{
namespace lbp
{
-
- texture<int, cudaTextureType2D, cudaReadModeElementType> tintegral(false, cudaFilterModePoint, cudaAddressModeClamp);
-
struct LBP
{
__host__ __device__ __forceinline__ LBP() {}
- // for integral matrix stored in the global memory
__device__ __forceinline__ int operator() (const int* integral, int ty, int fh, int fw, int& shift) const
{
int anchors[9];
shift |= (~(anchors[8] >> 31)) & 8;
return response;
}
- // for texture fetchrd integral matrix
- __device__ __forceinline__ int operator() (int ty, int tx, int fh, int fw, int& shift) const
- {
- int anchors[9];
-
- anchors[0] = tex2D(tintegral, tx, ty);
- anchors[1] = tex2D(tintegral, tx + fw, ty);
- anchors[0] -= anchors[1];
- anchors[2] = tex2D(tintegral, tx + fw * 2, ty);
- anchors[1] -= anchors[2];
- anchors[2] -= tex2D(tintegral, tx + fw * 3, ty);
-
- ty += fh;
- anchors[3] = tex2D(tintegral, tx, ty);
- anchors[4] = tex2D(tintegral, tx + fw, ty);
- anchors[3] -= anchors[4];
- anchors[5] = tex2D(tintegral, tx + fw * 2, ty);
- anchors[4] -= anchors[5];
- anchors[5] -= tex2D(tintegral, tx + fw * 3, ty);
-
- anchors[0] -= anchors[3];
- anchors[1] -= anchors[4];
- anchors[2] -= anchors[5];
- // 0 - 2 contains s0 - s2
-
- ty += fh;
- anchors[6] = tex2D(tintegral, tx, ty);
- anchors[7] = tex2D(tintegral, tx + fw, ty);
- anchors[6] -= anchors[7];
- anchors[8] = tex2D(tintegral, tx + fw * 2, ty);
- anchors[7] -= anchors[8];
- anchors[8] -= tex2D(tintegral, tx + fw * 3, ty);
-
- anchors[3] -= anchors[6];
- anchors[4] -= anchors[7];
- anchors[5] -= anchors[8];
- // 3 - 5 contains s3 - s5
-
- anchors[0] -= anchors[4];
- anchors[1] -= anchors[4];
- anchors[2] -= anchors[4];
- anchors[3] -= anchors[4];
- anchors[5] -= anchors[4];
-
- int response = (~(anchors[0] >> 31)) & 4;
- response |= (~(anchors[1] >> 31)) & 2;;
- response |= (~(anchors[2] >> 31)) & 1;
-
- shift = (~(anchors[5] >> 31)) & 16;
- shift |= (~(anchors[3] >> 31)) & 1;
-
- ty += fh;
- anchors[0] = tex2D(tintegral, tx, ty);
- anchors[1] = tex2D(tintegral, tx + fw, ty);
- anchors[0] -= anchors[1];
- anchors[2] = tex2D(tintegral, tx + fw * 2, ty);
- anchors[1] -= anchors[2];
- anchors[2] -= tex2D(tintegral, tx + fw * 3, ty);
-
- anchors[6] -= anchors[0];
- anchors[7] -= anchors[1];
- anchors[8] -= anchors[2];
- // 0 -2 contains s6 - s8
-
- anchors[6] -= anchors[4];
- anchors[7] -= anchors[4];
- anchors[8] -= anchors[4];
-
- shift |= (~(anchors[6] >> 31)) & 2;
- shift |= (~(anchors[7] >> 31)) & 4;
- shift |= (~(anchors[8] >> 31)) & 8;
- return response;
- }
};
- void bindIntegral(DevMem2Di integral)
- {
- cudaChannelFormatDesc desc = cudaCreateChannelDesc<int>();
- cudaSafeCall( cudaBindTexture2D(0, &tintegral, integral.ptr(), &desc, (size_t)integral.cols, (size_t)integral.rows, (size_t)integral.step));
- }
-
- void unbindIntegral()
- {
- cudaSafeCall( cudaUnbindTexture(&tintegral));
- }
-
- struct Classifier
- {
- __host__ __device__ __forceinline__ Classifier(const int* _integral, int _pitch, const Stage* _stages, const ClNode* _nodes, const float* _leaves,
- const int* _subsets, const uchar4* _features, int _nstages, int _clWidth, int _clHeight, float _scale, int _step, int _subsetSize)
- : integral(_integral), pitch(_pitch), stages(_stages), nodes(_nodes), leaves(_leaves), subsets(_subsets), features(_features), nstages(_nstages),
- clWidth(_clWidth), clHeight(_clHeight), scale(_scale), step(_step), subsetSize(_subsetSize){}
-
- __device__ __forceinline__ void operator() (int y, int x, DevMem2D_<int4> objects, const unsigned int maxN, unsigned int* n) const
- {
- int current_node = 0;
- int current_leave = 0;
-
- for (int s = 0; s < nstages; ++s)
- {
- float sum = 0;
- Stage stage = stages[s];
- for (int t = 0; t < stage.ntrees; t++)
- {
- ClNode node = nodes[current_node];
- uchar4 feature = features[node.featureIdx];
-
- int shift;
- // int c = evaluator(y + feature.y, x + feature.x, feature.w, feature.z, shift);
- int c = evaluator(integral, (y + feature.y) * pitch + x + feature.x, feature.w * pitch, feature.z, shift);
- int idx = (subsets[ current_node * subsetSize + c] & ( 1 << shift)) ? current_leave : current_leave + 1;
- sum += leaves[idx];
-
- current_node += 1;
- current_leave += 2;
- }
-
- if (sum < stage.threshold)
- return;
- }
-
- int4 rect;
- rect.x = roundf(x * scale);
- rect.y = roundf(y * scale);
- rect.z = clWidth;
- rect.w = clHeight;
-
- int res = Emulation::smem::atomicInc(n, maxN);
- objects(0, res) = rect;
- }
-
- const int* integral;
- const int pitch;
-
- const Stage* stages;
- const ClNode* nodes;
- const float* leaves;
- const int* subsets;
- const uchar4* features;
-
- const int nstages;
- const int clWidth;
- const int clHeight;
- const float scale;
- const int step;
- const int subsetSize;
- const LBP evaluator;
- };
-
- __global__ void lbp_classify_stump(const Classifier classifier, DevMem2D_<int4> objects, const unsigned int maxN, unsigned int* n)
- {
- int x = threadIdx.x * classifier.step;
- int y = blockIdx.x * classifier.step;
-
- classifier(y, x, objects, maxN, n);
- }
-
- __global__ void lbp_classify_stump(const Classifier classifier, DevMem2D_<int4> objects, const unsigned int maxN, unsigned int* n, int maxX)
- {
- int ftid = blockIdx.x * blockDim.x + threadIdx.x;
- int y = ftid / maxX;
- int x = ftid - y * maxX;
-
- classifier(y * classifier.step, x * classifier.step, objects, maxN, n);
- }
-
template<typename Pr>
__global__ void disjoin(int4* candidates, int4* objects, unsigned int n, int groupThreshold, float grouping_eps, unsigned int* nclasses)
{
}
}
- void classifyStumpFixed(const DevMem2Di& integral, const int pitch, const DevMem2Db& mstages, const int nstages, const DevMem2Di& mnodes, const DevMem2Df& mleaves, const DevMem2Di& msubsets, const DevMem2Db& mfeatures,
- const int workWidth, const int workHeight, const int clWidth, const int clHeight, float scale, int step, int subsetSize, DevMem2D_<int4> objects, unsigned int* classified)
- {
- Classifier clr(integral, pitch, (Stage*)mstages.ptr(), (ClNode*)mnodes.ptr(), mleaves.ptr(), msubsets,
- (uchar4*)mfeatures.ptr(), nstages, clWidth, clHeight, scale, step, subsetSize);
-
- int total = ceilf(workHeight / (float)step) * ceilf(workWidth / (float)step);
-
- int block = 256;
- int grid = divUp(total, block);
- lbp_classify_stump<<<grid, block>>>(clr, objects, objects.cols, classified, workWidth >> 1);
- cudaSafeCall( cudaGetLastError() );
- }
-
void connectedConmonents(DevMem2D_<int4> candidates, int ncandidates, DevMem2D_<int4> objects, int groupThreshold, float grouping_eps, unsigned int* nclasses)
{
int block = ncandidates;
: stages(_stages), nstages(_nstages), nodes(_nodes), leaves(_leaves), subsets(_subsets), features(_features), subsetSize(_subsetSize){}
- __device__ __forceinline__ bool operator() (int y, int x, int* integral, const int pitch/*, DevMem2D_<int4> objects, const unsigned int maxN, unsigned int* n*/) const
+ __device__ __forceinline__ bool operator() (int y, int x, int* integral, const int pitch) const
{
int current_node = 0;
int current_leave = 0;
const DevMem2Db& mstages, const int nstages, const DevMem2Di& mnodes, const DevMem2Df& mleaves, const DevMem2Di& msubsets, const DevMem2Db& mfeatures,
const int subsetSize, DevMem2D_<int4> objects, unsigned int* classified, DevMem2Di integral)
{
- const int block = 256;
+ const int block = 128;
int grid = divUp(workAmount, block);
Cascade cascade((Stage*)mstages.ptr(), nstages, (ClNode*)mnodes.ptr(), mleaves.ptr(), msubsets.ptr(), (uchar4*)mfeatures.ptr(), subsetSize);
lbp_cascade<<<grid, block>>>(cascade, frameW, frameH, windowW, windowH, initialScale, factor, workAmount, integral.ptr(), integral.step / sizeof(int), objects, classified);