unsigned SequenceNum;
};
+ /// This is a helper function for visitMUL to check the profitability
+ /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
+ /// MulNode is the original multiply, AddNode is (add x, c1),
+ /// and ConstNode is c2.
+ bool isMulAddWithConstProfitable(SDNode *MulNode,
+ SDValue &AddNode,
+ SDValue &ConstNode);
+
/// This is a helper function for MergeStoresOfConstantsOrVecElts. Returns a
/// constant build_vector of the stored constant values in Stores.
SDValue getMergedConstantVectorStore(SelectionDAG &DAG,
}
// fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
- if (N1IsConst && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
- (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
- isa<ConstantSDNode>(N0.getOperand(1))))
- return DAG.getNode(ISD::ADD, SDLoc(N), VT,
- DAG.getNode(ISD::MUL, SDLoc(N0), VT,
- N0.getOperand(0), N1),
- DAG.getNode(ISD::MUL, SDLoc(N1), VT,
- N0.getOperand(1), N1));
+ if (isConstantIntBuildVectorOrConstantInt(N1) &&
+ N0.getOpcode() == ISD::ADD &&
+ isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
+ isMulAddWithConstProfitable(N, N0, N1))
+ return DAG.getNode(ISD::ADD, SDLoc(N), VT,
+ DAG.getNode(ISD::MUL, SDLoc(N0), VT,
+ N0.getOperand(0), N1),
+ DAG.getNode(ISD::MUL, SDLoc(N1), VT,
+ N0.getOperand(1), N1));
// reassociate mul
if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1))
};
} // namespace
+// This is a helper function for visitMUL to check the profitability
+// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
+// MulNode is the original multiply, AddNode is (add x, c1),
+// and ConstNode is c2.
+//
+// If the (add x, c1) has multiple uses, we could increase
+// the number of adds if we make this transformation.
+// It would only be worth doing this if we can remove a
+// multiply in the process. Check for that here.
+// To illustrate:
+// (A + c1) * c3
+// (A + c2) * c3
+// We're checking for cases where we have common "c3 * A" expressions.
+bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode,
+ SDValue &AddNode,
+ SDValue &ConstNode) {
+ APInt Val;
+
+ // If the add only has one use, this would be OK to do.
+ if (AddNode.getNode()->hasOneUse())
+ return true;
+
+ // Walk all the users of the constant with which we're multiplying.
+ for (SDNode *Use : ConstNode->uses()) {
+
+ if (Use == MulNode) // This use is the one we're on right now. Skip it.
+ continue;
+
+ if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
+ SDNode *OtherOp;
+ SDNode *MulVar = AddNode.getOperand(0).getNode();
+
+ // OtherOp is what we're multiplying against the constant.
+ if (Use->getOperand(0) == ConstNode)
+ OtherOp = Use->getOperand(1).getNode();
+ else
+ OtherOp = Use->getOperand(0).getNode();
+
+ // Check to see if multiply is with the same operand of our "add".
+ //
+ // ConstNode = CONST
+ // Use = ConstNode * A <-- visiting Use. OtherOp is A.
+ // ...
+ // AddNode = (A + c1) <-- MulVar is A.
+ // = AddNode * ConstNode <-- current visiting instruction.
+ //
+ // If we make this transformation, we will have a common
+ // multiply (ConstNode * A) that we can save.
+ if (OtherOp == MulVar)
+ return true;
+
+ // Now check to see if a future expansion will give us a common
+ // multiply.
+ //
+ // ConstNode = CONST
+ // AddNode = (A + c1)
+ // ... = AddNode * ConstNode <-- current visiting instruction.
+ // ...
+ // OtherOp = (A + c2)
+ // Use = OtherOp * ConstNode <-- visiting Use.
+ //
+ // If we make this transformation, we will have a common
+ // multiply (CONST * A) after we also do the same transformation
+ // to the "t2" instruction.
+ if (OtherOp->getOpcode() == ISD::ADD &&
+ isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
+ OtherOp->getOperand(0).getNode() == MulVar)
+ return true;
+ }
+ }
+
+ // Didn't find a case where this would be profitable.
+ return false;
+}
+
SDValue DAGCombiner::getMergedConstantVectorStore(SelectionDAG &DAG,
SDLoc SL,
ArrayRef<MemOpLink> Stores,
--- /dev/null
+; RUN: llc < %s -mattr=sse2 -mtriple=i386-unknown-linux-gnu | FileCheck %s
+
+; Source file looks something like this:
+;
+; typedef int AAA[100][100];
+;
+; void testCombineMultiplies(AAA a,int lll)
+; {
+; int LOC = lll + 5;
+;
+; a[LOC][LOC] = 11;
+;
+; a[LOC][20] = 22;
+; a[LOC+20][20] = 33;
+; }
+;
+; We want to make sure we don't generate 2 multiply instructions,
+; one for a[LOC][] and one for a[LOC+20]. visitMUL in DAGCombiner.cpp
+; should combine the instructions in such a way to avoid the extra
+; multiply.
+;
+; Output looks roughly like this:
+;
+; movl 8(%esp), %eax
+; movl 12(%esp), %ecx
+; imull $400, %ecx, %edx # imm = 0x190
+; leal (%edx,%eax), %esi
+; movl $11, 2020(%esi,%ecx,4)
+; movl $22, 2080(%edx,%eax)
+; movl $33, 10080(%edx,%eax)
+;
+; CHECK-LABEL: testCombineMultiplies
+; CHECK: imull $400, [[ARG1:%[a-z]+]], [[MUL:%[a-z]+]] # imm = 0x190
+; CHECK-NEXT: leal ([[MUL]],[[ARG2:%[a-z]+]]), [[LEA:%[a-z]+]]
+; CHECK-NEXT: movl $11, {{[0-9]+}}([[LEA]],[[ARG1]],4)
+; CHECK-NEXT: movl $22, {{[0-9]+}}([[MUL]],[[ARG2]])
+; CHECK-NEXT: movl $33, {{[0-9]+}}([[MUL]],[[ARG2]])
+; CHECK: retl
+;
+
+; Function Attrs: nounwind
+define void @testCombineMultiplies([100 x i32]* nocapture %a, i32 %lll) {
+entry:
+ %add = add nsw i32 %lll, 5
+ %arrayidx1 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add, i32 %add
+ store i32 11, i32* %arrayidx1, align 4
+ %arrayidx3 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add, i32 20
+ store i32 22, i32* %arrayidx3, align 4
+ %add4 = add nsw i32 %lll, 25
+ %arrayidx6 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add4, i32 20
+ store i32 33, i32* %arrayidx6, align 4
+ ret void
+}
+
+
+; Test for the same optimization on vector multiplies.
+;
+; Source looks something like this:
+;
+; typedef int v4int __attribute__((__vector_size__(16)));
+;
+; v4int x;
+; v4int v2, v3;
+; void testCombineMultiplies_splat(v4int v1) {
+; v2 = (v1 + (v4int){ 11, 11, 11, 11 }) * (v4int) {22, 22, 22, 22};
+; v3 = (v1 + (v4int){ 33, 33, 33, 33 }) * (v4int) {22, 22, 22, 22};
+; x = (v1 + (v4int){ 11, 11, 11, 11 });
+; }
+;
+; Output looks something like this:
+;
+; testCombineMultiplies_splat: # @testCombineMultiplies_splat
+; # BB#0: # %entry
+; movdqa .LCPI1_0, %xmm1 # xmm1 = [11,11,11,11]
+; paddd %xmm0, %xmm1
+; movdqa .LCPI1_1, %xmm2 # xmm2 = [22,22,22,22]
+; pshufd $245, %xmm0, %xmm3 # xmm3 = xmm0[1,1,3,3]
+; pmuludq %xmm2, %xmm0
+; pshufd $232, %xmm0, %xmm0 # xmm0 = xmm0[0,2,2,3]
+; pmuludq %xmm2, %xmm3
+; pshufd $232, %xmm3, %xmm2 # xmm2 = xmm3[0,2,2,3]
+; punpckldq %xmm2, %xmm0 # xmm0 = xmm0[0],xmm2[0],xmm0[1],xmm2[1]
+; movdqa .LCPI1_2, %xmm2 # xmm2 = [242,242,242,242]
+; paddd %xmm0, %xmm2
+; paddd .LCPI1_3, %xmm0
+; movdqa %xmm2, v2
+; movdqa %xmm0, v3
+; movdqa %xmm1, x
+; retl
+;
+; Again, we want to make sure we don't generate two different multiplies.
+; We should have a single multiply for "v1 * {22, 22, 22, 22}" (made up of two
+; pmuludq instructions), followed by two adds. Without this optimization, we'd
+; do 2 adds, followed by 2 multiplies (i.e. 4 pmuludq instructions).
+;
+; CHECK-LABEL: testCombineMultiplies_splat
+; CHECK: movdqa .LCPI1_0, [[C11:%xmm[0-9]]]
+; CHECK-NEXT: paddd %xmm0, [[C11]]
+; CHECK-NEXT: movdqa .LCPI1_1, [[C22:%xmm[0-9]]]
+; CHECK-NEXT: pshufd $245, %xmm0, [[T1:%xmm[0-9]]]
+; CHECK-NEXT: pmuludq [[C22]], [[T2:%xmm[0-9]]]
+; CHECK-NEXT: pshufd $232, [[T2]], [[T3:%xmm[0-9]]]
+; CHECK-NEXT: pmuludq [[C22]], [[T4:%xmm[0-9]]]
+; CHECK-NEXT: pshufd $232, [[T4]], [[T5:%xmm[0-9]]]
+; CHECK-NEXT: punpckldq [[T5]], [[T6:%xmm[0-9]]]
+; CHECK-NEXT: movdqa .LCPI1_2, [[C242:%xmm[0-9]]]
+; CHECK-NEXT: paddd [[T6]], [[C242]]
+; CHECK-NEXT: paddd .LCPI1_3, [[C726:%xmm[0-9]]]
+; CHECK-NEXT: movdqa [[C242]], v2
+; CHECK-NEXT: [[C726]], v3
+; CHECK-NEXT: [[C11]], x
+; CHECK-NEXT: retl
+
+@v2 = common global <4 x i32> zeroinitializer, align 16
+@v3 = common global <4 x i32> zeroinitializer, align 16
+@x = common global <4 x i32> zeroinitializer, align 16
+
+; Function Attrs: nounwind
+define void @testCombineMultiplies_splat(<4 x i32> %v1) {
+entry:
+ %add1 = add <4 x i32> %v1, <i32 11, i32 11, i32 11, i32 11>
+ %mul1 = mul <4 x i32> %add1, <i32 22, i32 22, i32 22, i32 22>
+ %add2 = add <4 x i32> %v1, <i32 33, i32 33, i32 33, i32 33>
+ %mul2 = mul <4 x i32> %add2, <i32 22, i32 22, i32 22, i32 22>
+ store <4 x i32> %mul1, <4 x i32>* @v2, align 16
+ store <4 x i32> %mul2, <4 x i32>* @v3, align 16
+ store <4 x i32> %add1, <4 x i32>* @x, align 16
+ ret void
+}
+
+; Finally, check the non-splatted vector case. This is very similar
+; to the previous test case, except for the vector values.
+;
+; CHECK-LABEL: testCombineMultiplies_non_splat
+; CHECK: movdqa .LCPI2_0, [[C11:%xmm[0-9]]]
+; CHECK-NEXT: paddd %xmm0, [[C11]]
+; CHECK-NEXT: movdqa .LCPI2_1, [[C22:%xmm[0-9]]]
+; CHECK-NEXT: pshufd $245, %xmm0, [[T1:%xmm[0-9]]]
+; CHECK-NEXT: pmuludq [[C22]], [[T2:%xmm[0-9]]]
+; CHECK-NEXT: pshufd $232, [[T2]], [[T3:%xmm[0-9]]]
+; CHECK-NEXT: pshufd $245, [[C22]], [[T7:%xmm[0-9]]]
+; CHECK-NEXT: pmuludq [[T1]], [[T7]]
+; CHECK-NEXT: pshufd $232, [[T7]], [[T5:%xmm[0-9]]]
+; CHECK-NEXT: punpckldq [[T5]], [[T6:%xmm[0-9]]]
+; CHECK-NEXT: movdqa .LCPI2_2, [[C242:%xmm[0-9]]]
+; CHECK-NEXT: paddd [[T6]], [[C242]]
+; CHECK-NEXT: paddd .LCPI2_3, [[C726:%xmm[0-9]]]
+; CHECK-NEXT: movdqa [[C242]], v2
+; CHECK-NEXT: [[C726]], v3
+; CHECK-NEXT: [[C11]], x
+; CHECK-NEXT: retl
+; Function Attrs: nounwind
+define void @testCombineMultiplies_non_splat(<4 x i32> %v1) {
+entry:
+ %add1 = add <4 x i32> %v1, <i32 11, i32 22, i32 33, i32 44>
+ %mul1 = mul <4 x i32> %add1, <i32 22, i32 33, i32 44, i32 55>
+ %add2 = add <4 x i32> %v1, <i32 33, i32 44, i32 55, i32 66>
+ %mul2 = mul <4 x i32> %add2, <i32 22, i32 33, i32 44, i32 55>
+ store <4 x i32> %mul1, <4 x i32>* @v2, align 16
+ store <4 x i32> %mul2, <4 x i32>* @v3, align 16
+ store <4 x i32> %add1, <4 x i32>* @x, align 16
+ ret void
+}