#define RangeVal 0x4160000000000000 /* asuint64 (0x1p23). */
static svfloat64_t NOINLINE
-special_case (svfloat64_t x, svfloat64_t y, svbool_t out_of_bounds)
+special_case (svfloat64_t x, svfloat64_t y, svbool_t oob)
{
- return sv_call_f64 (cos, x, y, out_of_bounds);
+ return sv_call_f64 (cos, x, y, oob);
}
/* A fast SVE implementation of cos based on trigonometric
{
const struct data *d = ptr_barrier (&data);
- svfloat64_t r = svabs_f64_x (pg, x);
- svbool_t out_of_bounds
- = svcmpge_n_u64 (pg, svreinterpret_u64_f64 (r), RangeVal);
+ svfloat64_t r = svabs_x (pg, x);
+ svbool_t oob = svcmpge (pg, svreinterpret_u64 (r), RangeVal);
/* Load some constants in quad-word chunks to minimise memory access. */
svbool_t ptrue = svptrue_b64 ();
- svfloat64_t invpio2_and_pio2_1 = svld1rq_f64 (ptrue, &d->inv_pio2);
- svfloat64_t pio2_23 = svld1rq_f64 (ptrue, &d->pio2_2);
+ svfloat64_t invpio2_and_pio2_1 = svld1rq (ptrue, &d->inv_pio2);
+ svfloat64_t pio2_23 = svld1rq (ptrue, &d->pio2_2);
/* n = rint(|x|/(pi/2)). */
- svfloat64_t q = svmla_lane_f64 (sv_f64 (d->shift), r, invpio2_and_pio2_1, 0);
- svfloat64_t n = svsub_n_f64_x (pg, q, d->shift);
+ svfloat64_t q = svmla_lane (sv_f64 (d->shift), r, invpio2_and_pio2_1, 0);
+ svfloat64_t n = svsub_x (pg, q, d->shift);
/* r = |x| - n*(pi/2) (range reduction into -pi/4 .. pi/4). */
- r = svmls_lane_f64 (r, n, invpio2_and_pio2_1, 1);
- r = svmls_lane_f64 (r, n, pio2_23, 0);
- r = svmls_lane_f64 (r, n, pio2_23, 1);
+ r = svmls_lane (r, n, invpio2_and_pio2_1, 1);
+ r = svmls_lane (r, n, pio2_23, 0);
+ r = svmls_lane (r, n, pio2_23, 1);
/* cos(r) poly approx. */
- svfloat64_t r2 = svtsmul_f64 (r, svreinterpret_u64_f64 (q));
+ svfloat64_t r2 = svtsmul (r, svreinterpret_u64 (q));
svfloat64_t y = sv_f64 (0.0);
- y = svtmad_f64 (y, r2, 7);
- y = svtmad_f64 (y, r2, 6);
- y = svtmad_f64 (y, r2, 5);
- y = svtmad_f64 (y, r2, 4);
- y = svtmad_f64 (y, r2, 3);
- y = svtmad_f64 (y, r2, 2);
- y = svtmad_f64 (y, r2, 1);
- y = svtmad_f64 (y, r2, 0);
+ y = svtmad (y, r2, 7);
+ y = svtmad (y, r2, 6);
+ y = svtmad (y, r2, 5);
+ y = svtmad (y, r2, 4);
+ y = svtmad (y, r2, 3);
+ y = svtmad (y, r2, 2);
+ y = svtmad (y, r2, 1);
+ y = svtmad (y, r2, 0);
/* Final multiplicative factor: 1.0 or x depending on bit #0 of q. */
- svfloat64_t f = svtssel_f64 (r, svreinterpret_u64_f64 (q));
- /* Apply factor. */
- y = svmul_f64_x (pg, f, y);
+ svfloat64_t f = svtssel (r, svreinterpret_u64 (q));
+
+ if (__glibc_unlikely (svptest_any (pg, oob)))
+ return special_case (x, svmul_x (svnot_z (pg, oob), y, f), oob);
- if (__glibc_unlikely (svptest_any (pg, out_of_bounds)))
- return special_case (x, y, out_of_bounds);
- return y;
+ /* Apply factor. */
+ return svmul_x (pg, f, y);
}
#define RangeVal 0x49800000 /* asuint32(0x1p20f). */
static svfloat32_t NOINLINE
-special_case (svfloat32_t x, svfloat32_t y, svbool_t out_of_bounds)
+special_case (svfloat32_t x, svfloat32_t y, svbool_t oob)
{
- return sv_call_f32 (cosf, x, y, out_of_bounds);
+ return sv_call_f32 (cosf, x, y, oob);
}
/* A fast SVE implementation of cosf based on trigonometric
{
const struct data *d = ptr_barrier (&data);
- svfloat32_t r = svabs_f32_x (pg, x);
- svbool_t out_of_bounds
- = svcmpge_n_u32 (pg, svreinterpret_u32_f32 (r), RangeVal);
+ svfloat32_t r = svabs_x (pg, x);
+ svbool_t oob = svcmpge (pg, svreinterpret_u32 (r), RangeVal);
/* Load some constants in quad-word chunks to minimise memory access. */
- svfloat32_t negpio2_and_invpio2
- = svld1rq_f32 (svptrue_b32 (), &d->neg_pio2_1);
+ svfloat32_t negpio2_and_invpio2 = svld1rq (svptrue_b32 (), &d->neg_pio2_1);
/* n = rint(|x|/(pi/2)). */
- svfloat32_t q
- = svmla_lane_f32 (sv_f32 (d->shift), r, negpio2_and_invpio2, 3);
- svfloat32_t n = svsub_n_f32_x (pg, q, d->shift);
+ svfloat32_t q = svmla_lane (sv_f32 (d->shift), r, negpio2_and_invpio2, 3);
+ svfloat32_t n = svsub_x (pg, q, d->shift);
/* r = |x| - n*(pi/2) (range reduction into -pi/4 .. pi/4). */
- r = svmla_lane_f32 (r, n, negpio2_and_invpio2, 0);
- r = svmla_lane_f32 (r, n, negpio2_and_invpio2, 1);
- r = svmla_lane_f32 (r, n, negpio2_and_invpio2, 2);
+ r = svmla_lane (r, n, negpio2_and_invpio2, 0);
+ r = svmla_lane (r, n, negpio2_and_invpio2, 1);
+ r = svmla_lane (r, n, negpio2_and_invpio2, 2);
/* Final multiplicative factor: 1.0 or x depending on bit #0 of q. */
- svfloat32_t f = svtssel_f32 (r, svreinterpret_u32_f32 (q));
+ svfloat32_t f = svtssel (r, svreinterpret_u32 (q));
/* cos(r) poly approx. */
- svfloat32_t r2 = svtsmul_f32 (r, svreinterpret_u32_f32 (q));
+ svfloat32_t r2 = svtsmul (r, svreinterpret_u32 (q));
svfloat32_t y = sv_f32 (0.0f);
- y = svtmad_f32 (y, r2, 4);
- y = svtmad_f32 (y, r2, 3);
- y = svtmad_f32 (y, r2, 2);
- y = svtmad_f32 (y, r2, 1);
- y = svtmad_f32 (y, r2, 0);
-
+ y = svtmad (y, r2, 4);
+ y = svtmad (y, r2, 3);
+ y = svtmad (y, r2, 2);
+ y = svtmad (y, r2, 1);
+ y = svtmad (y, r2, 0);
+
+ if (__glibc_unlikely (svptest_any (pg, oob)))
+ return special_case (x, svmul_x (svnot_z (pg, oob), f, y), oob);
/* Apply factor. */
- y = svmul_f32_x (pg, f, y);
-
- if (__glibc_unlikely (svptest_any (pg, out_of_bounds)))
- return special_case (x, y, out_of_bounds);
- return y;
+ return svmul_x (pg, f, y);
}