if (id) {
dev_dbg(dev, "%s - got id\n", __FUNCTION__);
- error = usb_autoresume_device(udev, 1);
+ error = usb_autoresume_device(udev);
if (error)
return error;
} else
intf->condition = USB_INTERFACE_BOUND;
- usb_autosuspend_device(udev, 1);
+ usb_autosuspend_device(udev);
}
return error;
/* Autoresume for set_interface call below */
udev = interface_to_usbdev(intf);
- error = usb_autoresume_device(udev, 1);
+ error = usb_autoresume_device(udev);
/* release all urbs for this interface */
usb_disable_interface(interface_to_usbdev(intf), intf);
intf->needs_remote_wakeup = 0;
if (!error)
- usb_autosuspend_device(udev, 1);
+ usb_autosuspend_device(udev);
return 0;
}
return status;
}
+#ifdef CONFIG_USB_SUSPEND
+
/* Internal routine to check whether we may autosuspend a device. */
static int autosuspend_check(struct usb_device *udev)
{
return 0;
}
+#else
+
+#define autosuspend_check(udev) 0
+
+#endif
+
/**
* usb_suspend_both - suspend a USB device and its interfaces
* @udev: the usb_device to suspend
/* If the suspend succeeded, propagate it up the tree */
} else if (parent)
- usb_autosuspend_device(parent, 1);
+ usb_autosuspend_device(parent);
// dev_dbg(&udev->dev, "%s: status %d\n", __FUNCTION__, status);
return status;
/* Propagate the resume up the tree, if necessary */
if (udev->state == USB_STATE_SUSPENDED) {
if (parent) {
- status = usb_autoresume_device(parent, 1);
+ status = usb_autoresume_device(parent);
if (status == 0) {
status = usb_resume_device(udev);
if (status) {
- usb_autosuspend_device(parent, 1);
+ usb_autosuspend_device(parent);
/* It's possible usb_resume_device()
* failed after the port was
#ifdef CONFIG_USB_SUSPEND
+/* Internal routine to adjust a device's usage counter and change
+ * its autosuspend state.
+ */
+static int usb_autopm_do_device(struct usb_device *udev, int inc_usage_cnt)
+{
+ int status = 0;
+
+ usb_pm_lock(udev);
+ udev->pm_usage_cnt += inc_usage_cnt;
+ WARN_ON(udev->pm_usage_cnt < 0);
+ if (inc_usage_cnt >= 0 && udev->pm_usage_cnt > 0) {
+ udev->auto_pm = 1;
+ status = usb_resume_both(udev);
+ if (status != 0)
+ udev->pm_usage_cnt -= inc_usage_cnt;
+ } else if (inc_usage_cnt <= 0 && autosuspend_check(udev) == 0)
+ queue_delayed_work(ksuspend_usb_wq, &udev->autosuspend,
+ USB_AUTOSUSPEND_DELAY);
+ usb_pm_unlock(udev);
+ return status;
+}
+
/**
* usb_autosuspend_device - delayed autosuspend of a USB device and its interfaces
* @udev: the usb_device to autosuspend
- * @dec_usage_cnt: flag to decrement @udev's PM-usage counter
*
* This routine should be called when a core subsystem is finished using
* @udev and wants to allow it to autosuspend. Examples would be when
* @udev's device file in usbfs is closed or after a configuration change.
*
- * @dec_usage_cnt should be 1 if the subsystem previously incremented
- * @udev's usage counter (such as by passing 1 to usb_autoresume_device);
- * otherwise it should be 0.
- *
- * If the usage counter for @udev or any of its active interfaces is greater
- * than 0, the autosuspend request will not be queued. (If an interface
- * driver does not support autosuspend then its usage counter is permanently
- * positive.) Likewise, if an interface driver requires remote-wakeup
- * capability during autosuspend but remote wakeup is disabled, the
- * autosuspend will fail.
+ * @udev's usage counter is decremented. If it or any of the usage counters
+ * for an active interface is greater than 0, no autosuspend request will be
+ * queued. (If an interface driver does not support autosuspend then its
+ * usage counter is permanently positive.) Furthermore, if an interface
+ * driver requires remote-wakeup capability during autosuspend but remote
+ * wakeup is disabled, the autosuspend will fail.
*
* Often the caller will hold @udev's device lock, but this is not
* necessary.
*
* This routine can run only in process context.
*/
-void usb_autosuspend_device(struct usb_device *udev, int dec_usage_cnt)
+void usb_autosuspend_device(struct usb_device *udev)
{
- usb_pm_lock(udev);
- udev->pm_usage_cnt -= dec_usage_cnt;
- if (autosuspend_check(udev) == 0)
- queue_delayed_work(ksuspend_usb_wq, &udev->autosuspend,
- USB_AUTOSUSPEND_DELAY);
- usb_pm_unlock(udev);
+ int status;
+
+ status = usb_autopm_do_device(udev, -1);
// dev_dbg(&udev->dev, "%s: cnt %d\n",
// __FUNCTION__, udev->pm_usage_cnt);
}
/**
* usb_autoresume_device - immediately autoresume a USB device and its interfaces
* @udev: the usb_device to autoresume
- * @inc_usage_cnt: flag to increment @udev's PM-usage counter
*
* This routine should be called when a core subsystem wants to use @udev
- * and needs to guarantee that it is not suspended. In addition, the
- * caller can prevent @udev from being autosuspended subsequently. (Note
- * that this will not prevent suspend events originating in the PM core.)
- * Examples would be when @udev's device file in usbfs is opened (autosuspend
- * should be prevented until the file is closed) or when a remote-wakeup
- * request is received (later autosuspends should not be prevented).
+ * and needs to guarantee that it is not suspended. No autosuspend will
+ * occur until usb_autosuspend_device is called. (Note that this will not
+ * prevent suspend events originating in the PM core.) Examples would be
+ * when @udev's device file in usbfs is opened or when a remote-wakeup
+ * request is received.
*
- * @inc_usage_cnt should be 1 to increment @udev's usage counter and prevent
- * autosuspends. This prevention will persist until the usage counter is
- * decremented again (such as by passing 1 to usb_autosuspend_device).
- * Otherwise @inc_usage_cnt should be 0 to leave the usage counter unchanged.
- * Regardless, if the autoresume fails then the usage counter is not
- * incremented.
+ * @udev's usage counter is incremented to prevent subsequent autosuspends.
+ * However if the autoresume fails then the usage counter is re-decremented.
*
* Often the caller will hold @udev's device lock, but this is not
* necessary (and attempting it might cause deadlock).
*
* This routine can run only in process context.
*/
-int usb_autoresume_device(struct usb_device *udev, int inc_usage_cnt)
+int usb_autoresume_device(struct usb_device *udev)
{
int status;
- usb_pm_lock(udev);
- udev->pm_usage_cnt += inc_usage_cnt;
- udev->auto_pm = 1;
- status = usb_resume_both(udev);
- if (status != 0)
- udev->pm_usage_cnt -= inc_usage_cnt;
- usb_pm_unlock(udev);
+ status = usb_autopm_do_device(udev, 1);
// dev_dbg(&udev->dev, "%s: status %d cnt %d\n",
// __FUNCTION__, status, udev->pm_usage_cnt);
return status;