const sift_wt* currptr = img.ptr<sift_wt>(r);
const sift_wt* prevptr = prev.ptr<sift_wt>(r);
const sift_wt* nextptr = next.ptr<sift_wt>(r);
+ int c = SIFT_IMG_BORDER;
- for( int c = SIFT_IMG_BORDER; c < cols-SIFT_IMG_BORDER; c++)
+#if CV_SIMD && !(DoG_TYPE_SHORT)
+ const int vecsize = v_float32::nlanes;
+ for( ; c <= cols-SIFT_IMG_BORDER - vecsize; c += vecsize)
+ {
+ v_float32 val = vx_load(&currptr[c]);
+ v_float32 _00,_01,_02;
+ v_float32 _10, _12;
+ v_float32 _20,_21,_22;
+
+ v_float32 vmin,vmax;
+
+
+ v_float32 cond = v_abs(val) > vx_setall_f32((float)threshold);
+ if (!v_check_any(cond))
+ {
+ continue;
+ }
+
+ _00 = vx_load(&currptr[c-step-1]); _01 = vx_load(&currptr[c-step]); _02 = vx_load(&currptr[c-step+1]);
+ _10 = vx_load(&currptr[c -1]); _12 = vx_load(&currptr[c +1]);
+ _20 = vx_load(&currptr[c+step-1]); _21 = vx_load(&currptr[c+step]); _22 = vx_load(&currptr[c+step+1]);
+
+ vmax = v_max(v_max(v_max(_00,_01),v_max(_02,_10)),v_max(v_max(_12,_20),v_max(_21,_22)));
+ vmin = v_min(v_min(v_min(_00,_01),v_min(_02,_10)),v_min(v_min(_12,_20),v_min(_21,_22)));
+
+ v_float32 condp = cond & (val > vx_setall_f32(0)) & (val >= vmax);
+ v_float32 condm = cond & (val < vx_setall_f32(0)) & (val <= vmin);
+
+ cond = condp | condm;
+ if (!v_check_any(cond))
+ {
+ continue;
+ }
+
+ _00 = vx_load(&prevptr[c-step-1]); _01 = vx_load(&prevptr[c-step]); _02 = vx_load(&prevptr[c-step+1]);
+ _10 = vx_load(&prevptr[c -1]); _12 = vx_load(&prevptr[c +1]);
+ _20 = vx_load(&prevptr[c+step-1]); _21 = vx_load(&prevptr[c+step]); _22 = vx_load(&prevptr[c+step+1]);
+
+ vmax = v_max(v_max(v_max(_00,_01),v_max(_02,_10)),v_max(v_max(_12,_20),v_max(_21,_22)));
+ vmin = v_min(v_min(v_min(_00,_01),v_min(_02,_10)),v_min(v_min(_12,_20),v_min(_21,_22)));
+
+ condp &= (val >= vmax);
+ condm &= (val <= vmin);
+
+ cond = condp | condm;
+ if (!v_check_any(cond))
+ {
+ continue;
+ }
+
+ v_float32 _11p = vx_load(&prevptr[c]);
+ v_float32 _11n = vx_load(&nextptr[c]);
+
+ v_float32 max_middle = v_max(_11n,_11p);
+ v_float32 min_middle = v_min(_11n,_11p);
+
+ _00 = vx_load(&nextptr[c-step-1]); _01 = vx_load(&nextptr[c-step]); _02 = vx_load(&nextptr[c-step+1]);
+ _10 = vx_load(&nextptr[c -1]); _12 = vx_load(&nextptr[c +1]);
+ _20 = vx_load(&nextptr[c+step-1]); _21 = vx_load(&nextptr[c+step]); _22 = vx_load(&nextptr[c+step+1]);
+
+ vmax = v_max(v_max(v_max(_00,_01),v_max(_02,_10)),v_max(v_max(_12,_20),v_max(_21,_22)));
+ vmin = v_min(v_min(v_min(_00,_01),v_min(_02,_10)),v_min(v_min(_12,_20),v_min(_21,_22)));
+
+ condp &= (val >= v_max(vmax,max_middle));
+ condm &= (val <= v_min(vmin,min_middle));
+
+ cond = condp | condm;
+ if (!v_check_any(cond))
+ {
+ continue;
+ }
+
+ int mask = v_signmask(cond);
+ for (int k = 0; k<vecsize;k++)
+ {
+ if ((mask & (1<<k)) == 0)
+ continue;
+
+ CV_TRACE_REGION("pixel_candidate_simd");
+
+ KeyPoint kpt;
+ int r1 = r, c1 = c+k, layer = i;
+ if( !adjustLocalExtrema(dog_pyr, kpt, o, layer, r1, c1,
+ nOctaveLayers, (float)contrastThreshold,
+ (float)edgeThreshold, (float)sigma) )
+ continue;
+ float scl_octv = kpt.size*0.5f/(1 << o);
+ float omax = calcOrientationHist(gauss_pyr[o*(nOctaveLayers+3) + layer],
+ Point(c1, r1),
+ cvRound(SIFT_ORI_RADIUS * scl_octv),
+ SIFT_ORI_SIG_FCTR * scl_octv,
+ hist, n);
+ float mag_thr = (float)(omax * SIFT_ORI_PEAK_RATIO);
+ for( int j = 0; j < n; j++ )
+ {
+ int l = j > 0 ? j - 1 : n - 1;
+ int r2 = j < n-1 ? j + 1 : 0;
+
+ if( hist[j] > hist[l] && hist[j] > hist[r2] && hist[j] >= mag_thr )
+ {
+ float bin = j + 0.5f * (hist[l]-hist[r2]) / (hist[l] - 2*hist[j] + hist[r2]);
+ bin = bin < 0 ? n + bin : bin >= n ? bin - n : bin;
+ kpt.angle = 360.f - (float)((360.f/n) * bin);
+ if(std::abs(kpt.angle - 360.f) < FLT_EPSILON)
+ kpt.angle = 0.f;
+
+ kpts_.push_back(kpt);
+ }
+ }
+ }
+ }
+
+#endif //CV_SIMD && !(DoG_TYPE_SHORT)
+
+ // vector loop reminder, better predictibility and less branch density
+ for( ; c < cols-SIFT_IMG_BORDER; c++)
{
sift_wt val = currptr[c];
+ if (std::abs(val) <= threshold)
+ continue;
+
+ sift_wt _00,_01,_02;
+ sift_wt _10, _12;
+ sift_wt _20,_21,_22;
+ _00 = currptr[c-step-1]; _01 = currptr[c-step]; _02 = currptr[c-step+1];
+ _10 = currptr[c -1]; _12 = currptr[c +1];
+ _20 = currptr[c+step-1]; _21 = currptr[c+step]; _22 = currptr[c+step+1];
+
+ bool calculate = false;
+ if (val > 0)
+ {
+ sift_wt vmax = std::max(std::max(std::max(_00,_01),std::max(_02,_10)),std::max(std::max(_12,_20),std::max(_21,_22)));
+ if (val >= vmax)
+ {
+ _00 = prevptr[c-step-1]; _01 = prevptr[c-step]; _02 = prevptr[c-step+1];
+ _10 = prevptr[c -1]; _12 = prevptr[c +1];
+ _20 = prevptr[c+step-1]; _21 = prevptr[c+step]; _22 = prevptr[c+step+1];
+ vmax = std::max(std::max(std::max(_00,_01),std::max(_02,_10)),std::max(std::max(_12,_20),std::max(_21,_22)));
+ if (val >= vmax)
+ {
+ _00 = nextptr[c-step-1]; _01 = nextptr[c-step]; _02 = nextptr[c-step+1];
+ _10 = nextptr[c -1]; _12 = nextptr[c +1];
+ _20 = nextptr[c+step-1]; _21 = nextptr[c+step]; _22 = nextptr[c+step+1];
+ vmax = std::max(std::max(std::max(_00,_01),std::max(_02,_10)),std::max(std::max(_12,_20),std::max(_21,_22)));
+ if (val >= vmax)
+ {
+ sift_wt _11p = prevptr[c], _11n = nextptr[c];
+ calculate = (val >= std::max(_11p,_11n));
+ }
+ }
+ }
+
+ } else { // val cant be zero here (first abs took care of zero), must be negative
+ sift_wt vmin = std::min(std::min(std::min(_00,_01),std::min(_02,_10)),std::min(std::min(_12,_20),std::min(_21,_22)));
+ if (val <= vmin)
+ {
+ _00 = prevptr[c-step-1]; _01 = prevptr[c-step]; _02 = prevptr[c-step+1];
+ _10 = prevptr[c -1]; _12 = prevptr[c +1];
+ _20 = prevptr[c+step-1]; _21 = prevptr[c+step]; _22 = prevptr[c+step+1];
+ vmin = std::min(std::min(std::min(_00,_01),std::min(_02,_10)),std::min(std::min(_12,_20),std::min(_21,_22)));
+ if (val <= vmin)
+ {
+ _00 = nextptr[c-step-1]; _01 = nextptr[c-step]; _02 = nextptr[c-step+1];
+ _10 = nextptr[c -1]; _12 = nextptr[c +1];
+ _20 = nextptr[c+step-1]; _21 = nextptr[c+step]; _22 = nextptr[c+step+1];
+ vmin = std::min(std::min(std::min(_00,_01),std::min(_02,_10)),std::min(std::min(_12,_20),std::min(_21,_22)));
+ if (val <= vmin)
+ {
+ sift_wt _11p = prevptr[c], _11n = nextptr[c];
+ calculate = (val <= std::min(_11p,_11n));
+ }
+ }
+ }
+ }
- // find local extrema with pixel accuracy
- if( std::abs(val) > threshold &&
- ((val > 0 && val >= currptr[c-1] && val >= currptr[c+1] &&
- val >= currptr[c-step-1] && val >= currptr[c-step] && val >= currptr[c-step+1] &&
- val >= currptr[c+step-1] && val >= currptr[c+step] && val >= currptr[c+step+1] &&
- val >= nextptr[c] && val >= nextptr[c-1] && val >= nextptr[c+1] &&
- val >= nextptr[c-step-1] && val >= nextptr[c-step] && val >= nextptr[c-step+1] &&
- val >= nextptr[c+step-1] && val >= nextptr[c+step] && val >= nextptr[c+step+1] &&
- val >= prevptr[c] && val >= prevptr[c-1] && val >= prevptr[c+1] &&
- val >= prevptr[c-step-1] && val >= prevptr[c-step] && val >= prevptr[c-step+1] &&
- val >= prevptr[c+step-1] && val >= prevptr[c+step] && val >= prevptr[c+step+1]) ||
- (val < 0 && val <= currptr[c-1] && val <= currptr[c+1] &&
- val <= currptr[c-step-1] && val <= currptr[c-step] && val <= currptr[c-step+1] &&
- val <= currptr[c+step-1] && val <= currptr[c+step] && val <= currptr[c+step+1] &&
- val <= nextptr[c] && val <= nextptr[c-1] && val <= nextptr[c+1] &&
- val <= nextptr[c-step-1] && val <= nextptr[c-step] && val <= nextptr[c-step+1] &&
- val <= nextptr[c+step-1] && val <= nextptr[c+step] && val <= nextptr[c+step+1] &&
- val <= prevptr[c] && val <= prevptr[c-1] && val <= prevptr[c+1] &&
- val <= prevptr[c-step-1] && val <= prevptr[c-step] && val <= prevptr[c-step+1] &&
- val <= prevptr[c+step-1] && val <= prevptr[c+step] && val <= prevptr[c+step+1])))
+ if (calculate)
{
CV_TRACE_REGION("pixel_candidate");