int64_t CpuProfile::GetStartTime() const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
- return profile->start_time_us();
+ return (profile->start_time() - i::Time::UnixEpoch()).InMicroseconds();
}
int64_t CpuProfile::GetEndTime() const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
- return profile->end_time_us();
+ return (profile->end_time() - i::Time::UnixEpoch()).InMicroseconds();
}
Handle<JSFunction> function = info()->closure();
int opt_count = function->shared()->opt_count();
function->shared()->set_opt_count(opt_count + 1);
- double ms_creategraph =
- static_cast<double>(time_taken_to_create_graph_) / 1000;
- double ms_optimize = static_cast<double>(time_taken_to_optimize_) / 1000;
- double ms_codegen = static_cast<double>(time_taken_to_codegen_) / 1000;
+ double ms_creategraph = time_taken_to_create_graph_.InMillisecondsF();
+ double ms_optimize = time_taken_to_optimize_.InMillisecondsF();
+ double ms_codegen = time_taken_to_codegen_.InMillisecondsF();
if (FLAG_trace_opt) {
PrintF("[optimizing ");
function->ShortPrint();
// performance of the hydrogen-based compiler.
bool should_recompile = !info()->shared_info()->has_deoptimization_support();
if (should_recompile || FLAG_hydrogen_stats) {
- int64_t start_ticks = 0;
+ ElapsedTimer timer;
if (FLAG_hydrogen_stats) {
- start_ticks = OS::Ticks();
+ timer.Start();
}
CompilationInfoWithZone unoptimized(info()->shared_info());
// Note that we use the same AST that we will use for generating the
Logger::LAZY_COMPILE_TAG, &unoptimized, shared);
}
if (FLAG_hydrogen_stats) {
- int64_t ticks = OS::Ticks() - start_ticks;
- isolate()->GetHStatistics()->IncrementFullCodeGen(ticks);
+ isolate()->GetHStatistics()->IncrementFullCodeGen(timer.Elapsed());
}
}
: name_(name), info_(info), zone_(info->isolate()) {
if (FLAG_hydrogen_stats) {
info_zone_start_allocation_size_ = info->zone()->allocation_size();
- start_ticks_ = OS::Ticks();
+ timer_.Start();
}
}
if (FLAG_hydrogen_stats) {
unsigned size = zone()->allocation_size();
size += info_->zone()->allocation_size() - info_zone_start_allocation_size_;
- int64_t ticks = OS::Ticks() - start_ticks_;
- isolate()->GetHStatistics()->SaveTiming(name_, ticks, size);
+ isolate()->GetHStatistics()->SaveTiming(name_, timer_.Elapsed(), size);
}
}
#include "allocation.h"
#include "ast.h"
+#include "time/elapsed-timer.h"
#include "zone.h"
namespace v8 {
graph_builder_(NULL),
graph_(NULL),
chunk_(NULL),
- time_taken_to_create_graph_(0),
- time_taken_to_optimize_(0),
- time_taken_to_codegen_(0),
last_status_(FAILED) { }
enum Status {
HOptimizedGraphBuilder* graph_builder_;
HGraph* graph_;
LChunk* chunk_;
- int64_t time_taken_to_create_graph_;
- int64_t time_taken_to_optimize_;
- int64_t time_taken_to_codegen_;
+ TimeDelta time_taken_to_create_graph_;
+ TimeDelta time_taken_to_optimize_;
+ TimeDelta time_taken_to_codegen_;
Status last_status_;
MUST_USE_RESULT Status SetLastStatus(Status status) {
void RecordOptimizationStats();
struct Timer {
- Timer(OptimizingCompiler* compiler, int64_t* location)
+ Timer(OptimizingCompiler* compiler, TimeDelta* location)
: compiler_(compiler),
- start_(OS::Ticks()),
- location_(location) { }
+ location_(location) {
+ ASSERT(location_ != NULL);
+ timer_.Start();
+ }
~Timer() {
- *location_ += (OS::Ticks() - start_);
+ *location_ += timer_.Elapsed();
}
OptimizingCompiler* compiler_;
- int64_t start_;
- int64_t* location_;
+ ElapsedTimer timer_;
+ TimeDelta* location_;
};
};
CompilationInfo* info_;
Zone zone_;
unsigned info_zone_start_allocation_size_;
- int64_t start_ticks_;
+ ElapsedTimer timer_;
DISALLOW_COPY_AND_ASSIGN(CompilationPhase);
};
// Start the timer.
void HistogramTimer::Start() {
if (Enabled()) {
- stop_time_ = 0;
- start_time_ = OS::Ticks();
+ timer_.Start();
}
if (FLAG_log_internal_timer_events) {
LOG(isolate(), TimerEvent(Logger::START, name()));
// Stop the timer and record the results.
void HistogramTimer::Stop() {
if (Enabled()) {
- stop_time_ = OS::Ticks();
// Compute the delta between start and stop, in milliseconds.
- int milliseconds = static_cast<int>(stop_time_ - start_time_) / 1000;
- AddSample(milliseconds);
+ AddSample(static_cast<int>(timer_.Elapsed().InMilliseconds()));
+ timer_.Stop();
}
if (FLAG_log_internal_timer_events) {
LOG(isolate(), TimerEvent(Logger::END, name()));
int max,
int num_buckets,
Isolate* isolate)
- : Histogram(name, min, max, num_buckets, isolate),
- start_time_(0),
- stop_time_(0) { }
+ : Histogram(name, min, max, num_buckets, isolate) {}
// Start the timer.
void Start();
// Returns true if the timer is running.
bool Running() {
- return Enabled() && (start_time_ != 0) && (stop_time_ == 0);
+ return Enabled() && timer_.IsStarted();
}
private:
- int64_t start_time_;
- int64_t stop_time_;
+ ElapsedTimer timer_;
};
// Helper class for scoping a HistogramTimer.
ProfilerEventsProcessor::ProfilerEventsProcessor(
ProfileGenerator* generator,
Sampler* sampler,
- int period_in_useconds)
+ TimeDelta period)
: Thread(Thread::Options("v8:ProfEvntProc", kProfilerStackSize)),
generator_(generator),
sampler_(sampler),
running_(true),
- period_in_useconds_(period_in_useconds),
+ period_(period),
last_code_event_id_(0), last_processed_code_event_id_(0) {
}
void ProfilerEventsProcessor::ProcessEventsAndDoSample() {
- int64_t stop_time = OS::Ticks() + period_in_useconds_;
+ ElapsedTimer timer;
+ timer.Start();
// Keep processing existing events until we need to do next sample.
- while (OS::Ticks() < stop_time) {
+ while (!timer.HasExpired(period_)) {
if (ProcessTicks()) {
// All ticks of the current dequeue_order are processed,
// proceed to the next code event.
generator_ = new ProfileGenerator(profiles_);
Sampler* sampler = logger->sampler();
processor_ = new ProfilerEventsProcessor(
- generator_, sampler, FLAG_cpu_profiler_sampling_interval);
+ generator_, sampler,
+ TimeDelta::FromMicroseconds(FLAG_cpu_profiler_sampling_interval));
is_profiling_ = true;
// Enumerate stuff we already have in the heap.
ASSERT(isolate_->heap()->HasBeenSetUp());
public:
ProfilerEventsProcessor(ProfileGenerator* generator,
Sampler* sampler,
- int period_in_useconds);
+ TimeDelta period);
virtual ~ProfilerEventsProcessor() {}
// Thread control.
Sampler* sampler_;
bool running_;
// Sampling period in microseconds.
- const int period_in_useconds_;
+ const TimeDelta period_;
UnboundQueue<CodeEventsContainer> events_buffer_;
static const size_t kTickSampleBufferSize = 1 * MB;
static const size_t kTickSampleQueueLength =
}
// Print some helpful diagnostic information.
- int64_t start = OS::Ticks();
if (FLAG_log_timer_events &&
compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
LOG(isolate(), CodeDeoptEvent(compiled_code_));
}
+ ElapsedTimer timer;
if (trace_) {
+ timer.Start();
PrintF("[deoptimizing (DEOPT %s): begin 0x%08" V8PRIxPTR " ",
MessageFor(bailout_type_),
reinterpret_cast<intptr_t>(function_));
// Print some helpful diagnostic information.
if (trace_) {
- double ms = static_cast<double>(OS::Ticks() - start) / 1000;
+ double ms = timer.Elapsed().InMillisecondsF();
int index = output_count_ - 1; // Index of the topmost frame.
JSFunction* function = output_[index]->GetFunction();
PrintF("[deoptimizing (%s): end 0x%08" V8PRIxPTR " ",
void HStatistics::Print() {
PrintF("Timing results:\n");
- int64_t sum = 0;
- for (int i = 0; i < timing_.length(); ++i) {
- sum += timing_[i];
+ TimeDelta sum;
+ for (int i = 0; i < times_.length(); ++i) {
+ sum += times_[i];
}
for (int i = 0; i < names_.length(); ++i) {
PrintF("%32s", names_[i]);
- double ms = static_cast<double>(timing_[i]) / 1000;
- double percent = static_cast<double>(timing_[i]) * 100 / sum;
+ double ms = times_[i].InMillisecondsF();
+ double percent = times_[i].PercentOf(sum);
PrintF(" %8.3f ms / %4.1f %% ", ms, percent);
unsigned size = sizes_[i];
PrintF("----------------------------------------"
"---------------------------------------\n");
- int64_t total = create_graph_ + optimize_graph_ + generate_code_;
+ TimeDelta total = create_graph_ + optimize_graph_ + generate_code_;
PrintF("%32s %8.3f ms / %4.1f %% \n",
"Create graph",
- static_cast<double>(create_graph_) / 1000,
- static_cast<double>(create_graph_) * 100 / total);
+ create_graph_.InMillisecondsF(),
+ create_graph_.PercentOf(total));
PrintF("%32s %8.3f ms / %4.1f %% \n",
"Optimize graph",
- static_cast<double>(optimize_graph_) / 1000,
- static_cast<double>(optimize_graph_) * 100 / total);
+ optimize_graph_.InMillisecondsF(),
+ optimize_graph_.PercentOf(total));
PrintF("%32s %8.3f ms / %4.1f %% \n",
"Generate and install code",
- static_cast<double>(generate_code_) / 1000,
- static_cast<double>(generate_code_) * 100 / total);
+ generate_code_.InMillisecondsF(),
+ generate_code_.PercentOf(total));
PrintF("----------------------------------------"
"---------------------------------------\n");
PrintF("%32s %8.3f ms (%.1f times slower than full code gen)\n",
"Total",
- static_cast<double>(total) / 1000,
- static_cast<double>(total) / full_code_gen_);
+ total.InMillisecondsF(),
+ total.TimesOf(full_code_gen_));
double source_size_in_kb = static_cast<double>(source_size_) / 1024;
double normalized_time = source_size_in_kb > 0
- ? (static_cast<double>(total) / 1000) / source_size_in_kb
+ ? total.InMillisecondsF() / source_size_in_kb
: 0;
double normalized_size_in_kb = source_size_in_kb > 0
? total_size_ / 1024 / source_size_in_kb
}
-void HStatistics::SaveTiming(const char* name, int64_t ticks, unsigned size) {
+void HStatistics::SaveTiming(const char* name, TimeDelta time, unsigned size) {
total_size_ += size;
for (int i = 0; i < names_.length(); ++i) {
if (strcmp(names_[i], name) == 0) {
- timing_[i] += ticks;
+ times_[i] += time;
sizes_[i] += size;
return;
}
}
names_.Add(name);
- timing_.Add(ticks);
+ times_.Add(time);
sizes_.Add(size);
}
class HStatistics V8_FINAL: public Malloced {
public:
HStatistics()
- : timing_(5),
+ : times_(5),
names_(5),
sizes_(5),
- create_graph_(0),
- optimize_graph_(0),
- generate_code_(0),
total_size_(0),
- full_code_gen_(0),
source_size_(0) { }
void Initialize(CompilationInfo* info);
void Print();
- void SaveTiming(const char* name, int64_t ticks, unsigned size);
+ void SaveTiming(const char* name, TimeDelta time, unsigned size);
- void IncrementFullCodeGen(int64_t full_code_gen) {
+ void IncrementFullCodeGen(TimeDelta full_code_gen) {
full_code_gen_ += full_code_gen;
}
- void IncrementSubtotals(int64_t create_graph,
- int64_t optimize_graph,
- int64_t generate_code) {
+ void IncrementSubtotals(TimeDelta create_graph,
+ TimeDelta optimize_graph,
+ TimeDelta generate_code) {
create_graph_ += create_graph;
optimize_graph_ += optimize_graph;
generate_code_ += generate_code;
}
private:
- List<int64_t> timing_;
+ List<TimeDelta> times_;
List<const char*> names_;
List<unsigned> sizes_;
- int64_t create_graph_;
- int64_t optimize_graph_;
- int64_t generate_code_;
+ TimeDelta create_graph_;
+ TimeDelta optimize_graph_;
+ TimeDelta generate_code_;
unsigned total_size_;
- int64_t full_code_gen_;
+ TimeDelta full_code_gen_;
double source_size_;
};
if (FLAG_hydrogen_stats) {
unsigned size = allocator_->zone()->allocation_size() -
allocator_zone_start_allocation_size_;
- isolate()->GetHStatistics()->SaveTiming(name(), 0, size);
+ isolate()->GetHStatistics()->SaveTiming(name(), TimeDelta(), size);
}
if (ShouldProduceTraceOutput()) {
ll_logger_(NULL),
jit_logger_(NULL),
listeners_(5),
- is_initialized_(false),
- epoch_(0) {
+ is_initialized_(false) {
}
if (!log_->IsEnabled()) return;
ASSERT(FLAG_log_internal_timer_events);
Log::MessageBuilder msg(log_);
- int since_epoch = static_cast<int>(OS::Ticks() - epoch_);
+ int since_epoch = static_cast<int>(timer_.Elapsed().InMicroseconds());
msg.Append("code-deopt,%ld,%d\n", since_epoch, code->CodeSize());
msg.WriteToLogFile();
}
if (!log_->IsEnabled()) return;
ASSERT(FLAG_log_internal_timer_events);
Log::MessageBuilder msg(log_);
- int since_epoch = static_cast<int>(OS::Ticks() - epoch_);
+ int since_epoch = static_cast<int>(timer_.Elapsed().InMicroseconds());
const char* format = (se == START) ? "timer-event-start,\"%s\",%ld\n"
: "timer-event-end,\"%s\",%ld\n";
msg.Append(format, name, since_epoch);
Log::MessageBuilder msg(log_);
msg.Append("%s,", kLogEventsNames[TICK_EVENT]);
msg.AppendAddress(sample->pc);
- msg.Append(",%ld", static_cast<int>(OS::Ticks() - epoch_));
+ msg.Append(",%ld", static_cast<int>(timer_.Elapsed().InMicroseconds()));
if (sample->has_external_callback) {
msg.Append(",1,");
msg.AppendAddress(sample->external_callback);
}
}
- if (FLAG_log_internal_timer_events || FLAG_prof) epoch_ = OS::Ticks();
+ if (FLAG_log_internal_timer_events || FLAG_prof) timer_.Start();
return true;
}
#include "allocation.h"
#include "objects.h"
#include "platform.h"
+#include "time/elapsed-timer.h"
namespace v8 {
namespace internal {
// 'true' between SetUp() and TearDown().
bool is_initialized_;
- int64_t epoch_;
+ ElapsedTimer timer_;
friend class CpuProfiler;
};
DisallowHandleAllocation no_handles;
DisallowHandleDereference no_deref;
- int64_t epoch = 0;
- if (FLAG_trace_concurrent_recompilation) epoch = OS::Ticks();
+ ElapsedTimer total_timer;
+ if (FLAG_trace_concurrent_recompilation) total_timer.Start();
while (true) {
input_queue_semaphore_->Wait();
break;
case STOP:
if (FLAG_trace_concurrent_recompilation) {
- time_spent_total_ = OS::Ticks() - epoch;
+ time_spent_total_ = total_timer.Elapsed();
}
stop_semaphore_->Signal();
return;
continue;
}
- int64_t compiling_start = 0;
- if (FLAG_trace_concurrent_recompilation) compiling_start = OS::Ticks();
+ ElapsedTimer compiling_timer;
+ if (FLAG_trace_concurrent_recompilation) compiling_timer.Start();
CompileNext();
if (FLAG_trace_concurrent_recompilation) {
- time_spent_compiling_ += OS::Ticks() - compiling_start;
+ time_spent_compiling_ += compiling_timer.Elapsed();
}
}
}
}
if (FLAG_trace_concurrent_recompilation) {
- double compile_time = static_cast<double>(time_spent_compiling_);
- double total_time = static_cast<double>(time_spent_total_);
- double percentage = (compile_time * 100) / total_time;
+ double percentage = time_spent_compiling_.PercentOf(time_spent_total_);
PrintF(" ** Compiler thread did %.2f%% useful work\n", percentage);
}
#include "flags.h"
#include "platform.h"
#include "unbound-queue-inl.h"
+#include "time/time.h"
namespace v8 {
namespace internal {
isolate_(isolate),
stop_semaphore_(OS::CreateSemaphore(0)),
input_queue_semaphore_(OS::CreateSemaphore(0)),
- install_mutex_(OS::CreateMutex()),
- time_spent_compiling_(0),
- time_spent_total_(0) {
+ install_mutex_(OS::CreateMutex()) {
NoBarrier_Store(&stop_thread_, static_cast<AtomicWord>(CONTINUE));
NoBarrier_Store(&queue_length_, static_cast<AtomicWord>(0));
}
Mutex* install_mutex_;
volatile AtomicWord stop_thread_;
volatile Atomic32 queue_length_;
- int64_t time_spent_compiling_;
- int64_t time_spent_total_;
+ TimeDelta time_spent_compiling_;
+ TimeDelta time_spent_total_;
};
} } // namespace v8::internal
FunctionLiteral* Parser::ParseProgram() {
- HistogramTimerScope timer(isolate()->counters()->parse());
+ HistogramTimerScope timer_scope(isolate()->counters()->parse());
Handle<String> source(String::cast(script_->source()));
isolate()->counters()->total_parse_size()->Increment(source->length());
- int64_t start = FLAG_trace_parse ? OS::Ticks() : 0;
+ ElapsedTimer timer;
+ if (FLAG_trace_parse) {
+ timer.Start();
+ }
fni_ = new(zone()) FuncNameInferrer(isolate(), zone());
// Initialize parser state.
}
if (FLAG_trace_parse && result != NULL) {
- double ms = static_cast<double>(OS::Ticks() - start) / 1000;
+ double ms = timer.Elapsed().InMillisecondsF();
if (info()->is_eval()) {
PrintF("[parsing eval");
} else if (info()->script()->name()->IsString()) {
FunctionLiteral* Parser::ParseLazy() {
- HistogramTimerScope timer(isolate()->counters()->parse_lazy());
+ HistogramTimerScope timer_scope(isolate()->counters()->parse_lazy());
Handle<String> source(String::cast(script_->source()));
isolate()->counters()->total_parse_size()->Increment(source->length());
- int64_t start = FLAG_trace_parse ? OS::Ticks() : 0;
+ ElapsedTimer timer;
+ if (FLAG_trace_parse) {
+ timer.Start();
+ }
Handle<SharedFunctionInfo> shared_info = info()->shared_info();
// Initialize parser state.
}
if (FLAG_trace_parse && result != NULL) {
- double ms = static_cast<double>(OS::Ticks() - start) / 1000;
+ double ms = timer.Elapsed().InMillisecondsF();
SmartArrayPointer<char> name_chars = result->debug_name()->ToCString();
PrintF("[parsing function: %s - took %0.3f ms]\n", *name_chars, ms);
}
void OS::SetUp() {
// Seed the random number generator. We preserve microsecond resolution.
- uint64_t seed = Ticks() ^ (getpid() << 16);
+ uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()) ^ (getpid() << 16);
srandom(static_cast<unsigned int>(seed));
limit_mutex = CreateMutex();
}
void OS::SetUp() {
// Seed the random number generator. We preserve microsecond resolution.
- uint64_t seed = Ticks() ^ (getpid() << 16);
+ uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()) ^ (getpid() << 16);
srandom(static_cast<unsigned int>(seed));
limit_mutex = CreateMutex();
}
void OS::SetUp() {
// Seed the random number generator. We preserve microsecond resolution.
- uint64_t seed = Ticks() ^ (getpid() << 16);
+ uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()) ^ (getpid() << 16);
srandom(static_cast<unsigned int>(seed));
limit_mutex = CreateMutex();
}
double OS::TimeCurrentMillis() {
- struct timeval tv;
- if (gettimeofday(&tv, NULL) < 0) return 0.0;
- return (static_cast<double>(tv.tv_sec) * 1000) +
- (static_cast<double>(tv.tv_usec) / 1000);
-}
-
-
-int64_t OS::Ticks() {
- // gettimeofday has microsecond resolution.
- struct timeval tv;
- if (gettimeofday(&tv, NULL) < 0)
- return 0;
- return (static_cast<int64_t>(tv.tv_sec) * 1000000) + tv.tv_usec;
+ return Time::Now().ToJsTime();
}
// timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
// January 1, 1970.
-class Time {
+class Win32Time {
public:
// Constructors.
- Time();
- explicit Time(double jstime);
- Time(int year, int mon, int day, int hour, int min, int sec);
+ explicit Win32Time(double jstime);
+ Win32Time(int year, int mon, int day, int hour, int min, int sec);
// Convert timestamp to JavaScript representation.
double ToJSTime();
- // Set timestamp to current time.
- void SetToCurrentTime();
-
// Returns the local timezone offset in milliseconds east of UTC. This is
// the number of milliseconds you must add to UTC to get local time, i.e.
// LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
// Return whether or not daylight savings time is in effect at this time.
bool InDST();
- // Return the difference (in milliseconds) between this timestamp and
- // another timestamp.
- int64_t Diff(Time* other);
-
// Accessor for FILETIME representation.
FILETIME& ft() { return time_.ft_; }
// Static variables.
-bool Time::tz_initialized_ = false;
-TIME_ZONE_INFORMATION Time::tzinfo_;
-char Time::std_tz_name_[kTzNameSize];
-char Time::dst_tz_name_[kTzNameSize];
-
-
-// Initialize timestamp to start of epoc.
-Time::Time() {
- t() = 0;
-}
+bool Win32Time::tz_initialized_ = false;
+TIME_ZONE_INFORMATION Win32Time::tzinfo_;
+char Win32Time::std_tz_name_[kTzNameSize];
+char Win32Time::dst_tz_name_[kTzNameSize];
// Initialize timestamp from a JavaScript timestamp.
-Time::Time(double jstime) {
+Win32Time::Win32Time(double jstime) {
t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
}
// Initialize timestamp from date/time components.
-Time::Time(int year, int mon, int day, int hour, int min, int sec) {
+Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
SYSTEMTIME st;
st.wYear = year;
st.wMonth = mon;
// Convert timestamp to JavaScript timestamp.
-double Time::ToJSTime() {
+double Win32Time::ToJSTime() {
return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
}
// Guess the name of the timezone from the bias.
// The guess is very biased towards the northern hemisphere.
-const char* Time::GuessTimezoneNameFromBias(int bias) {
+const char* Win32Time::GuessTimezoneNameFromBias(int bias) {
static const int kHour = 60;
switch (-bias) {
case -9*kHour: return "Alaska";
// Initialize timezone information. The timezone information is obtained from
// windows. If we cannot get the timezone information we fall back to CET.
// Please notice that this code is not thread-safe.
-void Time::TzSet() {
+void Win32Time::TzSet() {
// Just return if timezone information has already been initialized.
if (tz_initialized_) return;
}
-// Return the difference in milliseconds between this and another timestamp.
-int64_t Time::Diff(Time* other) {
- return (t() - other->t()) / kTimeScaler;
-}
-
-
-// Set timestamp to current time.
-void Time::SetToCurrentTime() {
- // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
- // Because we're fast, we like fast timers which have at least a
- // 1ms resolution.
- //
- // timeGetTime() provides 1ms granularity when combined with
- // timeBeginPeriod(). If the host application for v8 wants fast
- // timers, it can use timeBeginPeriod to increase the resolution.
- //
- // Using timeGetTime() has a drawback because it is a 32bit value
- // and hence rolls-over every ~49days.
- //
- // To use the clock, we use GetSystemTimeAsFileTime as our base;
- // and then use timeGetTime to extrapolate current time from the
- // start time. To deal with rollovers, we resync the clock
- // any time when more than kMaxClockElapsedTime has passed or
- // whenever timeGetTime creates a rollover.
-
- static bool initialized = false;
- static TimeStamp init_time;
- static DWORD init_ticks;
- static const int64_t kHundredNanosecondsPerSecond = 10000000;
- static const int64_t kMaxClockElapsedTime =
- 60*kHundredNanosecondsPerSecond; // 1 minute
-
- // If we are uninitialized, we need to resync the clock.
- bool needs_resync = !initialized;
-
- // Get the current time.
- TimeStamp time_now;
- GetSystemTimeAsFileTime(&time_now.ft_);
- DWORD ticks_now = timeGetTime();
-
- // Check if we need to resync due to clock rollover.
- needs_resync |= ticks_now < init_ticks;
-
- // Check if we need to resync due to elapsed time.
- needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
-
- // Check if we need to resync due to backwards time change.
- needs_resync |= time_now.t_ < init_time.t_;
-
- // Resync the clock if necessary.
- if (needs_resync) {
- GetSystemTimeAsFileTime(&init_time.ft_);
- init_ticks = ticks_now = timeGetTime();
- initialized = true;
- }
-
- // Finally, compute the actual time. Why is this so hard.
- DWORD elapsed = ticks_now - init_ticks;
- this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
-}
-
-
// Return the local timezone offset in milliseconds east of UTC. This
// takes into account whether daylight saving is in effect at the time.
// Only times in the 32-bit Unix range may be passed to this function.
// Also, adding the time-zone offset to the input must not overflow.
// The function EquivalentTime() in date.js guarantees this.
-int64_t Time::LocalOffset() {
+int64_t Win32Time::LocalOffset() {
// Initialize timezone information, if needed.
TzSet();
- Time rounded_to_second(*this);
+ Win32Time rounded_to_second(*this);
rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
1000 * kTimeScaler;
// Convert to local time using POSIX localtime function.
// Return whether or not daylight savings time is in effect at this time.
-bool Time::InDST() {
+bool Win32Time::InDST() {
// Initialize timezone information, if needed.
TzSet();
// Return the daylight savings time offset for this time.
-int64_t Time::DaylightSavingsOffset() {
+int64_t Win32Time::DaylightSavingsOffset() {
return InDST() ? 60 * kMsPerMinute : 0;
}
// Returns a string identifying the current timezone for the
// timestamp taking into account daylight saving.
-char* Time::LocalTimezone() {
+char* Win32Time::LocalTimezone() {
// Return the standard or DST time zone name based on whether daylight
// saving is in effect at the given time.
return InDST() ? dst_tz_name_ : std_tz_name_;
// Returns current time as the number of milliseconds since
// 00:00:00 UTC, January 1, 1970.
double OS::TimeCurrentMillis() {
- Time t;
- t.SetToCurrentTime();
- return t.ToJSTime();
-}
-
-
-// Returns the tickcounter based on timeGetTime.
-int64_t OS::Ticks() {
- return timeGetTime() * 1000; // Convert to microseconds.
+ return Time::Now().ToJsTime();
}
// Returns a string identifying the current timezone taking into
// account daylight saving.
const char* OS::LocalTimezone(double time) {
- return Time(time).LocalTimezone();
+ return Win32Time(time).LocalTimezone();
}
// taking daylight savings time into account.
double OS::LocalTimeOffset() {
// Use current time, rounded to the millisecond.
- Time t(TimeCurrentMillis());
+ Win32Time t(TimeCurrentMillis());
// Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
}
// Returns the daylight savings offset in milliseconds for the given
// time.
double OS::DaylightSavingsOffset(double time) {
- int64_t offset = Time(time).DaylightSavingsOffset();
+ int64_t offset = Win32Time(time).DaylightSavingsOffset();
return static_cast<double>(offset);
}
// micro-second resolution.
static int GetUserTime(uint32_t* secs, uint32_t* usecs);
- // Get a tick counter normalized to one tick per microsecond.
- // Used for calculating time intervals.
- static int64_t Ticks();
-
// Returns current time as the number of milliseconds since
// 00:00:00 UTC, January 1, 1970.
static double TimeCurrentMillis();
: title_(title),
uid_(uid),
record_samples_(record_samples),
- start_time_us_(OS::Ticks()),
- end_time_us_(0) {
+ start_time_(Time::NowFromSystemTime()) {
+ timer_.Start();
}
void CpuProfile::CalculateTotalTicksAndSamplingRate() {
- end_time_us_ = OS::Ticks();
+ end_time_us_ = start_time_ + timer_.Elapsed();
}
#include "allocation.h"
#include "hashmap.h"
+#include "time/time.h"
#include "../include/v8-profiler.h"
namespace v8 {
int samples_count() const { return samples_.length(); }
ProfileNode* sample(int index) const { return samples_.at(index); }
- int64_t start_time_us() const { return start_time_us_; }
- int64_t end_time_us() const { return end_time_us_; }
+ Time start_time() const { return start_time_; }
+ Time end_time() const { return end_time_; }
void UpdateTicksScale();
const char* title_;
unsigned uid_;
bool record_samples_;
- int64_t start_time_us_;
- int64_t end_time_us_;
+ Time start_time_;
+ Time end_time_;
+ ElapsedTimer timer_;
List<ProfileNode*> samples_;
ProfileTree top_down_;
--- /dev/null
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef V8_TIME_ELAPSED_TIMER_H_
+#define V8_TIME_ELAPSED_TIMER_H_
+
+#include "checks.h"
+#include "time/time.h"
+
+namespace v8 {
+namespace internal {
+
+class ElapsedTimer V8_FINAL BASE_EMBEDDED {
+ public:
+#ifdef DEBUG
+ ElapsedTimer() : started_(false) {}
+#endif
+
+ // Starts this timer. Once started a timer can be checked with
+ // |Elapsed()| or |HasExpired()|, and may be restarted using |Restart()|.
+ // This method must not be called on an already started timer.
+ void Start() {
+ ASSERT(!IsStarted());
+ start_ticks_ = Now();
+#ifdef DEBUG
+ started_ = true;
+#endif
+ ASSERT(IsStarted());
+ }
+
+ // Stops this timer. Must not be called on a timer that was not
+ // started before.
+ void Stop() {
+ ASSERT(IsStarted());
+ start_ticks_ = TimeTicks();
+#ifdef DEBUG
+ started_ = false;
+#endif
+ ASSERT(!IsStarted());
+ }
+
+ // Returns |true| if this timer was started previously.
+ bool IsStarted() const {
+ ASSERT(started_ || start_ticks_.IsNull());
+ ASSERT(!started_ || !start_ticks_.IsNull());
+ return !start_ticks_.IsNull();
+ }
+
+ // Restarts the timer and returns the time elapsed since the previous start.
+ // This method is equivalent to obtaining the elapsed time with |Elapsed()|
+ // and then starting the timer again, but does so in one single operation,
+ // avoiding the need to obtain the clock value twice. It may only be called
+ // on a previously started timer.
+ TimeDelta Restart() {
+ ASSERT(IsStarted());
+ TimeTicks ticks = Now();
+ TimeDelta elapsed = ticks - start_ticks_;
+ ASSERT(elapsed.InMicroseconds() >= 0);
+ start_ticks_ = ticks;
+ ASSERT(IsStarted());
+ return elapsed;
+ }
+
+ // Returns the time elapsed since the previous start. This method may only
+ // be called on a previously started timer.
+ MUST_USE_RESULT TimeDelta Elapsed() const {
+ ASSERT(IsStarted());
+ TimeDelta elapsed = Now() - start_ticks_;
+ ASSERT(elapsed.InMicroseconds() >= 0);
+ return elapsed;
+ }
+
+ // Returns |true| if the specified |time_delta| has elapsed since the
+ // previous start, or |false| if not. This method may only be called on
+ // a previously started timer.
+ MUST_USE_RESULT bool HasExpired(TimeDelta time_delta) const {
+ ASSERT(IsStarted());
+ return Elapsed() >= time_delta;
+ }
+
+ private:
+ MUST_USE_RESULT V8_INLINE(static TimeTicks Now()) {
+ TimeTicks now = TimeTicks::HighResNow();
+ ASSERT(!now.IsNull());
+ return now;
+ }
+
+ TimeTicks start_ticks_;
+#ifdef DEBUG
+ bool started_;
+#endif
+};
+
+} } // namespace v8::internal
+
+#endif // V8_TIME_ELAPSED_TIMER_H_
--- /dev/null
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "time.h"
+
+#if V8_OS_POSIX
+#include <sys/time.h>
+#endif
+#if V8_OS_MACOSX
+#include <mach/mach_time.h>
+#endif
+
+#include <cstring>
+
+#include "checks.h"
+#include "cpu.h"
+#include "platform.h"
+#if V8_OS_WIN
+#define V8_WIN32_HEADERS_FULL
+#include "win32-headers.h"
+#endif
+
+namespace v8 {
+namespace internal {
+
+TimeDelta TimeDelta::FromDays(int days) {
+ return TimeDelta(days * Time::kMicrosecondsPerDay);
+}
+
+
+TimeDelta TimeDelta::FromHours(int hours) {
+ return TimeDelta(hours * Time::kMicrosecondsPerHour);
+}
+
+
+TimeDelta TimeDelta::FromMinutes(int minutes) {
+ return TimeDelta(minutes * Time::kMicrosecondsPerMinute);
+}
+
+
+TimeDelta TimeDelta::FromSeconds(int64_t seconds) {
+ return TimeDelta(seconds * Time::kMicrosecondsPerSecond);
+}
+
+
+TimeDelta TimeDelta::FromMilliseconds(int64_t milliseconds) {
+ return TimeDelta(milliseconds * Time::kMicrosecondsPerMillisecond);
+}
+
+
+TimeDelta TimeDelta::FromNanoseconds(int64_t nanoseconds) {
+ return TimeDelta(nanoseconds / Time::kNanosecondsPerMicrosecond);
+}
+
+
+int TimeDelta::InDays() const {
+ return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
+}
+
+
+int TimeDelta::InHours() const {
+ return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
+}
+
+
+int TimeDelta::InMinutes() const {
+ return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
+}
+
+
+double TimeDelta::InSecondsF() const {
+ return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
+}
+
+
+int64_t TimeDelta::InSeconds() const {
+ return delta_ / Time::kMicrosecondsPerSecond;
+}
+
+
+double TimeDelta::InMillisecondsF() const {
+ return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
+}
+
+
+int64_t TimeDelta::InMilliseconds() const {
+ return delta_ / Time::kMicrosecondsPerMillisecond;
+}
+
+
+int64_t TimeDelta::InNanoseconds() const {
+ return delta_ * Time::kNanosecondsPerMicrosecond;
+}
+
+
+#if V8_OS_WIN
+
+// We implement time using the high-resolution timers so that we can get
+// timeouts which are smaller than 10-15ms. To avoid any drift, we
+// periodically resync the internal clock to the system clock.
+class Clock V8_FINAL {
+ public:
+ Clock() : initial_time_(CurrentWallclockTime()),
+ initial_ticks_(TimeTicks::Now()),
+ mutex_(OS::CreateMutex()) {}
+
+ ~Clock() { delete mutex_; }
+
+ Time Now() {
+ // This must be executed under lock.
+ ScopedLock sl(mutex_);
+
+ // Calculate the time elapsed since we started our timer.
+ TimeDelta elapsed = TimeTicks::Now() - initial_ticks_;
+
+ // Check if we don't need to synchronize with the wallclock yet.
+ if (elapsed.InMicroseconds() <= kMaxMicrosecondsToAvoidDrift) {
+ return initial_time_ + elapsed;
+ }
+
+ // Resynchronize with the wallclock.
+ initial_ticks_ = TimeTicks::Now();
+ initial_time_ = CurrentWallclockTime();
+ return initial_time_;
+ }
+
+ Time NowFromSystemTime() {
+ ScopedLock sl(mutex_);
+ initial_ticks_ = TimeTicks::Now();
+ initial_time_ = CurrentWallclockTime();
+ return initial_time_;
+ }
+
+ private:
+ // Time between resampling the un-granular clock for this API (1 minute).
+ static const int64_t kMaxMicrosecondsToAvoidDrift =
+ Time::kMicrosecondsPerMinute;
+
+ static Time CurrentWallclockTime() {
+ FILETIME ft;
+ ::GetSystemTimeAsFileTime(&ft);
+ return Time::FromFiletime(ft);
+ }
+
+ TimeTicks initial_ticks_;
+ Time initial_time_;
+ Mutex* mutex_;
+};
+
+
+static LazyDynamicInstance<Clock,
+ DefaultCreateTrait<Clock>,
+ ThreadSafeInitOnceTrait>::type clock = LAZY_DYNAMIC_INSTANCE_INITIALIZER;
+
+
+Time Time::Now() {
+ return clock.Pointer()->Now();
+}
+
+
+Time Time::NowFromSystemTime() {
+ return clock.Pointer()->NowFromSystemTime();
+}
+
+
+// Time between windows epoch and standard epoch.
+static const int64_t kTimeToEpochInMicroseconds = V8_INT64_C(11644473600000000);
+
+
+Time Time::FromFiletime(FILETIME ft) {
+ if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) {
+ return Time();
+ }
+ if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() &&
+ ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) {
+ return Max();
+ }
+ int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) +
+ static_cast<uint64_t>(ft.dwHighDateTime) << 32) / 10;
+ return Time(us - kTimeToEpochInMicroseconds);
+}
+
+
+FILETIME Time::ToFiletime() const {
+ ASSERT(us_ >= 0);
+ FILETIME ft;
+ if (IsNull()) {
+ ft.dwLowDateTime = 0;
+ ft.dwHighDateTime = 0;
+ return ft;
+ }
+ if (IsMax()) {
+ ft.dwLowDateTime = std::numeric_limits<DWORD>::max();
+ ft.dwHighDateTime = std::numeric_limits<DWORD>::max();
+ return ft;
+ }
+ uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10;
+ ft.dwLowDateTime = static_cast<DWORD>(us);
+ ft.dwHighDateTime = static_cast<DWORD>(us >> 32);
+ return ft;
+}
+
+#elif V8_OS_POSIX
+
+Time Time::Now() {
+ struct timeval tv;
+ int result = gettimeofday(&tv, NULL);
+ ASSERT_EQ(0, result);
+ USE(result);
+ return FromTimeval(tv);
+}
+
+
+Time Time::NowFromSystemTime() {
+ return Now();
+}
+
+
+Time Time::FromTimeval(struct timeval tv) {
+ ASSERT(tv.tv_usec >= 0);
+ ASSERT(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond));
+ if (tv.tv_usec == 0 && tv.tv_sec == 0) {
+ return Time();
+ }
+ if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) &&
+ tv.tv_sec == std::numeric_limits<time_t>::max()) {
+ return Max();
+ }
+ return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec);
+}
+
+
+struct timeval Time::ToTimeval() const {
+ struct timeval tv;
+ if (IsNull()) {
+ tv.tv_sec = 0;
+ tv.tv_usec = 0;
+ return tv;
+ }
+ if (IsMax()) {
+ tv.tv_sec = std::numeric_limits<time_t>::max();
+ tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1);
+ return tv;
+ }
+ tv.tv_sec = us_ / kMicrosecondsPerSecond;
+ tv.tv_usec = us_ % kMicrosecondsPerSecond;
+ return tv;
+}
+
+#endif // V8_OS_WIN
+
+
+Time Time::FromJsTime(double ms_since_epoch) {
+ // The epoch is a valid time, so this constructor doesn't interpret
+ // 0 as the null time.
+ if (ms_since_epoch == std::numeric_limits<double>::max()) {
+ return Max();
+ }
+ return Time(
+ static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond));
+}
+
+
+double Time::ToJsTime() const {
+ if (IsNull()) {
+ // Preserve 0 so the invalid result doesn't depend on the platform.
+ return 0;
+ }
+ if (IsMax()) {
+ // Preserve max without offset to prevent overflow.
+ return std::numeric_limits<double>::max();
+ }
+ return static_cast<double>(us_) / kMicrosecondsPerMillisecond;
+}
+
+
+#if V8_OS_WIN
+
+class TickClock {
+ public:
+ virtual ~TickClock() {}
+ virtual int64_t Now() = 0;
+};
+
+
+// Overview of time counters:
+// (1) CPU cycle counter. (Retrieved via RDTSC)
+// The CPU counter provides the highest resolution time stamp and is the least
+// expensive to retrieve. However, the CPU counter is unreliable and should not
+// be used in production. Its biggest issue is that it is per processor and it
+// is not synchronized between processors. Also, on some computers, the counters
+// will change frequency due to thermal and power changes, and stop in some
+// states.
+//
+// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
+// resolution (100 nanoseconds) time stamp but is comparatively more expensive
+// to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
+// (with some help from ACPI).
+// According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
+// in the worst case, it gets the counter from the rollover interrupt on the
+// programmable interrupt timer. In best cases, the HAL may conclude that the
+// RDTSC counter runs at a constant frequency, then it uses that instead. On
+// multiprocessor machines, it will try to verify the values returned from
+// RDTSC on each processor are consistent with each other, and apply a handful
+// of workarounds for known buggy hardware. In other words, QPC is supposed to
+// give consistent result on a multiprocessor computer, but it is unreliable in
+// reality due to bugs in BIOS or HAL on some, especially old computers.
+// With recent updates on HAL and newer BIOS, QPC is getting more reliable but
+// it should be used with caution.
+//
+// (3) System time. The system time provides a low-resolution (typically 10ms
+// to 55 milliseconds) time stamp but is comparatively less expensive to
+// retrieve and more reliable.
+class HighResolutionTickClock V8_FINAL : public TickClock {
+ public:
+ explicit HighResolutionTickClock(int64_t ticks_per_second)
+ : ticks_per_second_(ticks_per_second) {
+ ASSERT_NE(0, ticks_per_second);
+ }
+ virtual ~HighResolutionTickClock() {}
+
+ virtual int64_t Now() V8_OVERRIDE {
+ LARGE_INTEGER now;
+ BOOL result = QueryPerformanceCounter(&now);
+ ASSERT(result);
+ USE(result);
+
+ // Intentionally calculate microseconds in a round about manner to avoid
+ // overflow and precision issues. Think twice before simplifying!
+ int64_t whole_seconds = now.QuadPart / ticks_per_second_;
+ int64_t leftover_ticks = now.QuadPart % ticks_per_second_;
+ int64_t ticks = (whole_seconds * Time::kMicrosecondsPerSecond) +
+ ((leftover_ticks * Time::kMicrosecondsPerSecond) / ticks_per_second_);
+
+ // Make sure we never return 0 here, so that TimeTicks::HighResNow()
+ // will never return 0.
+ return ticks + 1;
+ }
+
+ private:
+ int64_t ticks_per_second_;
+};
+
+
+class RolloverProtectedTickClock V8_FINAL : public TickClock {
+ public:
+ RolloverProtectedTickClock()
+ : mutex_(OS::CreateMutex()), last_seen_now_(0), rollover_ms_(1) {
+ // We initialize rollover_ms_ to 1 to ensure that we will never
+ // return 0 from TimeTicks::HighResNow() and TimeTicks::Now() below.
+ }
+ virtual ~RolloverProtectedTickClock() { delete mutex_; }
+
+ virtual int64_t Now() V8_OVERRIDE {
+ ScopedLock sl(mutex_);
+ // We use timeGetTime() to implement TimeTicks::Now(), which rolls over
+ // every ~49.7 days. We try to track rollover ourselves, which works if
+ // TimeTicks::Now() is called at least every 49 days.
+ // Note that we do not use GetTickCount() here, since timeGetTime() gives
+ // more predictable delta values, as described here:
+ // http://blogs.msdn.com/b/larryosterman/archive/2009/09/02/what-s-the-difference-between-gettickcount-and-timegettime.aspx
+ DWORD now = timeGetTime();
+ if (now < last_seen_now_) {
+ rollover_ms_ += V8_INT64_C(0x100000000); // ~49.7 days.
+ }
+ last_seen_now_ = now;
+ return now + rollover_ms_;
+ }
+
+ private:
+ Mutex* mutex_;
+ DWORD last_seen_now_;
+ int64_t rollover_ms_;
+};
+
+
+static LazyDynamicInstance<RolloverProtectedTickClock,
+ DefaultCreateTrait<RolloverProtectedTickClock>,
+ ThreadSafeInitOnceTrait>::type tick_clock =
+ LAZY_DYNAMIC_INSTANCE_INITIALIZER;
+
+
+struct CreateHighResTickClockTrait {
+ static TickClock* Create() {
+ // Check if the installed hardware supports a high-resolution performance
+ // counter, and if not fallback to the low-resolution tick clock.
+ LARGE_INTEGER ticks_per_second;
+ if (!QueryPerformanceFrequency(&ticks_per_second)) {
+ return tick_clock.Pointer();
+ }
+
+ // On Athlon X2 CPUs (e.g. model 15) the QueryPerformanceCounter
+ // is unreliable, fallback to the low-resolution tick clock.
+ CPU cpu;
+ if (strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15) {
+ return tick_clock.Pointer();
+ }
+
+ return new HighResolutionTickClock(ticks_per_second.QuadPart);
+ }
+};
+
+
+static LazyDynamicInstance<TickClock,
+ CreateHighResTickClockTrait,
+ ThreadSafeInitOnceTrait>::type high_res_tick_clock =
+ LAZY_DYNAMIC_INSTANCE_INITIALIZER;
+
+
+TimeTicks TimeTicks::Now() {
+ // Make sure we never return 0 here.
+ TimeTicks ticks(tick_clock.Pointer()->Now());
+ ASSERT(!ticks.IsNull());
+ return ticks;
+}
+
+
+TimeTicks TimeTicks::HighResNow() {
+ // Make sure we never return 0 here.
+ TimeTicks ticks(high_res_tick_clock.Pointer()->Now());
+ ASSERT(!ticks.IsNull());
+ return ticks;
+}
+
+#else // V8_OS_WIN
+
+TimeTicks TimeTicks::Now() {
+ return HighResNow();
+}
+
+
+TimeTicks TimeTicks::HighResNow() {
+ int64_t ticks;
+#if V8_OS_MACOSX
+ static struct mach_timebase_info info;
+ if (info.denom == 0) {
+ kern_return_t result = mach_timebase_info(&info);
+ ASSERT_EQ(KERN_SUCCESS, result);
+ USE(result);
+ }
+ ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond *
+ info.numer / info.denom);
+#elif V8_OS_SOLARIS
+ ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond);
+#elif V8_OS_POSIX
+ struct timespec ts;
+ int result = clock_gettime(CLOCK_MONOTONIC, &ts);
+ ASSERT_EQ(0, result);
+ USE(result);
+ ticks = (ts.tv_sec * Time::kMicrosecondsPerSecond +
+ ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
+#endif // V8_OS_MACOSX
+ // Make sure we never return 0 here.
+ return TimeTicks(ticks + 1);
+}
+
+#endif // V8_OS_WIN
+
+} } // namespace v8::internal
--- /dev/null
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef V8_TIME_TIME_H_
+#define V8_TIME_TIME_H_
+
+#include <ctime>
+#include <limits>
+
+#include "allocation.h"
+
+// Forward declarations.
+extern "C" {
+struct _FILETIME;
+struct timeval;
+}
+
+namespace v8 {
+namespace internal {
+
+class Time;
+class TimeTicks;
+
+// -----------------------------------------------------------------------------
+// TimeDelta
+//
+// This class represents a duration of time, internally represented in
+// microseonds.
+
+class TimeDelta V8_FINAL BASE_EMBEDDED {
+ public:
+ TimeDelta() : delta_(0) {}
+
+ // Converts units of time to TimeDeltas.
+ static TimeDelta FromDays(int days);
+ static TimeDelta FromHours(int hours);
+ static TimeDelta FromMinutes(int minutes);
+ static TimeDelta FromSeconds(int64_t seconds);
+ static TimeDelta FromMilliseconds(int64_t milliseconds);
+ static TimeDelta FromMicroseconds(int64_t microseconds) {
+ return TimeDelta(microseconds);
+ }
+ static TimeDelta FromNanoseconds(int64_t nanoseconds);
+
+ // Returns the time delta in some unit. The F versions return a floating
+ // point value, the "regular" versions return a rounded-down value.
+ //
+ // InMillisecondsRoundedUp() instead returns an integer that is rounded up
+ // to the next full millisecond.
+ int InDays() const;
+ int InHours() const;
+ int InMinutes() const;
+ double InSecondsF() const;
+ int64_t InSeconds() const;
+ double InMillisecondsF() const;
+ int64_t InMilliseconds() const;
+ int64_t InMillisecondsRoundedUp() const;
+ int64_t InMicroseconds() const { return delta_; }
+ int64_t InNanoseconds() const;
+
+ TimeDelta& operator=(const TimeDelta& other) {
+ delta_ = other.delta_;
+ return *this;
+ }
+
+ // Computations with other deltas.
+ TimeDelta operator+(const TimeDelta& other) const {
+ return TimeDelta(delta_ + other.delta_);
+ }
+ TimeDelta operator-(const TimeDelta& other) const {
+ return TimeDelta(delta_ - other.delta_);
+ }
+
+ TimeDelta& operator+=(const TimeDelta& other) {
+ delta_ += other.delta_;
+ return *this;
+ }
+ TimeDelta& operator-=(const TimeDelta& other) {
+ delta_ -= other.delta_;
+ return *this;
+ }
+ TimeDelta operator-() const {
+ return TimeDelta(-delta_);
+ }
+
+ double TimesOf(const TimeDelta& other) const {
+ return static_cast<double>(delta_) / static_cast<double>(other.delta_);
+ }
+ double PercentOf(const TimeDelta& other) const {
+ return TimesOf(other) * 100.0;
+ }
+
+ // Computations with ints, note that we only allow multiplicative operations
+ // with ints, and additive operations with other deltas.
+ TimeDelta operator*(int64_t a) const {
+ return TimeDelta(delta_ * a);
+ }
+ TimeDelta operator/(int64_t a) const {
+ return TimeDelta(delta_ / a);
+ }
+ TimeDelta& operator*=(int64_t a) {
+ delta_ *= a;
+ return *this;
+ }
+ TimeDelta& operator/=(int64_t a) {
+ delta_ /= a;
+ return *this;
+ }
+ int64_t operator/(const TimeDelta& other) const {
+ return delta_ / other.delta_;
+ }
+
+ // Comparison operators.
+ bool operator==(const TimeDelta& other) const {
+ return delta_ == other.delta_;
+ }
+ bool operator!=(const TimeDelta& other) const {
+ return delta_ != other.delta_;
+ }
+ bool operator<(const TimeDelta& other) const {
+ return delta_ < other.delta_;
+ }
+ bool operator<=(const TimeDelta& other) const {
+ return delta_ <= other.delta_;
+ }
+ bool operator>(const TimeDelta& other) const {
+ return delta_ > other.delta_;
+ }
+ bool operator>=(const TimeDelta& other) const {
+ return delta_ >= other.delta_;
+ }
+
+ private:
+ // Constructs a delta given the duration in microseconds. This is private
+ // to avoid confusion by callers with an integer constructor. Use
+ // FromSeconds, FromMilliseconds, etc. instead.
+ explicit TimeDelta(int64_t delta) : delta_(delta) {}
+
+ // Delta in microseconds.
+ int64_t delta_;
+};
+
+
+// -----------------------------------------------------------------------------
+// Time
+//
+// This class represents an absolute point in time, internally represented as
+// microseconds (s/1,000,000) since 00:00:00 UTC, January 1, 1970.
+
+class Time V8_FINAL BASE_EMBEDDED {
+ public:
+ static const int64_t kMillisecondsPerSecond = 1000;
+ static const int64_t kMicrosecondsPerMillisecond = 1000;
+ static const int64_t kMicrosecondsPerSecond = kMicrosecondsPerMillisecond *
+ kMillisecondsPerSecond;
+ static const int64_t kMicrosecondsPerMinute = kMicrosecondsPerSecond * 60;
+ static const int64_t kMicrosecondsPerHour = kMicrosecondsPerMinute * 60;
+ static const int64_t kMicrosecondsPerDay = kMicrosecondsPerHour * 24;
+ static const int64_t kMicrosecondsPerWeek = kMicrosecondsPerDay * 7;
+ static const int64_t kNanosecondsPerMicrosecond = 1000;
+ static const int64_t kNanosecondsPerSecond = kNanosecondsPerMicrosecond *
+ kMicrosecondsPerSecond;
+
+ // Contains the NULL time. Use Time::Now() to get the current time.
+ Time() : us_(0) {}
+
+ // Returns true if the time object has not been initialized.
+ bool IsNull() const { return us_ == 0; }
+
+ // Returns true if the time object is the maximum time.
+ bool IsMax() const { return us_ == std::numeric_limits<int64_t>::max(); }
+
+ // Returns the current time. Watch out, the system might adjust its clock
+ // in which case time will actually go backwards. We don't guarantee that
+ // times are increasing, or that two calls to Now() won't be the same.
+ static Time Now();
+
+ // Returns the current time. Same as Now() except that this function always
+ // uses system time so that there are no discrepancies between the returned
+ // time and system time even on virtual environments including our test bot.
+ // For timing sensitive unittests, this function should be used.
+ static Time NowFromSystemTime();
+
+ // Returns the time for epoch in Unix-like system (Jan 1, 1970).
+ static Time UnixEpoch() { return Time(0); }
+
+ // Returns the maximum time, which should be greater than any reasonable time
+ // with which we might compare it.
+ static Time Max() { return Time(std::numeric_limits<int64_t>::max()); }
+
+ // Converts to/from POSIX time values.
+ static Time FromTimeval(struct timeval tv);
+ struct timeval ToTimeval() const;
+
+ // Converts to/from Windows file times.
+ static Time FromFiletime(struct _FILETIME ft);
+ struct _FILETIME ToFiletime() const;
+
+ // Converts to/from the Javascript convention for times, a number of
+ // milliseconds since the epoch:
+ static Time FromJsTime(double ms_since_epoch);
+ double ToJsTime() const;
+
+ Time& operator=(const Time& other) {
+ us_ = other.us_;
+ return *this;
+ }
+
+ // Compute the difference between two times.
+ TimeDelta operator-(const Time& other) const {
+ return TimeDelta::FromMicroseconds(us_ - other.us_);
+ }
+
+ // Modify by some time delta.
+ Time& operator+=(const TimeDelta& delta) {
+ us_ += delta.InMicroseconds();
+ return *this;
+ }
+ Time& operator-=(const TimeDelta& delta) {
+ us_ -= delta.InMicroseconds();
+ return *this;
+ }
+
+ // Return a new time modified by some delta.
+ Time operator+(const TimeDelta& delta) const {
+ return Time(us_ + delta.InMicroseconds());
+ }
+ Time operator-(const TimeDelta& delta) const {
+ return Time(us_ - delta.InMicroseconds());
+ }
+
+ // Comparison operators
+ bool operator==(const Time& other) const {
+ return us_ == other.us_;
+ }
+ bool operator!=(const Time& other) const {
+ return us_ != other.us_;
+ }
+ bool operator<(const Time& other) const {
+ return us_ < other.us_;
+ }
+ bool operator<=(const Time& other) const {
+ return us_ <= other.us_;
+ }
+ bool operator>(const Time& other) const {
+ return us_ > other.us_;
+ }
+ bool operator>=(const Time& other) const {
+ return us_ >= other.us_;
+ }
+
+ private:
+ explicit Time(int64_t us) : us_(us) {}
+
+ // Time in microseconds in UTC.
+ int64_t us_;
+};
+
+inline Time operator+(const TimeDelta& delta, const Time& time) {
+ return time + delta;
+}
+
+
+// -----------------------------------------------------------------------------
+// TimeTicks
+//
+// This class represents an abstract time that is most of the time incrementing
+// for use in measuring time durations. It is internally represented in
+// microseconds. It can not be converted to a human-readable time, but is
+// guaranteed not to decrease (if the user changes the computer clock,
+// Time::Now() may actually decrease or jump). But note that TimeTicks may
+// "stand still", for example if the computer suspended.
+
+class TimeTicks V8_FINAL BASE_EMBEDDED {
+ public:
+ TimeTicks() : ticks_(0) {}
+
+ // Platform-dependent tick count representing "right now."
+ // The resolution of this clock is ~1-15ms. Resolution varies depending
+ // on hardware/operating system configuration.
+ // This method never returns a null TimeTicks.
+ static TimeTicks Now();
+
+ // Returns a platform-dependent high-resolution tick count. Implementation
+ // is hardware dependent and may or may not return sub-millisecond
+ // resolution. THIS CALL IS GENERALLY MUCH MORE EXPENSIVE THAN Now() AND
+ // SHOULD ONLY BE USED WHEN IT IS REALLY NEEDED.
+ // This method never returns a null TimeTicks.
+ static TimeTicks HighResNow();
+
+ // Returns true if this object has not been initialized.
+ bool IsNull() const { return ticks_ == 0; }
+
+ TimeTicks& operator=(const TimeTicks other) {
+ ticks_ = other.ticks_;
+ return *this;
+ }
+
+ // Compute the difference between two times.
+ TimeDelta operator-(const TimeTicks other) const {
+ return TimeDelta::FromMicroseconds(ticks_ - other.ticks_);
+ }
+
+ // Modify by some time delta.
+ TimeTicks& operator+=(const TimeDelta& delta) {
+ ticks_ += delta.InMicroseconds();
+ return *this;
+ }
+ TimeTicks& operator-=(const TimeDelta& delta) {
+ ticks_ -= delta.InMicroseconds();
+ return *this;
+ }
+
+ // Return a new TimeTicks modified by some delta.
+ TimeTicks operator+(const TimeDelta& delta) const {
+ return TimeTicks(ticks_ + delta.InMicroseconds());
+ }
+ TimeTicks operator-(const TimeDelta& delta) const {
+ return TimeTicks(ticks_ - delta.InMicroseconds());
+ }
+
+ // Comparison operators
+ bool operator==(const TimeTicks& other) const {
+ return ticks_ == other.ticks_;
+ }
+ bool operator!=(const TimeTicks& other) const {
+ return ticks_ != other.ticks_;
+ }
+ bool operator<(const TimeTicks& other) const {
+ return ticks_ < other.ticks_;
+ }
+ bool operator<=(const TimeTicks& other) const {
+ return ticks_ <= other.ticks_;
+ }
+ bool operator>(const TimeTicks& other) const {
+ return ticks_ > other.ticks_;
+ }
+ bool operator>=(const TimeTicks& other) const {
+ return ticks_ >= other.ticks_;
+ }
+
+ private:
+ // Please use Now() to create a new object. This is for internal use
+ // and testing. Ticks is in microseconds.
+ explicit TimeTicks(int64_t ticks) : ticks_(ticks) {}
+
+ // Tick count in microseconds.
+ int64_t ticks_;
+};
+
+inline TimeTicks operator+(const TimeDelta& delta, const TimeTicks& ticks) {
+ return ticks + delta;
+}
+
+} } // namespace v8::internal
+
+#endif // V8_TIME_TIME_H_
'test-strtod.cc',
'test-thread-termination.cc',
'test-threads.cc',
+ 'test-time.cc',
'test-types.cc',
'test-unbound-queue.cc',
'test-utils.cc',
using i::ProfilerEventsProcessor;
using i::ScopedVector;
using i::SmartPointer;
+using i::TimeDelta;
using i::Vector;
TEST(StartStop) {
CpuProfilesCollection profiles;
ProfileGenerator generator(&profiles);
- SmartPointer<ProfilerEventsProcessor> processor(
- new ProfilerEventsProcessor(&generator, NULL, 100));
+ SmartPointer<ProfilerEventsProcessor> processor(new ProfilerEventsProcessor(
+ &generator, NULL, TimeDelta::FromMicroseconds(100)));
processor->Start();
processor->StopSynchronously();
}
CpuProfilesCollection* profiles = new CpuProfilesCollection;
profiles->StartProfiling("", 1, false);
ProfileGenerator generator(profiles);
- SmartPointer<ProfilerEventsProcessor> processor(
- new ProfilerEventsProcessor(&generator, NULL, 100));
+ SmartPointer<ProfilerEventsProcessor> processor(new ProfilerEventsProcessor(
+ &generator, NULL, TimeDelta::FromMicroseconds(100)));
processor->Start();
CpuProfiler profiler(isolate, profiles, &generator, *processor);
CpuProfilesCollection* profiles = new CpuProfilesCollection;
profiles->StartProfiling("", 1, false);
ProfileGenerator generator(profiles);
- SmartPointer<ProfilerEventsProcessor> processor(
- new ProfilerEventsProcessor(&generator, NULL, 100));
+ SmartPointer<ProfilerEventsProcessor> processor(new ProfilerEventsProcessor(
+ &generator, NULL, TimeDelta::FromMicroseconds(100)));
processor->Start();
CpuProfiler profiler(isolate, profiles, &generator, *processor);
CpuProfilesCollection* profiles = new CpuProfilesCollection;
profiles->StartProfiling("", 1, false);
ProfileGenerator generator(profiles);
- SmartPointer<ProfilerEventsProcessor> processor(
- new ProfilerEventsProcessor(&generator, NULL, 100));
+ SmartPointer<ProfilerEventsProcessor> processor(new ProfilerEventsProcessor(
+ &generator, NULL, TimeDelta::FromMicroseconds(100)));
processor->Start();
CpuProfiler profiler(isolate, profiles, &generator, *processor);
v8::HandleScope scope(env->GetIsolate());
v8::CpuProfiler* cpu_profiler = env->GetIsolate()->GetCpuProfiler();
- int64_t time_before_profiling = i::OS::Ticks();
v8::Local<v8::String> profile_name = v8::String::New("test");
cpu_profiler->StartCpuProfiling(profile_name);
const v8::CpuProfile* profile = cpu_profiler->StopCpuProfiling(profile_name);
- CHECK(time_before_profiling <= profile->GetStartTime());
CHECK(profile->GetStartTime() <= profile->GetEndTime());
- CHECK(profile->GetEndTime() <= i::OS::Ticks());
}
--- /dev/null
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include <cstdlib>
+
+#include "v8.h"
+
+#include "cctest.h"
+#if V8_OS_WIN
+#include "win32-headers.h"
+#endif
+
+using namespace v8::internal;
+
+
+TEST(TimeDeltaFromAndIn) {
+ CHECK(TimeDelta::FromDays(2) == TimeDelta::FromHours(48));
+ CHECK(TimeDelta::FromHours(3) == TimeDelta::FromMinutes(180));
+ CHECK(TimeDelta::FromMinutes(2) == TimeDelta::FromSeconds(120));
+ CHECK(TimeDelta::FromSeconds(2) == TimeDelta::FromMilliseconds(2000));
+ CHECK(TimeDelta::FromMilliseconds(2) == TimeDelta::FromMicroseconds(2000));
+ CHECK_EQ(static_cast<int>(13), TimeDelta::FromDays(13).InDays());
+ CHECK_EQ(static_cast<int>(13), TimeDelta::FromHours(13).InHours());
+ CHECK_EQ(static_cast<int>(13), TimeDelta::FromMinutes(13).InMinutes());
+ CHECK_EQ(static_cast<int64_t>(13), TimeDelta::FromSeconds(13).InSeconds());
+ CHECK_EQ(13.0, TimeDelta::FromSeconds(13).InSecondsF());
+ CHECK_EQ(static_cast<int64_t>(13),
+ TimeDelta::FromMilliseconds(13).InMilliseconds());
+ CHECK_EQ(13.0, TimeDelta::FromMilliseconds(13).InMillisecondsF());
+ CHECK_EQ(static_cast<int64_t>(13),
+ TimeDelta::FromMicroseconds(13).InMicroseconds());
+}
+
+
+TEST(TimeJsTime) {
+ Time t = Time::FromJsTime(700000.3);
+ CHECK_EQ(700000.3, t.ToJsTime());
+}
+
+
+#if V8_OS_POSIX
+TEST(TimeFromTimeVal) {
+ Time null;
+ CHECK(null.IsNull());
+ CHECK(null == Time::FromTimeval(null.ToTimeval()));
+ Time now = Time::Now();
+ CHECK(now == Time::FromTimeval(now.ToTimeval()));
+ Time now_sys = Time::NowFromSystemTime();
+ CHECK(now_sys == Time::FromTimeval(now_sys.ToTimeval()));
+ Time unix_epoch = Time::UnixEpoch();
+ CHECK(unix_epoch == Time::FromTimeval(unix_epoch.ToTimeval()));
+ Time max = Time::Max();
+ CHECK(max.IsMax());
+ CHECK(max == Time::FromTimeval(max.ToTimeval()));
+}
+#endif
+
+
+#if V8_OS_WIN
+TEST(TimeFromFiletime) {
+ Time null;
+ CHECK(null.IsNull());
+ CHECK(null == Time::FromFiletime(null.ToFiletime()));
+ Time now = Time::Now();
+ CHECK(now == Time::FromFiletime(now.ToFiletime()));
+ Time now_sys = Time::NowFromSystemTime();
+ CHECK(now_sys == Time::FromFiletime(now_sys.ToFiletime()));
+ Time unix_epoch = Time::UnixEpoch();
+ CHECK(unix_epoch == Time::FromFiletime(unix_epoch.ToFiletime()));
+ Time max = Time::Max();
+ CHECK(max.IsMax());
+ CHECK(max == Time::FromFiletime(max.ToFiletime()));
+}
+#endif
+
+
+TEST(TimeTicksIsMonotonic) {
+ TimeTicks previous_normal_ticks;
+ TimeTicks previous_highres_ticks;
+ ElapsedTimer timer;
+ timer.Start();
+ while (!timer.HasExpired(TimeDelta::FromMilliseconds(100))) {
+ TimeTicks normal_ticks = TimeTicks::Now();
+ TimeTicks highres_ticks = TimeTicks::HighResNow();
+ CHECK_GE(normal_ticks, previous_normal_ticks);
+ CHECK_GE((normal_ticks - previous_normal_ticks).InMicroseconds(), 0);
+ CHECK_GE(highres_ticks, previous_highres_ticks);
+ CHECK_GE((highres_ticks - previous_highres_ticks).InMicroseconds(), 0);
+ previous_normal_ticks = normal_ticks;
+ previous_highres_ticks = highres_ticks;
+ }
+}
'../../src/stub-cache.h',
'../../src/sweeper-thread.h',
'../../src/sweeper-thread.cc',
+ '../../src/time/elapsed-timer.h',
+ '../../src/time/time.cc',
+ '../../src/time/time.h',
'../../src/token.cc',
'../../src/token.h',
'../../src/transitions-inl.h',
]
}],
],
+ 'libraries': [
+ '-lrt'
+ ]
},
'sources': [ ### gcmole(os:linux) ###
'../../src/platform-linux.cc',
'CAN_USE_VFP_INSTRUCTIONS',
],
'sources': [
- '../../src/platform-posix.cc',
+ '../../src/platform-posix.cc'
],
'conditions': [
['host_os=="mac"', {
]},
'sources': [
'../../src/platform-solaris.cc',
- '../../src/platform-posix.cc',
+ '../../src/platform-posix.cc'
],
}
],
['build_env=="Cygwin"', {
'sources': [
'../../src/platform-cygwin.cc',
- '../../src/platform-posix.cc',
+ '../../src/platform-posix.cc'
],
}, {
'sources': [
'../../src/platform-win32.cc',
- '../../src/win32-math.h',
'../../src/win32-math.cc',
+ '../../src/win32-math.h'
],
}],
],
}, {
'sources': [
'../../src/platform-win32.cc',
- '../../src/win32-math.h',
'../../src/win32-math.cc',
+ '../../src/win32-math.h'
],
'msvs_disabled_warnings': [4351, 4355, 4800],
'link_settings': {