELD_FIELD(u32 xfersize : 19,
+ ;))))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_hfir
+ *
+ * Host Frame Interval Register (HFIR)
+ *
+ * This register stores the frame interval information for the current speed to
+ * which the O2P USB core has enumerated.
+ */
+union cvmx_usbcx_hfir {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_hfir_s
+ * @frint: Frame Interval (FrInt)
+ * The value that the application programs to this field specifies
+ * the interval between two consecutive SOFs (FS) or micro-
+ * SOFs (HS) or Keep-Alive tokens (HS). This field contains the
+ * number of PHY clocks that constitute the required frame
+ * interval. The default value set in this field for a FS operation
+ * when the PHY clock frequency is 60 MHz. The application can
+ * write a value to this register only after the Port Enable bit of
+ * the Host Port Control and Status register (HPRT.PrtEnaPort)
+ * has been set. If no value is programmed, the core calculates
+ * the value based on the PHY clock specified in the FS/LS PHY
+ * Clock Select field of the Host Configuration register
+ * (HCFG.FSLSPclkSel). Do not change the value of this field
+ * after the initial configuration.
+ * * 125 us (PHY clock frequency for HS)
+ * * 1 ms (PHY clock frequency for FS/LS)
+ */
+ struct cvmx_usbcx_hfir_s {
+ __BITFIELD_FIELD(u32 reserved_16_31 : 16,
+ __BITFIELD_FIELD(u32 frint : 16,
+ ;))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_hfnum
+ *
+ * Host Frame Number/Frame Time Remaining Register (HFNUM)
+ *
+ * This register indicates the current frame number.
+ * It also indicates the time remaining (in terms of the number of PHY clocks)
+ * in the current (micro)frame.
+ */
+union cvmx_usbcx_hfnum {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_hfnum_s
+ * @frrem: Frame Time Remaining (FrRem)
+ * Indicates the amount of time remaining in the current
+ * microframe (HS) or frame (FS/LS), in terms of PHY clocks.
+ * This field decrements on each PHY clock. When it reaches
+ * zero, this field is reloaded with the value in the Frame
+ * Interval register and a new SOF is transmitted on the USB.
+ * @frnum: Frame Number (FrNum)
+ * This field increments when a new SOF is transmitted on the
+ * USB, and is reset to 0 when it reaches 16'h3FFF.
+ */
+ struct cvmx_usbcx_hfnum_s {
+ __BITFIELD_FIELD(u32 frrem : 16,
+ __BITFIELD_FIELD(u32 frnum : 16,
+ ;))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_hprt
+ *
+ * Host Port Control and Status Register (HPRT)
+ *
+ * This register is available in both Host and Device modes.
+ * Currently, the OTG Host supports only one port.
+ * A single register holds USB port-related information such as USB reset,
+ * enable, suspend, resume, connect status, and test mode for each port. The
+ * R_SS_WC bits in this register can trigger an interrupt to the application
+ * through the Host Port Interrupt bit of the Core Interrupt register
+ * (GINTSTS.PrtInt). On a Port Interrupt, the application must read this
+ * register and clear the bit that caused the interrupt. For the R_SS_WC bits,
+ * the application must write a 1 to the bit to clear the interrupt.
+ */
+union cvmx_usbcx_hprt {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_hprt_s
+ * @prtspd: Port Speed (PrtSpd)
+ * Indicates the speed of the device attached to this port.
+ * * 2'b00: High speed
+ * * 2'b01: Full speed
+ * * 2'b10: Low speed
+ * * 2'b11: Reserved
+ * @prttstctl: Port Test Control (PrtTstCtl)
+ * The application writes a nonzero value to this field to put
+ * the port into a Test mode, and the corresponding pattern is
+ * signaled on the port.
+ * * 4'b0000: Test mode disabled
+ * * 4'b0001: Test_J mode
+ * * 4'b0010: Test_K mode
+ * * 4'b0011: Test_SE0_NAK mode
+ * * 4'b0100: Test_Packet mode
+ * * 4'b0101: Test_Force_Enable
+ * * Others: Reserved
+ * PrtSpd must be zero (i.e. the interface must be in high-speed
+ * mode) to use the PrtTstCtl test modes.
+ * @prtpwr: Port Power (PrtPwr)
+ * The application uses this field to control power to this port,
+ * and the core clears this bit on an overcurrent condition.
+ * * 1'b0: Power off
+ * * 1'b1: Power on
+ * @prtlnsts: Port Line Status (PrtLnSts)
+ * Indicates the current logic level USB data lines
+ * * Bit [10]: Logic level of D-
+ * * Bit [11]: Logic level of D+
+ * @prtrst: Port Reset (PrtRst)
+ * When the application sets this bit, a reset sequence is
+ * started on this port. The application must time the reset
+ * period and clear this bit after the reset sequence is
+ * complete.
+ * * 1'b0: Port not in reset
+ * * 1'b1: Port in reset
+ * The application must leave this bit set for at least a
+ * minimum duration mentioned below to start a reset on the
+ * port. The application can leave it set for another 10 ms in
+ * addition to the required minimum duration, before clearing
+ * the bit, even though there is no maximum limit set by the
+ * USB standard.
+ * * High speed: 50 ms
+ * * Full speed/Low speed: 10 ms
+ * @prtsusp: Port Suspend (PrtSusp)
+ * The application sets this bit to put this port in Suspend
+ * mode. The core only stops sending SOFs when this is set.
+ * To stop the PHY clock, the application must set the Port
+ * Clock Stop bit, which will assert the suspend input pin of
+ * the PHY.
+ * The read value of this bit reflects the current suspend
+ * status of the port. This bit is cleared by the core after a
+ * remote wakeup signal is detected or the application sets
+ * the Port Reset bit or Port Resume bit in this register or the
+ * Resume/Remote Wakeup Detected Interrupt bit or
+ * Disconnect Detected Interrupt bit in the Core Interrupt
+ * register (GINTSTS.WkUpInt or GINTSTS.DisconnInt,
+ * respectively).
+ * * 1'b0: Port not in Suspend mode
+ * * 1'b1: Port in Suspend mode
+ * @prtres: Port Resume (PrtRes)
+ * The application sets this bit to drive resume signaling on
+ * the port. The core continues to drive the resume signal
+ * until the application clears this bit.
+ * If the core detects a USB remote wakeup sequence, as
+ * indicated by the Port Resume/Remote Wakeup Detected
+ * Interrupt bit of the Core Interrupt register
+ * (GINTSTS.WkUpInt), the core starts driving resume
+ * signaling without application intervention and clears this bit
+ * when it detects a disconnect condition. The read value of
+ * this bit indicates whether the core is currently driving
+ * resume signaling.
+ * * 1'b0: No resume driven
+ * * 1'b1: Resume driven
+ * @prtovrcurrchng: Port Overcurrent Change (PrtOvrCurrChng)
+ * The core sets this bit when the status of the Port
+ * Overcurrent Active bit (bit 4) in this register changes.
+ * @prtovrcurract: Port Overcurrent Active (PrtOvrCurrAct)
+ * Indicates the overcurrent condition of the port.
+ * * 1'b0: No overcurrent condition
+ * * 1'b1: Overcurrent condition
+ * @prtenchng: Port Enable/Disable Change (PrtEnChng)
+ * The core sets this bit when the status of the Port Enable bit
+ * [2] of this register changes.
+ * @prtena: Port Enable (PrtEna)
+ * A port is enabled only by the core after a reset sequence,
+ * and is disabled by an overcurrent condition, a disconnect
+ * condition, or by the application clearing this bit. The
+ * application cannot set this bit by a register write. It can only
+ * clear it to disable the port. This bit does not trigger any
+ * interrupt to the application.
+ * * 1'b0: Port disabled
+ * * 1'b1: Port enabled
+ * @prtconndet: Port Connect Detected (PrtConnDet)
+ * The core sets this bit when a device connection is detected
+ * to trigger an interrupt to the application using the Host Port
+ * Interrupt bit of the Core Interrupt register (GINTSTS.PrtInt).
+ * The application must write a 1 to this bit to clear the
+ * interrupt.
+ * @prtconnsts: Port Connect Status (PrtConnSts)
+ * * 0: No device is attached to the port.
+ * * 1: A device is attached to the port.
+ */
+ struct cvmx_usbcx_hprt_s {
+ __BITFIELD_FIELD(u32 reserved_19_31 : 13,
+ __BITFIELD_FIELD(u32 prtspd : 2,
+ __BITFIELD_FIELD(u32 prttstctl : 4,
+ __BITFIELD_FIELD(u32 prtpwr : 1,
+ __BITFIELD_FIELD(u32 prtlnsts : 2,
+ __BITFIELD_FIELD(u32 reserved_9_9 : 1,
+ __BITFIELD_FIELD(u32 prtrst : 1,
+ __BITFIELD_FIELD(u32 prtsusp : 1,
+ __BITFIELD_FIELD(u32 prtres : 1,
+ __BITFIELD_FIELD(u32 prtovrcurrchng : 1,
+ __BITFIELD_FIELD(u32 prtovrcurract : 1,
+ __BITFIELD_FIELD(u32 prtenchng : 1,
+ __BITFIELD_FIELD(u32 prtena : 1,
+ __BITFIELD_FIELD(u32 prtconndet : 1,
+ __BITFIELD_FIELD(u32 prtconnsts : 1,
+ ;)))))))))))))))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_hptxfsiz
+ *
+ * Host Periodic Transmit FIFO Size Register (HPTXFSIZ)
+ *
+ * This register holds the size and the memory start address of the Periodic
+ * TxFIFO, as shown in Figures 310 and 311.
+ */
+union cvmx_usbcx_hptxfsiz {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_hptxfsiz_s
+ * @ptxfsize: Host Periodic TxFIFO Depth (PTxFSize)
+ * This value is in terms of 32-bit words.
+ * * Minimum value is 16
+ * * Maximum value is 32768
+ * @ptxfstaddr: Host Periodic TxFIFO Start Address (PTxFStAddr)
+ */
+ struct cvmx_usbcx_hptxfsiz_s {
+ __BITFIELD_FIELD(u32 ptxfsize : 16,
+ __BITFIELD_FIELD(u32 ptxfstaddr : 16,
+ ;))
+ } s;
+};
+
+/**
+ * cvmx_usbc#_hptxsts
+ *
+ * Host Periodic Transmit FIFO/Queue Status Register (HPTXSTS)
+ *
+ * This read-only register contains the free space information for the Periodic
+ * TxFIFO and the Periodic Transmit Request Queue
+ */
+union cvmx_usbcx_hptxsts {
+ u32 u32;
+ /**
+ * struct cvmx_usbcx_hptxsts_s
+ * @ptxqtop: Top of the Periodic Transmit Request Queue (PTxQTop)
+ * This indicates the entry in the Periodic Tx Request Queue that
+ * is currently being processes by the MAC.
+ * This register is used for debugging.
+ * * Bit [31]: Odd/Even (micro)frame
+ * - 1'b0: send in even (micro)frame
+ * - 1'b1: send in odd (micro)frame
+ * * Bits [30:27]: Channel/endpoint number
+ * * Bits [26:25]: Type
+ * - 2'b00: IN/OUT
+ * - 2'b01: Zero-length packet
+ * - 2'b10: CSPLIT
+ * - 2'b11: Disable channel command
+ * * Bit [24]: Terminate (last entry for the selected
+ * channel/endpoint)
+ * @ptxqspcavail: Periodic Transmit Request Queue Space Available
+ * (PTxQSpcAvail)
+ * Indicates the number of free locations available to be written
+ * in the Periodic Transmit Request Queue. This queue holds both
+ * IN and OUT requests.
+ * * 8'h0: Periodic Transmit Request Queue is full
+ * * 8'h1: 1 location available
+ * * 8'h2: 2 locations available
+ * * n: n locations available (0..8)
+ * * Others: Reserved
+ * @ptxfspcavail: Periodic Transmit Data FIFO Space Available
+ * (PTxFSpcAvail)
+ * Indicates the number of free locations available to be written
+ * to in the Periodic TxFIFO.
+ * Values are in terms of 32-bit words
+ * * 16'h0: Periodic TxFIFO is full
+ * * 16'h1: 1 word available
+ * * 16'h2: 2 words available
+ * * 16'hn: n words available (where 0..32768)
+ * * 16'h8000: 32768 words available
+ * * Others: Reserved
+ */
+ struct cvmx_usbcx_hptxsts_s {
+ __BITFIELD_FIELD(u32 ptxqtop : 8,
+ __BITFIELD_FIELD(u32 ptxqspcavail : 8,
+ __BITFIELD_FIELD(u32 ptxfspcavail : 16,
+ ;)))
+ } s;
+};
+
+/**
+ * cvmx_usbn#_clk_ctl
+ *
+ * USBN_CLK_CTL = USBN's Clock Control
+ *
+ * This register is used to control the frequency of the hclk and the
+ * hreset and phy_rst signals.
+ */
+union cvmx_usbnx_clk_ctl {
+ u64 u64;
+ /**
+ * struct cvmx_usbnx_clk_ctl_s
+ * @divide2: The 'hclk' used by the USB subsystem is derived
+ * from the eclk.
+ * Also see the field DIVIDE. DIVIDE2<1> must currently
+ * be zero because it is not implemented, so the maximum
+ * ratio of eclk/hclk is currently 16.
+ * The actual divide number for hclk is:
+ * (DIVIDE2 + 1) * (DIVIDE + 1)
+ * @hclk_rst: When this field is '0' the HCLK-DIVIDER used to
+ * generate the hclk in the USB Subsystem is held
+ * in reset. This bit must be set to '0' before
+ * changing the value os DIVIDE in this register.
+ * The reset to the HCLK_DIVIDERis also asserted
+ * when core reset is asserted.
+ * @p_x_on: Force USB-PHY on during suspend.
+ * '1' USB-PHY XO block is powered-down during
+ * suspend.
+ * '0' USB-PHY XO block is powered-up during
+ * suspend.
+ * The value of this field must be set while POR is
+ * active.
+ * @p_rtype: PHY reference clock type
+ * On CN50XX/CN52XX/CN56XX the values are:
+ * '0' The USB-PHY uses a 12MHz crystal as a clock source
+ * at the USB_XO and USB_XI pins.
+ * '1' Reserved.
+ * '2' The USB_PHY uses 12/24/48MHz 2.5V board clock at the
+ * USB_XO pin. USB_XI should be tied to ground in this
+ * case.
+ * '3' Reserved.
+ * On CN3xxx bits 14 and 15 are p_xenbn and p_rclk and values are:
+ * '0' Reserved.
+ * '1' Reserved.
+ * '2' The PHY PLL uses the XO block output as a reference.
+ * The XO block uses an external clock supplied on the
+ * XO pin. USB_XI should be tied to ground for this
+ * usage.
+ * '3' The XO block uses the clock from a crystal.
+ * @p_com_on: '0' Force USB-PHY XO Bias, Bandgap and PLL to
+ * remain powered in Suspend Mode.
+ * '1' The USB-PHY XO Bias, Bandgap and PLL are
+ * powered down in suspend mode.
+ * The value of this field must be set while POR is
+ * active.
+ * @p_c_sel: Phy clock speed select.
+ * Selects the reference clock / crystal frequency.
+ * '11': Reserved
+ * '10': 48 MHz (reserved when a crystal is used)
+ * '01': 24 MHz (reserved when a crystal is used)
+ * '00': 12 MHz
+ * The value of this field must be set while POR is
+ * active.
+ * NOTE: if a crystal is used as a reference clock,
+ * this field must be set to 12 MHz.
+ * @cdiv_byp: Used to enable the bypass input to the USB_CLK_DIV.
+ * @sd_mode: Scaledown mode for the USBC. Control timing events
+ * in the USBC, for normal operation this must be '0'.
+ * @s_bist: Starts bist on the hclk memories, during the '0'
+ * to '1' transition.
+ * @por: Power On Reset for the PHY.
+ * Resets all the PHYS registers and state machines.
+ * @enable: When '1' allows the generation of the hclk. When
+ * '0' the hclk will not be generated. SEE DIVIDE
+ * field of this register.
+ * @prst: When this field is '0' the reset associated with
+ * the phy_clk functionality in the USB Subsystem is
+ * help in reset. This bit should not be set to '1'
+ * until the time it takes 6 clocks (hclk or phy_clk,
+ * whichever is slower) has passed. Under normal
+ * operation once this bit is set to '1' it should not
+ * be set to '0'.
+ * @hrst: When this field is '0' the reset associated with
+ * the hclk functioanlity in the USB Subsystem is
+ * held in reset.This bit should not be set to '1'
+ * until 12ms after phy_clk is stable. Under normal
+ * operation, once this bit is set to '1' it should
+ * not be set to '0'.
+ * @divide: The frequency of 'hclk' used by the USB subsystem
+ * is the eclk frequency divided by the value of
+ * (DIVIDE2 + 1) * (DIVIDE + 1), also see the field
+ * DIVIDE2 of this register.
+ * The hclk frequency should be less than 125Mhz.
+ * After writing a value to this field the SW should
+ * read the field for the value written.
+ * The ENABLE field of this register should not be set
+ * until AFTER this field is set and then read.
+ */
+ struct cvmx_usbnx_clk_ctl_s {
+ __BITFIELD_FIELD(u64 reserved_20_63 : 44,
+ __BITFIELD_FIELD(u64 divide2 : 2,
+ __BITFIELD_FIELD(u64 hclk_rst : 1,
+ __BITFIELD_FIELD(u64 p_x_on : 1,
+ __BITFIELD_FIELD(u64 p_rtype : 2,
+ __BITFIELD_FIELD(u64 p_com_on : 1,
+ __BITFIELD_FIELD(u64 p_c_sel : 2,
+ __BITFIELD_FIELD(u64 cdiv_byp : 1,
+ __BITFIELD_FIELD(u64 sd_mode : 2,
+ __BITFIELD_FIELD(u64 s_bist : 1,
+ __BITFIELD_FIELD(u64 por : 1,
+ __BITFIELD_FIELD(u64 enable : 1,
+ __BITFIELD_FIELD(u64 prst : 1,
+ __BITFIELD_FIELD(u64 hrst : 1,
+ __BITFIELD_FIELD(u64 divide : 3,
+ ;)))))))))))))))
+ } s;
+};
+
+/**
+ * cvmx_usbn#_usbp_ctl_status
+ *
+ * USBN_USBP_CTL_STATUS = USBP Control And Status Register
+ *
+ * Contains general control and status information for the USBN block.
+ */
+union cvmx_usbnx_usbp_ctl_status {
+ u64 u64;
+ /**
+ * struct cvmx_usbnx_usbp_ctl_status_s
+ * @txrisetune: HS Transmitter Rise/Fall Time Adjustment
+ * @txvreftune: HS DC Voltage Level Adjustment
+ * @txfslstune: FS/LS Source Impedance Adjustment
+ * @txhsxvtune: Transmitter High-Speed Crossover Adjustment
+ * @sqrxtune: Squelch Threshold Adjustment
+ * @compdistune: Disconnect Threshold Adjustment
+ * @otgtune: VBUS Valid Threshold Adjustment
+ * @otgdisable: OTG Block Disable
+ * @portreset: Per_Port Reset
+ * @drvvbus: Drive VBUS
+ * @lsbist: Low-Speed BIST Enable.
+ * @fsbist: Full-Speed BIST Enable.
+ * @hsbist: High-Speed BIST Enable.
+ * @bist_done: PHY Bist Done.
+ * Asserted at the end of the PHY BIST sequence.
+ * @bist_err: PHY Bist Error.
+ * Indicates an internal error was detected during
+ * the BIST sequence.
+ * @tdata_out: PHY Test Data Out.
+ * Presents either internally generated signals or
+ * test register contents, based upon the value of
+ * test_data_out_sel.
+ * @siddq: Drives the USBP (USB-PHY) SIDDQ input.
+ * Normally should be set to zero.
+ * When customers have no intent to use USB PHY
+ * interface, they should:
+ * - still provide 3.3V to USB_VDD33, and
+ * - tie USB_REXT to 3.3V supply, and
+ * - set USBN*_USBP_CTL_STATUS[SIDDQ]=1
+ * @txpreemphasistune: HS Transmitter Pre-Emphasis Enable
+ * @dma_bmode: When set to 1 the L2C DMA address will be updated
+ * with byte-counts between packets. When set to 0
+ * the L2C DMA address is incremented to the next
+ * 4-byte aligned address after adding byte-count.
+ * @usbc_end: Bigendian input to the USB Core. This should be
+ * set to '0' for operation.
+ * @usbp_bist: PHY, This is cleared '0' to run BIST on the USBP.
+ * @tclk: PHY Test Clock, used to load TDATA_IN to the USBP.
+ * @dp_pulld: PHY DP_PULLDOWN input to the USB-PHY.
+ * This signal enables the pull-down resistance on
+ * the D+ line. '1' pull down-resistance is connected
+ * to D+/ '0' pull down resistance is not connected
+ * to D+. When an A/B device is acting as a host
+ * (downstream-facing port), dp_pulldown and
+ * dm_pulldown are enabled. This must not toggle
+ * during normal operation.
+ * @dm_pulld: PHY DM_PULLDOWN input to the USB-PHY.
+ * This signal enables the pull-down resistance on
+ * the D- line. '1' pull down-resistance is connected
+ * to D-. '0' pull down resistance is not connected
+ * to D-. When an A/B device is acting as a host
+ * (downstream-facing port), dp_pulldown and
+ * dm_pulldown are enabled. This must not toggle
+ * during normal operation.
+ * @hst_mode: When '0' the USB is acting as HOST, when '1'
+ * USB is acting as device. This field needs to be
+ * set while the USB is in reset.
+ * @tuning: Transmitter Tuning for High-Speed Operation.
+ * Tunes the current supply and rise/fall output
+ * times for high-speed operation.
+ * [20:19] == 11: Current supply increased
+ * approximately 9%
+ * [20:19] == 10: Current supply increased
+ * approximately 4.5%
+ * [20:19] == 01: Design default.
+ * [20:19] == 00: Current supply decreased
+ * approximately 4.5%
+ * [22:21] == 11: Rise and fall times are increased.
+ * [22:21] == 10: Design default.
+ * [22:21] == 01: Rise and fall times are decreased.
+ * [22:21] == 00: Rise and fall times are decreased
+ * further as compared to the 01 setting.
+ * @tx_bs_enh: Transmit Bit Stuffing on [15:8].
+ * Enables or disables bit stuffing on data[15:8]
+ * when bit-stuffing is enabled.
+ * @tx_bs_en: Transmit Bit Stuffing on [7:0].
+ * Enables or disables bit stuffing on data[7:0]
+ * when bit-stuffing is enabled.
+ * @loop_enb: PHY Loopback Test Enable.
+ * '1': During data transmission the receive is
+ * enabled.
+ * '0': During data transmission the receive is
+ * disabled.
+ * Must be '0' for normal operation.
+ * @vtest_enb: Analog Test Pin Enable.
+ * '1' The PHY's analog_test pin is enabled for the
+ * input and output of applicable analog test signals.
+ * '0' THe analog_test pin is disabled.
+ * @bist_enb: Built-In Self Test Enable.
+ * Used to activate BIST in the PHY.
+ * @tdata_sel: Test Data Out Select.
+ * '1' test_data_out[3:0] (PHY) register contents
+ * are output. '0' internally generated signals are
+ * output.
+ * @taddr_in: Mode Address for Test Interface.
+ * Specifies the register address for writing to or
+ * reading from the PHY test interface register.
+ * @tdata_in: Internal Testing Register Input Data and Select
+ * This is a test bus. Data is present on [3:0],
+ * and its corresponding select (enable) is present
+ * on bits [7:4].
+ * @ate_reset: Reset input from automatic test equipment.
+ * This is a test signal. When the USB Core is
+ * powered up (not in Susned Mode), an automatic
+ * tester can use this to disable phy_clock and
+ * free_clk, then re-enable them with an aligned
+ * phase.
+ * '1': The phy_clk and free_clk outputs are
+ * disabled. "0": The phy_clock and free_clk outputs
+ * are available within a specific period after the
+ * de-assertion.
+ */
+ struct cvmx_usbnx_usbp_ctl_status_s {
+ __BITFIELD_FIELD(u64 txrisetune : 1,
+ __BITFIELD_FIELD(u64 txvreftune : 4,
+ __BITFIELD_FIELD(u64 txfslstune : 4,
+ __BITFIELD_FIELD(u64 txhsxvtune : 2,
+ __BITFIELD_FIELD(u64 sqrxtune : 3,
+ __BITFIELD_FIELD(u64 compdistune : 3,
+ __BITFIELD_FIELD(u64 otgtune : 3,
+ __BITFIELD_FIELD(u64 otgdisable : 1,
+ __BITFIELD_FIELD(u64 portreset : 1,
+ __BITFIELD_FIELD(u64 drvvbus : 1,
+ __BITFIELD_FIELD(u64 lsbist : 1,
+ __BITFIELD_FIELD(u64 fsbist : 1,
+ __BITFIELD_FIELD(u64 hsbist : 1,
+ __BITFIELD_FIELD(u64 bist_done : 1,
+ __BITFIELD_FIELD(u64 bist_err : 1,
+ __BITFIELD_FIELD(u64 tdata_out : 4,
+ __BITFIELD_FIELD(u64 siddq : 1,
+ __BITFIELD_FIELD(u64 txpreemphasistune : 1,
+ __BITFIELD_FIELD(u64 dma_bmode : 1,
+ __BITFIELD_FIELD(u64 usbc_end : 1,
+ __BITFIELD_FIELD(u64 usbp_bist : 1,
+ __BITFIELD_FIELD(u64 tclk : 1,
+ __BITFIELD_FIELD(u64 dp_pulld : 1,
+ __BITFIELD_FIELD(u64 dm_pulld : 1,
+ __BITFIELD_FIELD(u64 hst_mode : 1,
+ __BITFIELD_FIELD(u64 tuning : 4,
+ __BITFIELD_FIELD(u64 tx_bs_enh : 1,
+ __BITFIELD_FIELD(u64 tx_bs_en : 1,
+ __BITFIELD_FIELD(u64 loop_enb : 1,
+ __BITFIELD_FIELD(u64 vtest_enb : 1,
+ __BITFIELD_FIELD(u64 bist_enb : 1,
+ __BITFIELD_FIELD(u64 tdata_sel : 1,
+ __BITFIELD_FIELD(u64 taddr_in : 4,
+ __BITFIELD_FIELD(u64 tdata_in : 8,
+ __BITFIELD_FIELD(u64 ate_reset : 1,
+ ;)))))))))))))))))))))))))))))))))))
+ } s;
+};
+
+#endif /* __OCTEON_HCD_H__ */