pa_sink_input_set_mute(u->sink_input, s->muted, s->save_muted);
}
-
+#ifndef __SSE2__
//reference implementation
static void dsp_logic(
float * restrict dst,//used as a temp array too, needs to be fft_length!
fftwf_complex * restrict output_window,//The transformed window'd src
struct userdata *u){
//use a linear-phase sliding STFT and overlap-add method (for each channel)
- //zero padd the data
- memset(dst + u->window_size, 0, (u->fft_size - u->window_size) * sizeof(float));
//window the data
for(size_t j = 0; j < u->window_size; ++j){
dst[j] = X * W[j] * src[j];
}
+ //zero padd the the remaining fft window
+ memset(dst + u->window_size, 0, (u->fft_size - u->window_size) * sizeof(float));
//Processing is done here!
//do fft
fftwf_execute_dft_r2c(u->forward_plan, dst, output_window);
(u->samples_gathered - u->R) * sizeof(float)
);
}
-
+#else
typedef float v4sf __attribute__ ((__aligned__(v_size * sizeof(float))));
typedef union float_vector {
float f[v_size];
v4sf v;
-#ifdef __SSE2__
__m128 m;
-#endif
} float_vector_t;
-////regardless of sse enabled, the loops in here assume
-////16 byte aligned addresses and memory allocations divisible by v_size
-//void dsp_logic(
-// float * restrict dst,//used as a temp array too, needs to be fft_length!
-// float * restrict src,/*input data w/ overlap at start,
-// *automatically cycled in routine
-// */
-// float * restrict overlap,//The size of the overlap
-// const float X,//multipliar
-// const float * restrict H,//The freq. magnitude scalers filter
-// const float * restrict W,//The windowing function
-// fftwf_complex * restrict output_window,//The transformed window'd src
-// struct userdata *u){//Collection of constants
- //float_vector_t x = {X, X, X, X};
-// const size_t window_size = PA_ROUND_UP(u->window_size,v_size);
-// const size_t fft_h = PA_ROUND_UP(FILTER_SIZE, v_size / 2);
-// //const size_t R = PA_ROUND_UP(u->R, v_size);
-// const size_t overlap_size = PA_ROUND_UP(u->overlap_size, v_size);
-// overlap_size = PA_ROUND_UP(u->overlap_size, v_size);
-//
-// //assert(u->samples_gathered >= u->R);
-// //zero out the bit beyond the real overlap so we don't add garbage
-// for(size_t j = overlap_size; j > u->overlap_size; --j){
-// overlap[j-1] = 0;
-// }
-// //use a linear-phase sliding STFT and overlap-add method
-// //zero padd the data
-// memset(dst + u->window_size, 0, (u->fft_size - u->window_size)*sizeof(float));
-// //window the data
-// for(size_t j = 0; j < window_size; j += v_size){
-// //dst[j] = W[j]*src[j];
-// float_vector_t *d = (float_vector_t*) (dst+j);
-// float_vector_t *w = (float_vector_t*) (W+j);
-// float_vector_t *s = (float_vector_t*) (src+j);
+//regardless of sse enabled, the loops in here assume
+//16 byte aligned addresses and memory allocations divisible by v_size
+static void dsp_logic(
+ float * restrict dst,//used as a temp array too, needs to be fft_length!
+ float * restrict src,/*input data w/ overlap at start,
+ *automatically cycled in routine
+ */
+ float * restrict overlap,//The size of the overlap
+ const float X,//multipliar
+ const float * restrict H,//The freq. magnitude scalers filter
+ const float * restrict W,//The windowing function
+ fftwf_complex * restrict output_window,//The transformed window'd src
+ struct userdata *u){//Collection of constants
+ const size_t overlap_size = PA_ROUND_UP(u->overlap_size, v_size);
+
+
+ //assert(u->samples_gathered >= u->R);
+ //use a linear-phase sliding STFT and overlap-add method
+ for(size_t j = 0; j < u->window_size; j += v_size){
+ //dst[j] = W[j] * src[j];
+ float_vector_t *d = (float_vector_t*) (dst + j);
+ float_vector_t *w = (float_vector_t*) (W + j);
+ float_vector_t *s = (float_vector_t*) (src + j);
//#if __SSE2__
-// d->m = _mm_mul_ps(x->m, _mm_mul_ps(w->m, s->m));
+ d->m = _mm_mul_ps(w->m, s->m);
//#else
-// d->v = x->v * w->v * s->v;
+// d->v = w->v * s->v;
//#endif
-// }
-// //Processing is done here!
-// //do fft
-// fftwf_execute_dft_r2c(u->forward_plan, dst, output_window);
-//
-//
-// //perform filtering - purely magnitude based
-// for(size_t j = 0;j < fft_h; j+=v_size/2){
-// //output_window[j][0]*=H[j];
-// //output_window[j][1]*=H[j];
-// float_vector_t *d = (float_vector_t*)(output_window+j);
-// float_vector_t h;
-// h.f[0] = h.f[1] = H[j];
-// h.f[2] = h.f[3] = H[j+1];
+ }
+ //zero padd the the remaining fft window
+ memset(dst + u->window_size, 0, (u->fft_size - u->window_size) * sizeof(float));
+
+ //Processing is done here!
+ //do fft
+ fftwf_execute_dft_r2c(u->forward_plan, dst, output_window);
+ //perform filtering - purely magnitude based
+ for(size_t j = 0; j < FILTER_SIZE; j += v_size / 2){
+ //output_window[j][0]*=H[j];
+ //output_window[j][1]*=H[j];
+ float_vector_t *d = (float_vector_t*)( ((float *) output_window) + 2 * j);
+ float_vector_t h;
+ h.f[0] = h.f[1] = H[j];
+ h.f[2] = h.f[3] = H[j + 1];
//#if __SSE2__
-// d->m = _mm_mul_ps(d->m, h.m);
+ d->m = _mm_mul_ps(d->m, h.m);
//#else
-// d->v = d->v*h->v;
+// d->v = d->v * h.v;
//#endif
-// }
-// //inverse fft
-// fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst);
-//
-// ////debug: tests overlaping add
-// ////and negates ALL PREVIOUS processing
-// ////yields a perfect reconstruction if COLA is held
-// //for(size_t j = 0; j < u->window_size; ++j){
-// // dst[j] = W[j]*src[j];
-// //}
-//
-// //overlap add and preserve overlap component from this window (linear phase)
-// for(size_t j = 0; j < overlap_size; j+=v_size){
-// //dst[j]+=overlap[j];
-// //overlap[j]+=dst[j+R];
-// float_vector_t *d = (float_vector_t*)(dst+j);
-// float_vector_t *o = (float_vector_t*)(overlap+j);
+ }
+
+ //inverse fft
+ fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst);
+
+ ////debug: tests overlaping add
+ ////and negates ALL PREVIOUS processing
+ ////yields a perfect reconstruction if COLA is held
+ //for(size_t j = 0; j < u->window_size; ++j){
+ // dst[j] = W[j] * src[j];
+ //}
+
+ //overlap add and preserve overlap component from this window (linear phase)
+ for(size_t j = 0; j < overlap_size; j += v_size){
+ //dst[j]+=overlap[j];
+ //overlap[j]+=dst[j+R];
+ float_vector_t *d = (float_vector_t*)(dst + j);
+ float_vector_t *o = (float_vector_t*)(overlap + j);
//#if __SSE2__
-// d->m = _mm_add_ps(d->m, o->m);
-// o->m = ((float_vector_t*)(dst+u->R+j))->m;
+ d->m = _mm_add_ps(d->m, o->m);
+ o->m = ((float_vector_t*)(dst + u->R + j))->m;
//#else
-// d->v = d->v+o->v;
-// o->v = ((float_vector_t*)(dst+u->R+j))->v;
+// d->v = d->v + o->v;
+// o->v = ((float_vector_t*)(dst + u->R + j))->v;
//#endif
-// }
-// //memcpy(overlap, dst+u->R, u->overlap_size*sizeof(float));
-//
-// //////debug: tests if basic buffering works
-// //////shouldn't modify the signal AT ALL (beyond roundoff)
-// //for(size_t j = 0; j < u->window_size; ++j){
-// // dst[j] = src[j];
-// //}
-//
-// //preseve the needed input for the next window's overlap
-// memmove(src, src + u->R,
-// u->overlap_size * sizeof(float)
-// );
-//}
+ }
+ //memcpy(overlap, dst+u->R, u->overlap_size * sizeof(float)); //overlap preserve (debug)
+ //zero out the bit beyond the real overlap so we don't add garbage next iteration
+ memset(overlap + u->overlap_size, 0, overlap_size - u->overlap_size);
+
+ ////debug: tests if basic buffering works
+ ////shouldn't modify the signal AT ALL (beyond roundoff)
+ //for(size_t j = 0; j < u->window_size; ++j){
+ // dst[j] = src[j];
+ //}
+
+ //preseve the needed input for the next window's overlap
+ memmove(src, src + u->R,
+ (u->samples_gathered - u->R) * sizeof(float)
+ );
+}
+#endif
static void process_samples(struct userdata *u, pa_memchunk *tchunk){
size_t fs = pa_frame_size(&(u->sink->sample_spec));
//invalidate the output q
pa_memblockq_seek(u->input_q, - (int64_t) amount, PA_SEEK_RELATIVE, TRUE);
pa_log("Resetting filter");
- reset_filter(u);
+ //reset_filter(u); //this is the "proper" thing to do...
}
}
pa_modargs_get_value_boolean(ma, "set_default", &u->set_default);
u->channels = ss.channels;
- u->fft_size = pow(2, ceil(log(ss.rate)/log(2)));//probably unstable near corner cases of powers of 2
+ u->fft_size = pow(2, ceil(log(ss.rate) / log(2)));//probably unstable near corner cases of powers of 2
pa_log_debug("fft size: %ld", u->fft_size);
u->window_size = 15999;
+ if(u->window_size % 2 == 0){
+ u->window_size--;
+ }
u->R = (u->window_size + 1) / 2;
u->overlap_size = u->window_size - u->R;
u->samples_gathered = 0;
u->a_H[c] = pa_aupdate_new();
u->input[c] = NULL;
u->overlap_accum[c] = alloc(u->overlap_size, sizeof(float));
- memset(u->overlap_accum[c], 0, u->overlap_size*sizeof(float));
}
u->output_window = alloc((FILTER_SIZE), sizeof(fftwf_complex));
u->forward_plan = fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_ESTIMATE);