pad_left, pad_right = get_pad_value(input_w, dilated_kernel_w, stride_w)
do_pad = not (pad_top == 0 and pad_bottom == 0 and pad_left == 0 and pad_right == 0)
if do_pad:
+ pad_value = 0
+ if input_tensor.qnn_params:
+ pad_value = get_scalar_from_constant(input_tensor.qnn_params['zero_point'])
in_expr = _op.nn.pad(data=in_expr, pad_width=((0, 0),
(pad_top, pad_bottom),
(pad_left, pad_right),
- (0, 0)))
+ (0, 0)), pad_value=float(pad_value))
+
else:
raise tvm.error.OpAttributeUnImplemented(
'Padding format {} is not supported for operator Conv.'.format(padding))
# convert list of lists to tuple of tuples
paddings = tuple(tuple(l) for l in pad_list)
- # Use default pad_value 0 because TFLite PAD does not support constant_values parameter
- out = _op.nn.pad(in_expr, paddings)
+ # Set the pad value
+ pad_value = 0
+ if input_tensor.qnn_params:
+ # Check that input and output tensor have same qnn params.
+ output_tensors = self.get_output_tensors(op)
+ output_tensor = output_tensors[0]
+ assert self.has_same_qnn_params(input_tensor, output_tensor), \
+ "TFLite reshape requires input and output scale and zero points to be equal"
+
+ # The pad value for quantized pad is the input zero point.
+ pad_value = float(input_tensor.qnn_params['zero_point'].data.asnumpy())
+
+ out = _op.nn.pad(in_expr, pad_width=paddings, pad_value=pad_value)
return out
def convert_mirror_pad(self, op):
import tvm.relay.testing.tf as tf_testing
from packaging import version as package_version
+from PIL import Image
+import os
+
#######################################################################
# Generic run functions for TVM & TFLite
# --------------------------------------
x = [x]
return x
+
+#######################################################################
+# Get a real image for e2e testing.
+# --------------------------------------
+def get_real_image(im_height, im_width):
+ repo_base = 'https://github.com/dmlc/web-data/raw/master/tensorflow/models/InceptionV1/'
+ img_name = 'elephant-299.jpg'
+ image_url = os.path.join(repo_base, img_name)
+ img_path = download_testdata(image_url, img_name, module='data')
+ image = Image.open(img_path).resize((im_height, im_width))
+ x = np.array(image).astype('uint8')
+ data = np.reshape(x, (1, im_height, im_width, 3))
+ return data
+
def run_tvm_graph(tflite_model_buf, input_data, input_node, num_output=1, target='llvm',
out_names=None):
""" Generic function to compile on relay and execute on tvm """
# Pad
# ---
-def _test_pad(data, mode="CONSTANT"):
+def _test_pad(data, mode="CONSTANT", quantized=False):
""" One iteration of PAD """
assert len(data) == 2
# Test with tensor and constant
with tf.Graph().as_default():
- in_data = [array_ops.placeholder(shape=data[0].shape, dtype=data[0].dtype, name='in')]
- out = array_ops.pad(in_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype), mode=mode)
- compare_tflite_with_tvm([data[0]], ['in:0'], in_data, [out])
+ in_data = [array_ops.placeholder(shape=data[0].shape, dtype='float32', name='in')]
+
+ if quantized:
+ # fake_quant will keep the tensors in float32 until the conversion in the session
+ input_range = {'inq_0': (-100, 100)}
+ inq_data = [tf.quantization.fake_quant_with_min_max_args(in_data[0],
+ min=-100,
+ max=100,
+ name="inq_0")]
+ out = array_ops.pad(inq_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype), mode=mode)
+ compare_tflite_with_tvm([data[0]], ['inq_0:0'], inq_data, [out], quantized=True,
+ input_range=input_range)
+ else:
+ out = array_ops.pad(in_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype), mode=mode)
+ compare_tflite_with_tvm([data[0]], ['in:0'], in_data, [out])
def test_forward_pad():
np.array([[1, 1], [2, 2]], dtype=np.int32)], mode="REFLECT")
_test_pad([np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 3)),
np.array([[1, 1], [2, 2]], dtype=np.int32)], mode="SYMMETRIC")
+ _test_pad([np.arange(0, 256, dtype=np.uint8).reshape((1, 256)),
+ np.array([[1, 1], [2, 2]], dtype=np.int32)], quantized=True)
#######################################################################
"inception_v1_224_quant.tflite")
with open(tflite_model_file, "rb") as f:
tflite_model_buf = f.read()
- # Checking the labels because the requantize implementation is different between TFLite and
- # Relay. This cause final output numbers to mismatch. So, testing accuracy via labels.
- np.random.seed(0)
- data = np.random.random_integers(low=0, high=128, size=(1, 224, 224, 3)).astype('uint8')
+
+ # Test image. Checking the labels because the requantize implementation is different between
+ # TFLite and Relay. This cause final output numbers to mismatch. So, testing accuracy via
+ # labels. Also, giving a real image, instead of random inputs.
+ data = get_real_image(224, 224)
+
tflite_output = run_tflite_graph(tflite_model_buf, data)
tflite_predictions = np.squeeze(tflite_output)
tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1]
"mobilenet_v1_1.0_224_quant.tflite")
with open(tflite_model_file, "rb") as f:
tflite_model_buf = f.read()
- # Checking the labels because the requantize implementation is different between TFLite and
- # Relay. This cause final output numbers to mismatch. So, testing accuracy via labels.
- np.random.seed(0)
- data = np.random.random_integers(low=0, high=128, size=(1, 224, 224, 3)).astype('uint8')
+
+ # Test image. Checking the labels because the requantize implementation is different between
+ # TFLite and Relay. This cause final output numbers to mismatch. So, testing accuracy via
+ # labels. Also, giving a real image, instead of random inputs.
+ data = get_real_image(224, 224)
+
tflite_output = run_tflite_graph(tflite_model_buf, data)
tflite_predictions = np.squeeze(tflite_output)
tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1]
"mobilenet_v2_1.0_224_quant.tflite")
with open(tflite_model_file, "rb") as f:
tflite_model_buf = f.read()
- # Checking the labels because the requantize implementation is different between TFLite and
- # Relay. This cause final output numbers to mismatch. So, testing accuracy via labels.
- np.random.seed(0)
- data = np.random.random_integers(low=0, high=128, size=(1, 224, 224, 3)).astype('uint8')
+
+ # Test image. Checking the labels because the requantize implementation is different between
+ # TFLite and Relay. This cause final output numbers to mismatch. So, testing accuracy via
+ # labels. Also, giving a real image, instead of random inputs.
+ data = get_real_image(224, 224)
+
tflite_output = run_tflite_graph(tflite_model_buf, data)
tflite_predictions = np.squeeze(tflite_output)
tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1]
"ssd_mobilenet_v1_coco_2018_01_28_nopp.tflite")
with open(tflite_model_file, "rb") as f:
tflite_model_buf = f.read()
+ np.random.seed(0)
data = np.random.uniform(size=(1, 300, 300, 3)).astype('float32')
tflite_output = run_tflite_graph(tflite_model_buf, data)
tvm_output = run_tvm_graph(tflite_model_buf, data, 'normalized_input_image_tensor', num_output=2)