core: kmeans refactoring
authorAlexander Alekhin <alexander.alekhin@intel.com>
Mon, 22 Jan 2018 11:14:02 +0000 (14:14 +0300)
committerAlexander Alekhin <alexander.alekhin@intel.com>
Mon, 22 Jan 2018 11:26:41 +0000 (14:26 +0300)
- reduce scope of i,k,j variables
- use cv::AutoBuffer
- template<bool onlyDistance> class KMeansDistanceComputer
- eliminate manual unrolling: CV_ENABLE_UNROLLED

modules/core/src/kmeans.cpp

index 10c0874..cbf9e47 100644 (file)
@@ -10,7 +10,7 @@
 //                          License Agreement
 //                For Open Source Computer Vision Library
 //
-// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2000-2018, Intel Corporation, all rights reserved.
 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
 // Third party copyrights are property of their respective owners.
@@ -51,101 +51,91 @@ namespace cv
 
 static int CV_KMEANS_PARALLEL_GRANULARITY = (int)utils::getConfigurationParameterSizeT("OPENCV_KMEANS_PARALLEL_GRANULARITY", 1000);
 
-
-static void generateRandomCenter(const std::vector<Vec2f>& box, float* center, RNG& rng)
+static void generateRandomCenter(int dims, const Vec2f* box, float* center, RNG& rng)
 {
-    size_t j, dims = box.size();
     float margin = 1.f/dims;
-    for( j = 0; j < dims; j++ )
+    for (int j = 0; j < dims; j++)
         center[j] = ((float)rng*(1.f+margin*2.f)-margin)*(box[j][1] - box[j][0]) + box[j][0];
 }
 
 class KMeansPPDistanceComputer : public ParallelLoopBody
 {
 public:
-    KMeansPPDistanceComputer( float *_tdist2,
-                              const float *_data,
-                              const float *_dist,
-                              int _dims,
-                              size_t _step,
-                              size_t _stepci )
-        : tdist2(_tdist2),
-          data(_data),
-          dist(_dist),
-          dims(_dims),
-          step(_step),
-          stepci(_stepci) { }
+    KMeansPPDistanceComputer(float *tdist2_, const Mat& data_, const float *dist_, int ci_) :
+        tdist2(tdist2_), data(data_), dist(dist_), ci(ci_)
+    { }
 
     void operator()( const cv::Range& range ) const
     {
         CV_TRACE_FUNCTION();
         const int begin = range.start;
         const int end = range.end;
+        const int dims = data.cols;
 
-        for ( int i = begin; i<end; i++ )
+        for (int i = begin; i<end; i++)
         {
-            tdist2[i] = std::min(normL2Sqr(data + step*i, data + stepci, dims), dist[i]);
+            tdist2[i] = std::min(normL2Sqr(data.ptr<float>(i), data.ptr<float>(ci), dims), dist[i]);
         }
     }
 
 private:
-    KMeansPPDistanceComputer& operator=(const KMeansPPDistanceComputer&); // to quiet MSVC
+    KMeansPPDistanceComputer& operator=(const KMeansPPDistanceComputer&); // = delete
 
     float *tdist2;
-    const float *data;
+    const Mat& data;
     const float *dist;
-    const int dims;
-    const size_t step;
-    const size_t stepci;
+    const int ci;
 };
 
 /*
 k-means center initialization using the following algorithm:
 Arthur & Vassilvitskii (2007) k-means++: The Advantages of Careful Seeding
 */
-static void generateCentersPP(const Mat& _data, Mat& _out_centers,
+static void generateCentersPP(const Mat& data, Mat& _out_centers,
                               int K, RNG& rng, int trials)
 {
     CV_TRACE_FUNCTION();
-    int i, j, k, dims = _data.cols, N = _data.rows;
-    const float* data = _data.ptr<float>(0);
-    size_t step = _data.step/sizeof(data[0]);
-    std::vector<int> _centers(K);
+    const int dims = data.cols, N = data.rows;
+    cv::AutoBuffer<int, 64> _centers(K);
     int* centers = &_centers[0];
-    std::vector<float> _dist(N*3);
+    cv::AutoBuffer<float, 0> _dist(N*3);
     float* dist = &_dist[0], *tdist = dist + N, *tdist2 = tdist + N;
     double sum0 = 0;
 
     centers[0] = (unsigned)rng % N;
 
-    for( i = 0; i < N; i++ )
+    for (int i = 0; i < N; i++)
     {
-        dist[i] = normL2Sqr(data + step*i, data + step*centers[0], dims);
+        dist[i] = normL2Sqr(data.ptr<float>(i), data.ptr<float>(centers[0]), dims);
         sum0 += dist[i];
     }
 
-    for( k = 1; k < K; k++ )
+    for (int k = 1; k < K; k++)
     {
         double bestSum = DBL_MAX;
         int bestCenter = -1;
 
-        for( j = 0; j < trials; j++ )
+        for (int j = 0; j < trials; j++)
         {
-            double p = (double)rng*sum0, s = 0;
-            for( i = 0; i < N-1; i++ )
-                if( (p -= dist[i]) <= 0 )
+            double p = (double)rng*sum0;
+            int ci = 0;
+            for (; ci < N - 1; ci++)
+            {
+                p -= dist[ci];
+                if (p <= 0)
                     break;
-            int ci = i;
+            }
 
             parallel_for_(Range(0, N),
-                          KMeansPPDistanceComputer(tdist2, data, dist, dims, step, step*ci),
+                          KMeansPPDistanceComputer(tdist2, data, dist, ci),
                           divUp(dims * N, CV_KMEANS_PARALLEL_GRANULARITY));
-            for( i = 0; i < N; i++ )
+            double s = 0;
+            for (int i = 0; i < N; i++)
             {
                 s += tdist2[i];
             }
 
-            if( s < bestSum )
+            if (s < bestSum)
             {
                 bestSum = s;
                 bestCenter = ci;
@@ -157,39 +147,39 @@ static void generateCentersPP(const Mat& _data, Mat& _out_centers,
         std::swap(dist, tdist);
     }
 
-    for( k = 0; k < K; k++ )
+    for (int k = 0; k < K; k++)
     {
-        const float* src = data + step*centers[k];
+        const float* src = data.ptr<float>(centers[k]);
         float* dst = _out_centers.ptr<float>(k);
-        for( j = 0; j < dims; j++ )
+        for (int j = 0; j < dims; j++)
             dst[j] = src[j];
     }
 }
 
+template<bool onlyDistance>
 class KMeansDistanceComputer : public ParallelLoopBody
 {
 public:
-    KMeansDistanceComputer( double *_distances,
-                            int *_labels,
-                            const Mat& _data,
-                            const Mat& _centers,
-                            bool _onlyDistance = false )
-        : distances(_distances),
-          labels(_labels),
-          data(_data),
-          centers(_centers),
-          onlyDistance(_onlyDistance)
+    KMeansDistanceComputer( double *distances_,
+                            int *labels_,
+                            const Mat& data_,
+                            const Mat& centers_)
+        : distances(distances_),
+          labels(labels_),
+          data(data_),
+          centers(centers_)
     {
     }
 
     void operator()( const Range& range ) const
     {
+        CV_TRACE_FUNCTION();
         const int begin = range.start;
         const int end = range.end;
         const int K = centers.rows;
         const int dims = centers.cols;
 
-        for( int i = begin; i<end; ++i)
+        for (int i = begin; i < end; ++i)
         {
             const float *sample = data.ptr<float>(i);
             if (onlyDistance)
@@ -198,34 +188,36 @@ public:
                 distances[i] = normL2Sqr(sample, center, dims);
                 continue;
             }
-            int k_best = 0;
-            double min_dist = DBL_MAX;
-
-            for( int k = 0; k < K; k++ )
+            else
             {
-                const float* center = centers.ptr<float>(k);
-                const double dist = normL2Sqr(sample, center, dims);
+                int k_best = 0;
+                double min_dist = DBL_MAX;
 
-                if( min_dist > dist )
+                for (int k = 0; k < K; k++)
                 {
-                    min_dist = dist;
-                    k_best = k;
+                    const float* center = centers.ptr<float>(k);
+                    const double dist = normL2Sqr(sample, center, dims);
+
+                    if (min_dist > dist)
+                    {
+                        min_dist = dist;
+                        k_best = k;
+                    }
                 }
-            }
 
-            distances[i] = min_dist;
-            labels[i] = k_best;
+                distances[i] = min_dist;
+                labels[i] = k_best;
+            }
         }
     }
 
 private:
-    KMeansDistanceComputer& operator=(const KMeansDistanceComputer&); // to quiet MSVC
+    KMeansDistanceComputer& operator=(const KMeansDistanceComputer&); // = delete
 
     double *distances;
     int *labels;
     const Mat& data;
     const Mat& centers;
-    bool onlyDistance;
 };
 
 }
@@ -236,13 +228,12 @@ double cv::kmeans( InputArray _data, int K,
                    int flags, OutputArray _centers )
 {
     CV_INSTRUMENT_REGION()
-
     const int SPP_TRIALS = 3;
     Mat data0 = _data.getMat();
-    bool isrow = data0.rows == 1;
-    int N = isrow ? data0.cols : data0.rows;
-    int dims = (isrow ? 1 : data0.cols)*data0.channels();
-    int type = data0.depth();
+    const bool isrow = data0.rows == 1;
+    const int N = isrow ? data0.cols : data0.rows;
+    const int dims = (isrow ? 1 : data0.cols)*data0.channels();
+    const int type = data0.depth();
 
     attempts = std::max(attempts, 1);
     CV_Assert( data0.dims <= 2 && type == CV_32F && K > 0 );
@@ -253,129 +244,115 @@ double cv::kmeans( InputArray _data, int K,
     _bestLabels.create(N, 1, CV_32S, -1, true);
 
     Mat _labels, best_labels = _bestLabels.getMat();
-    if( flags & CV_KMEANS_USE_INITIAL_LABELS )
+    if (flags & CV_KMEANS_USE_INITIAL_LABELS)
     {
         CV_Assert( (best_labels.cols == 1 || best_labels.rows == 1) &&
                   best_labels.cols*best_labels.rows == N &&
                   best_labels.type() == CV_32S &&
                   best_labels.isContinuous());
-        best_labels.copyTo(_labels);
+        best_labels.reshape(1, N).copyTo(_labels);
+        for (int i = 0; i < N; i++)
+        {
+            CV_Assert((unsigned)_labels.at<int>(i) < (unsigned)K);
+        }
     }
     else
     {
-        if!((best_labels.cols == 1 || best_labels.rows == 1) &&
+        if (!((best_labels.cols == 1 || best_labels.rows == 1) &&
              best_labels.cols*best_labels.rows == N &&
-            best_labels.type() == CV_32S &&
-            best_labels.isContinuous()))
-            best_labels.create(N, 1, CV_32S);
+             best_labels.type() == CV_32S &&
+             best_labels.isContinuous()))
+        {
+            _bestLabels.create(N, 1, CV_32S);
+            best_labels = _bestLabels.getMat();
+        }
         _labels.create(best_labels.size(), best_labels.type());
     }
     int* labels = _labels.ptr<int>();
 
     Mat centers(K, dims, type), old_centers(K, dims, type), temp(1, dims, type);
-    std::vector<int> counters(K);
-    std::vector<Vec2f> _box(dims);
-    Mat dists(1, N, CV_64F);
-    Vec2f* box = &_box[0];
-    double best_compactness = DBL_MAX, compactness = 0;
+    cv::AutoBuffer<int, 64> counters(K);
+    cv::AutoBuffer<double, 64> dists(N);
     RNG& rng = theRNG();
-    int a, iter, i, j, k;
 
-    if( criteria.type & TermCriteria::EPS )
+    if (criteria.type & TermCriteria::EPS)
         criteria.epsilon = std::max(criteria.epsilon, 0.);
     else
         criteria.epsilon = FLT_EPSILON;
     criteria.epsilon *= criteria.epsilon;
 
-    if( criteria.type & TermCriteria::COUNT )
+    if (criteria.type & TermCriteria::COUNT)
         criteria.maxCount = std::min(std::max(criteria.maxCount, 2), 100);
     else
         criteria.maxCount = 100;
 
-    if( K == 1 )
+    if (K == 1)
     {
         attempts = 1;
         criteria.maxCount = 2;
     }
 
-    const float* sample = data.ptr<float>(0);
-    for( j = 0; j < dims; j++ )
-        box[j] = Vec2f(sample[j], sample[j]);
-
-    for( i = 1; i < N; i++ )
+    cv::AutoBuffer<Vec2f, 64> box(dims);
+    if (!(flags & KMEANS_PP_CENTERS))
     {
-        sample = data.ptr<float>(i);
-        for( j = 0; j < dims; j++ )
         {
-            float v = sample[j];
-            box[j][0] = std::min(box[j][0], v);
-            box[j][1] = std::max(box[j][1], v);
+            const float* sample = data.ptr<float>(0);
+            for (int j = 0; j < dims; j++)
+                box[j] = Vec2f(sample[j], sample[j]);
+        }
+        for (int i = 1; i < N; i++)
+        {
+            const float* sample = data.ptr<float>(i);
+            for (int j = 0; j < dims; j++)
+            {
+                float v = sample[j];
+                box[j][0] = std::min(box[j][0], v);
+                box[j][1] = std::max(box[j][1], v);
+            }
         }
     }
 
-    for( a = 0; a < attempts; a++ )
+    double best_compactness = DBL_MAX;
+    for (int a = 0; a < attempts; a++)
     {
-        double max_center_shift = DBL_MAX;
-        for( iter = 0;; )
+        double compactness = 0;
+
+        for (int iter = 0; ;)
         {
+            double max_center_shift = iter == 0 ? DBL_MAX : 0.0;
+
             swap(centers, old_centers);
 
-            if( iter == 0 && (a > 0 || !(flags & KMEANS_USE_INITIAL_LABELS)) )
+            if (iter == 0 && (a > 0 || !(flags & KMEANS_USE_INITIAL_LABELS)))
             {
-                if( flags & KMEANS_PP_CENTERS )
+                if (flags & KMEANS_PP_CENTERS)
                     generateCentersPP(data, centers, K, rng, SPP_TRIALS);
                 else
                 {
-                    for( k = 0; k < K; k++ )
-                        generateRandomCenter(_box, centers.ptr<float>(k), rng);
+                    for (int k = 0; k < K; k++)
+                        generateRandomCenter(dims, box, centers.ptr<float>(k), rng);
                 }
             }
             else
             {
-                if( iter == 0 && a == 0 && (flags & KMEANS_USE_INITIAL_LABELS) )
-                {
-                    for( i = 0; i < N; i++ )
-                        CV_Assert( (unsigned)labels[i] < (unsigned)K );
-                }
-
                 // compute centers
                 centers = Scalar(0);
-                for( k = 0; k < K; k++ )
+                for (int k = 0; k < K; k++)
                     counters[k] = 0;
 
-                for( i = 0; i < N; i++ )
+                for (int i = 0; i < N; i++)
                 {
-                    sample = data.ptr<float>(i);
-                    k = labels[i];
+                    const float* sample = data.ptr<float>(i);
+                    int k = labels[i];
                     float* center = centers.ptr<float>(k);
-                    j=0;
-                    #if CV_ENABLE_UNROLLED
-                    for(; j <= dims - 4; j += 4 )
-                    {
-                        float t0 = center[j] + sample[j];
-                        float t1 = center[j+1] + sample[j+1];
-
-                        center[j] = t0;
-                        center[j+1] = t1;
-
-                        t0 = center[j+2] + sample[j+2];
-                        t1 = center[j+3] + sample[j+3];
-
-                        center[j+2] = t0;
-                        center[j+3] = t1;
-                    }
-                    #endif
-                    for( ; j < dims; j++ )
+                    for (int j = 0; j < dims; j++)
                         center[j] += sample[j];
                     counters[k]++;
                 }
 
-                if( iter > 0 )
-                    max_center_shift = 0;
-
-                for( k = 0; k < K; k++ )
+                for (int k = 0; k < K; k++)
                 {
-                    if( counters[k] != 0 )
+                    if (counters[k] != 0)
                         continue;
 
                     // if some cluster appeared to be empty then:
@@ -383,29 +360,28 @@ double cv::kmeans( InputArray _data, int K,
                     //   2. find the farthest from the center point in the biggest cluster
                     //   3. exclude the farthest point from the biggest cluster and form a new 1-point cluster.
                     int max_k = 0;
-                    for( int k1 = 1; k1 < K; k1++ )
+                    for (int k1 = 1; k1 < K; k1++)
                     {
-                        if( counters[max_k] < counters[k1] )
+                        if (counters[max_k] < counters[k1])
                             max_k = k1;
                     }
 
                     double max_dist = 0;
                     int farthest_i = -1;
-                    float* new_center = centers.ptr<float>(k);
-                    float* old_center = centers.ptr<float>(max_k);
-                    float* _old_center = temp.ptr<float>(); // normalized
+                    float* base_center = centers.ptr<float>(max_k);
+                    float* _base_center = temp.ptr<float>(); // normalized
                     float scale = 1.f/counters[max_k];
-                    for( j = 0; j < dims; j++ )
-                        _old_center[j] = old_center[j]*scale;
+                    for (int j = 0; j < dims; j++)
+                        _base_center[j] = base_center[j]*scale;
 
-                    for( i = 0; i < N; i++ )
+                    for (int i = 0; i < N; i++)
                     {
-                        if( labels[i] != max_k )
+                        if (labels[i] != max_k)
                             continue;
-                        sample = data.ptr<float>(i);
-                        double dist = normL2Sqr(sample, _old_center, dims);
+                        const float* sample = data.ptr<float>(i);
+                        double dist = normL2Sqr(sample, _base_center, dims);
 
-                        if( max_dist <= dist )
+                        if (max_dist <= dist)
                         {
                             max_dist = dist;
                             farthest_i = i;
@@ -415,29 +391,30 @@ double cv::kmeans( InputArray _data, int K,
                     counters[max_k]--;
                     counters[k]++;
                     labels[farthest_i] = k;
-                    sample = data.ptr<float>(farthest_i);
 
-                    for( j = 0; j < dims; j++ )
+                    const float* sample = data.ptr<float>(farthest_i);
+                    float* cur_center = centers.ptr<float>(k);
+                    for (int j = 0; j < dims; j++)
                     {
-                        old_center[j] -= sample[j];
-                        new_center[j] += sample[j];
+                        base_center[j] -= sample[j];
+                        cur_center[j] += sample[j];
                     }
                 }
 
-                for( k = 0; k < K; k++ )
+                for (int k = 0; k < K; k++)
                 {
                     float* center = centers.ptr<float>(k);
                     CV_Assert( counters[k] != 0 );
 
                     float scale = 1.f/counters[k];
-                    for( j = 0; j < dims; j++ )
+                    for (int j = 0; j < dims; j++)
                         center[j] *= scale;
 
-                    if( iter > 0 )
+                    if (iter > 0)
                     {
                         double dist = 0;
                         const float* old_center = old_centers.ptr<float>(k);
-                        for( j = 0; j < dims; j++ )
+                        for (int j = 0; j < dims; j++)
                         {
                             double t = center[j] - old_center[j];
                             dist += t*t;
@@ -449,26 +426,29 @@ double cv::kmeans( InputArray _data, int K,
 
             bool isLastIter = (++iter == MAX(criteria.maxCount, 2) || max_center_shift <= criteria.epsilon);
 
-            // assign labels
-            dists = 0;
-            double* dist = dists.ptr<double>(0);
-            parallel_for_(Range(0, N), KMeansDistanceComputer(dist, labels, data, centers, isLastIter),
-                          divUp(dims * N * (isLastIter ? 1 : K), CV_KMEANS_PARALLEL_GRANULARITY));
-            compactness = sum(dists)[0];
-
             if (isLastIter)
+            {
+                // don't re-assign labels to avoid creation of empty clusters
+                parallel_for_(Range(0, N), KMeansDistanceComputer<true>(dists, labels, data, centers), divUp(dims * N, CV_KMEANS_PARALLEL_GRANULARITY));
+                compactness = sum(Mat(Size(N, 1), CV_64F, &dists[0]))[0];
                 break;
+            }
+            else
+            {
+                // assign labels
+                parallel_for_(Range(0, N), KMeansDistanceComputer<false>(dists, labels, data, centers), divUp(dims * N * K, CV_KMEANS_PARALLEL_GRANULARITY));
+            }
         }
 
-        if( compactness < best_compactness )
+        if (compactness < best_compactness)
         {
             best_compactness = compactness;
-            if( _centers.needed() )
+            if (_centers.needed())
             {
-                Mat reshaped = centers;
-                if(_centers.fixedType() && _centers.channels() == dims)
-                    reshaped = centers.reshape(dims);
-                reshaped.copyTo(_centers);
+                if (_centers.fixedType() && _centers.channels() == dims)
+                    centers.reshape(dims).copyTo(_centers);
+                else
+                    centers.copyTo(_centers);
             }
             _labels.copyTo(best_labels);
         }