[RISCV] Implement RISCV ABI lowering
authorAlex Bradbury <asb@lowrisc.org>
Mon, 15 Jan 2018 17:54:52 +0000 (17:54 +0000)
committerAlex Bradbury <asb@lowrisc.org>
Mon, 15 Jan 2018 17:54:52 +0000 (17:54 +0000)
RISCVABIInfo is implemented in terms of XLen, supporting both RV32 and RV64.
Unfortunately we need to count argument registers in the frontend in order to
determine when to emit signext and zeroext attributes. Integer scalars are
extended according to their type up to 32-bits and then sign-extended to XLen
when passed in registers, but are anyext when passed on the stack. This patch
only implements the base integer (soft float) ABIs.

For more information on the RISC-V ABI, see [the ABI
doc](https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md),
my [golden model](https://github.com/lowRISC/riscv-calling-conv-model), and
the [LLVM RISC-V calling convention
patch](https://reviews.llvm.org/D39898#2d1595b4) (specifically the comment
documenting frontend expectations).

Differential Revision: https://reviews.llvm.org/D40023

llvm-svn: 322494

clang/lib/CodeGen/TargetInfo.cpp
clang/test/CodeGen/riscv32-abi.c [new file with mode: 0644]
clang/test/CodeGen/riscv64-abi.c [new file with mode: 0644]
clang/test/Driver/riscv32-toolchain.c
clang/test/Driver/riscv64-toolchain.c

index 8471942..d9d44fa 100644 (file)
@@ -8770,6 +8770,182 @@ static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
   return false;
 }
 
+//===----------------------------------------------------------------------===//
+// RISCV ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+class RISCVABIInfo : public DefaultABIInfo {
+private:
+  unsigned XLen; // Size of the integer ('x') registers in bits.
+  static const int NumArgGPRs = 8;
+
+public:
+  RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
+      : DefaultABIInfo(CGT), XLen(XLen) {}
+
+  // DefaultABIInfo's classifyReturnType and classifyArgumentType are
+  // non-virtual, but computeInfo is virtual, so we overload it.
+  void computeInfo(CGFunctionInfo &FI) const override;
+
+  ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed,
+                                  int &ArgGPRsLeft) const;
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+
+  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                    QualType Ty) const override;
+
+  ABIArgInfo extendType(QualType Ty) const;
+};
+} // end anonymous namespace
+
+void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
+  QualType RetTy = FI.getReturnType();
+  if (!getCXXABI().classifyReturnType(FI))
+    FI.getReturnInfo() = classifyReturnType(RetTy);
+
+  // IsRetIndirect is true if classifyArgumentType indicated the value should
+  // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128
+  // is passed direct in LLVM IR, relying on the backend lowering code to
+  // rewrite the argument list and pass indirectly on RV32.
+  bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect ||
+                       getContext().getTypeSize(RetTy) > (2 * XLen);
+
+  // We must track the number of GPRs used in order to conform to the RISC-V
+  // ABI, as integer scalars passed in registers should have signext/zeroext
+  // when promoted, but are anyext if passed on the stack. As GPR usage is
+  // different for variadic arguments, we must also track whether we are
+  // examining a vararg or not.
+  int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
+  int NumFixedArgs = FI.getNumRequiredArgs();
+
+  int ArgNum = 0;
+  for (auto &ArgInfo : FI.arguments()) {
+    bool IsFixed = ArgNum < NumFixedArgs;
+    ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft);
+    ArgNum++;
+  }
+}
+
+ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
+                                              int &ArgGPRsLeft) const {
+  assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
+  Ty = useFirstFieldIfTransparentUnion(Ty);
+
+  // Structures with either a non-trivial destructor or a non-trivial
+  // copy constructor are always passed indirectly.
+  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+    if (ArgGPRsLeft)
+      ArgGPRsLeft -= 1;
+    return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
+                                           CGCXXABI::RAA_DirectInMemory);
+  }
+
+  // Ignore empty structs/unions.
+  if (isEmptyRecord(getContext(), Ty, true))
+    return ABIArgInfo::getIgnore();
+
+  uint64_t Size = getContext().getTypeSize(Ty);
+  uint64_t NeededAlign = getContext().getTypeAlign(Ty);
+  bool MustUseStack = false;
+  // Determine the number of GPRs needed to pass the current argument
+  // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
+  // register pairs, so may consume 3 registers.
+  int NeededArgGPRs = 1;
+  if (!IsFixed && NeededAlign == 2 * XLen)
+    NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
+  else if (Size > XLen && Size <= 2 * XLen)
+    NeededArgGPRs = 2;
+
+  if (NeededArgGPRs > ArgGPRsLeft) {
+    MustUseStack = true;
+    NeededArgGPRs = ArgGPRsLeft;
+  }
+
+  ArgGPRsLeft -= NeededArgGPRs;
+
+  if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
+    // Treat an enum type as its underlying type.
+    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+      Ty = EnumTy->getDecl()->getIntegerType();
+
+    // All integral types are promoted to XLen width, unless passed on the
+    // stack.
+    if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
+      return extendType(Ty);
+    }
+
+    return ABIArgInfo::getDirect();
+  }
+
+  // Aggregates which are <= 2*XLen will be passed in registers if possible,
+  // so coerce to integers.
+  if (Size <= 2 * XLen) {
+    unsigned Alignment = getContext().getTypeAlign(Ty);
+
+    // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
+    // required, and a 2-element XLen array if only XLen alignment is required.
+    if (Size <= XLen) {
+      return ABIArgInfo::getDirect(
+          llvm::IntegerType::get(getVMContext(), XLen));
+    } else if (Alignment == 2 * XLen) {
+      return ABIArgInfo::getDirect(
+          llvm::IntegerType::get(getVMContext(), 2 * XLen));
+    } else {
+      return ABIArgInfo::getDirect(llvm::ArrayType::get(
+          llvm::IntegerType::get(getVMContext(), XLen), 2));
+    }
+  }
+  return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+}
+
+ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
+  if (RetTy->isVoidType())
+    return ABIArgInfo::getIgnore();
+
+  int ArgGPRsLeft = 2;
+
+  // The rules for return and argument types are the same, so defer to
+  // classifyArgumentType.
+  return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft);
+}
+
+Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+                                QualType Ty) const {
+  CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
+
+  // Empty records are ignored for parameter passing purposes.
+  if (isEmptyRecord(getContext(), Ty, true)) {
+    Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
+    Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
+    return Addr;
+  }
+
+  std::pair<CharUnits, CharUnits> SizeAndAlign =
+      getContext().getTypeInfoInChars(Ty);
+
+  // Arguments bigger than 2*Xlen bytes are passed indirectly.
+  bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
+
+  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
+                          SlotSize, /*AllowHigherAlign=*/true);
+}
+
+ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
+  int TySize = getContext().getTypeSize(Ty);
+  // RV64 ABI requires unsigned 32 bit integers to be sign extended.
+  if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
+    return ABIArgInfo::getSignExtend(Ty);
+  return ABIArgInfo::getExtend(Ty);
+}
+
+namespace {
+class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+  RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
+      : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {}
+};
+} // namespace
 
 //===----------------------------------------------------------------------===//
 // Driver code
@@ -8884,6 +9060,11 @@ const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
   case llvm::Triple::msp430:
     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
 
+  case llvm::Triple::riscv32:
+    return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32));
+  case llvm::Triple::riscv64:
+    return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64));
+
   case llvm::Triple::systemz: {
     bool HasVector = getTarget().getABI() == "vector";
     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
diff --git a/clang/test/CodeGen/riscv32-abi.c b/clang/test/CodeGen/riscv32-abi.c
new file mode 100644 (file)
index 0000000..e32a8c2
--- /dev/null
@@ -0,0 +1,426 @@
+// RUN: %clang_cc1 -triple riscv32 -emit-llvm %s -o - | FileCheck %s
+
+#include <stddef.h>
+#include <stdint.h>
+
+// CHECK-LABEL: define void @f_void()
+void f_void(void) {}
+
+// Scalar arguments and return values smaller than the word size are extended
+// according to the sign of their type, up to 32 bits
+
+// CHECK-LABEL: define zeroext i1 @f_scalar_0(i1 zeroext %x)
+_Bool f_scalar_0(_Bool x) { return x; }
+
+// CHECK-LABEL: define signext i8 @f_scalar_1(i8 signext %x)
+int8_t f_scalar_1(int8_t x) { return x; }
+
+// CHECK-LABEL: define zeroext i8 @f_scalar_2(i8 zeroext %x)
+uint8_t f_scalar_2(uint8_t x) { return x; }
+
+// CHECK-LABEL: define i32 @f_scalar_3(i32 %x)
+int32_t f_scalar_3(int32_t x) { return x; }
+
+// CHECK-LABEL: define i64 @f_scalar_4(i64 %x)
+int64_t f_scalar_4(int64_t x) { return x; }
+
+// CHECK-LABEL: define float @f_fp_scalar_1(float %x)
+float f_fp_scalar_1(float x) { return x; }
+
+// CHECK-LABEL: define double @f_fp_scalar_2(double %x)
+double f_fp_scalar_2(double x) { return x; }
+
+// Scalars larger than 2*xlen are passed/returned indirect. However, the
+// RISC-V LLVM backend can handle this fine, so the function doesn't need to
+// be modified.
+
+// CHECK-LABEL: define fp128 @f_fp_scalar_3(fp128 %x)
+long double f_fp_scalar_3(long double x) { return x; }
+
+// Empty structs or unions are ignored.
+
+struct empty_s {};
+
+// CHECK-LABEL: define void @f_agg_empty_struct()
+struct empty_s f_agg_empty_struct(struct empty_s x) {
+  return x;
+}
+
+union empty_u {};
+
+// CHECK-LABEL: define void @f_agg_empty_union()
+union empty_u f_agg_empty_union(union empty_u x) {
+  return x;
+}
+
+// Aggregates <= 2*xlen may be passed in registers, so will be coerced to
+// integer arguments. The rules for return are the same.
+
+struct tiny {
+  uint8_t a, b, c, d;
+};
+
+// CHECK-LABEL: define void @f_agg_tiny(i32 %x.coerce)
+void f_agg_tiny(struct tiny x) {
+  x.a += x.b;
+  x.c += x.d;
+}
+
+// CHECK-LABEL: define i32 @f_agg_tiny_ret()
+struct tiny f_agg_tiny_ret() {
+  return (struct tiny){1, 2, 3, 4};
+}
+
+typedef uint8_t v4i8 __attribute__((vector_size(4)));
+typedef int32_t v1i32 __attribute__((vector_size(4)));
+
+// CHECK-LABEL: define void @f_vec_tiny_v4i8(i32 %x.coerce)
+void f_vec_tiny_v4i8(v4i8 x) {
+  x[0] = x[1];
+  x[2] = x[3];
+}
+
+// CHECK-LABEL: define i32 @f_vec_tiny_v4i8_ret()
+v4i8 f_vec_tiny_v4i8_ret() {
+  return (v4i8){1, 2, 3, 4};
+}
+
+// CHECK-LABEL: define void @f_vec_tiny_v1i32(i32 %x.coerce)
+void f_vec_tiny_v1i32(v1i32 x) {
+  x[0] = 114;
+}
+
+// CHECK-LABEL: define i32 @f_vec_tiny_v1i32_ret()
+v1i32 f_vec_tiny_v1i32_ret() {
+  return (v1i32){1};
+}
+
+struct small {
+  int32_t a, *b;
+};
+
+// CHECK-LABEL: define void @f_agg_small([2 x i32] %x.coerce)
+void f_agg_small(struct small x) {
+  x.a += *x.b;
+  x.b = &x.a;
+}
+
+// CHECK-LABEL: define [2 x i32] @f_agg_small_ret()
+struct small f_agg_small_ret() {
+  return (struct small){1, 0};
+}
+
+typedef uint8_t v8i8 __attribute__((vector_size(8)));
+typedef int64_t v1i64 __attribute__((vector_size(8)));
+
+// CHECK-LABEL: define void @f_vec_small_v8i8(i64 %x.coerce)
+void f_vec_small_v8i8(v8i8 x) {
+  x[0] = x[7];
+}
+
+// CHECK-LABEL: define i64 @f_vec_small_v8i8_ret()
+v8i8 f_vec_small_v8i8_ret() {
+  return (v8i8){1, 2, 3, 4, 5, 6, 7, 8};
+}
+
+// CHECK-LABEL: define void @f_vec_small_v1i64(i64 %x.coerce)
+void f_vec_small_v1i64(v1i64 x) {
+  x[0] = 114;
+}
+
+// CHECK-LABEL: define i64 @f_vec_small_v1i64_ret()
+v1i64 f_vec_small_v1i64_ret() {
+  return (v1i64){1};
+}
+
+// Aggregates of 2*xlen size and 2*xlen alignment should be coerced to a
+// single 2*xlen-sized argument, to ensure that alignment can be maintained if
+// passed on the stack.
+
+struct small_aligned {
+  int64_t a;
+};
+
+// CHECK-LABEL: define void @f_agg_small_aligned(i64 %x.coerce)
+void f_agg_small_aligned(struct small_aligned x) {
+  x.a += x.a;
+}
+
+// CHECK-LABEL: define i64 @f_agg_small_aligned_ret(i64 %x.coerce)
+struct small_aligned f_agg_small_aligned_ret(struct small_aligned x) {
+  return (struct small_aligned){10};
+}
+
+// Aggregates greater > 2*xlen will be passed and returned indirectly
+struct large {
+  int32_t a, b, c, d;
+};
+
+// CHECK-LABEL: define void @f_agg_large(%struct.large* %x)
+void f_agg_large(struct large x) {
+  x.a = x.b + x.c + x.d;
+}
+
+// The address where the struct should be written to will be the first
+// argument
+// CHECK-LABEL: define void @f_agg_large_ret(%struct.large* noalias sret %agg.result, i32 %i, i8 signext %j)
+struct large f_agg_large_ret(int32_t i, int8_t j) {
+  return (struct large){1, 2, 3, 4};
+}
+
+typedef unsigned char v16i8 __attribute__((vector_size(16)));
+
+// CHECK-LABEL: define void @f_vec_large_v16i8(<16 x i8>*)
+void f_vec_large_v16i8(v16i8 x) {
+  x[0] = x[7];
+}
+
+// CHECK-LABEL: define void @f_vec_large_v16i8_ret(<16 x i8>* noalias sret %agg.result)
+v16i8 f_vec_large_v16i8_ret() {
+  return (v16i8){1, 2, 3, 4, 5, 6, 7, 8};
+}
+
+// Scalars passed on the stack should have signext/zeroext attributes (they
+// are anyext).
+
+// CHECK-LABEL: define i32 @f_scalar_stack_1(i32 %a.coerce, [2 x i32] %b.coerce, i64 %c.coerce, %struct.large* %d, i8 zeroext %e, i8 signext %f, i8 %g, i8 %h)
+int f_scalar_stack_1(struct tiny a, struct small b, struct small_aligned c,
+                     struct large d, uint8_t e, int8_t f, uint8_t g, int8_t h) {
+  return g + h;
+}
+
+// CHECK-LABEL: define i32 @f_scalar_stack_2(i32 %a, i64 %b, float %c, double %d, fp128 %e, i8 zeroext %f, i8 %g, i8 %h)
+int f_scalar_stack_2(int32_t a, int64_t b, float c, double d, long double e,
+                     uint8_t f, int8_t g, uint8_t h) {
+  return g + h;
+}
+
+// Ensure that scalars passed on the stack are still determined correctly in
+// the presence of large return values that consume a register due to the need
+// to pass a pointer.
+
+// CHECK-LABEL: define void @f_scalar_stack_3(%struct.large* noalias sret %agg.result, i32 %a, i64 %b, double %c, fp128 %d, i8 zeroext %e, i8 %f, i8 %g)
+struct large f_scalar_stack_3(int32_t a, int64_t b, double c, long double d,
+                              uint8_t e, int8_t f, uint8_t g) {
+  return (struct large){a, e, f, g};
+}
+
+// CHECK-LABEL: define fp128 @f_scalar_stack_4(i32 %a, i64 %b, double %c, fp128 %d, i8 zeroext %e, i8 %f, i8 %g)
+long double f_scalar_stack_4(int32_t a, int64_t b, double c, long double d,
+                             uint8_t e, int8_t f, uint8_t g) {
+  return d;
+}
+
+// Aggregates and >=XLen scalars passed on the stack should be lowered just as
+// they would be if passed via registers.
+
+// CHECK-LABEL: define void @f_scalar_stack_5(double %a, i64 %b, double %c, i64 %d, i32 %e, i64 %f, float %g, double %h, fp128 %i)
+void f_scalar_stack_5(double a, int64_t b, double c, int64_t d, int e,
+                      int64_t f, float g, double h, long double i) {}
+
+// CHECK-LABEL: define void @f_agg_stack(double %a, i64 %b, double %c, i64 %d, i32 %e.coerce, [2 x i32] %f.coerce, i64 %g.coerce, %struct.large* %h)
+void f_agg_stack(double a, int64_t b, double c, int64_t d, struct tiny e,
+                 struct small f, struct small_aligned g, struct large h) {}
+
+// Ensure that ABI lowering happens as expected for vararg calls. For RV32
+// with the base integer calling convention there will be no observable
+// differences in the lowered IR for a call with varargs vs without.
+
+int f_va_callee(int, ...);
+
+// CHECK-LABEL: define void @f_va_caller()
+// CHECK: call i32 (i32, ...) @f_va_callee(i32 1, i32 2, i64 3, double 4.000000e+00, double 5.000000e+00, i32 {{%.*}}, [2 x i32] {{%.*}}, i64 {{%.*}}, %struct.large* {{%.*}})
+void f_va_caller() {
+  f_va_callee(1, 2, 3LL, 4.0f, 5.0, (struct tiny){6, 7, 8, 9},
+              (struct small){10, NULL}, (struct small_aligned){11},
+              (struct large){12, 13, 14, 15});
+}
+
+// CHECK-LABEL: define i32 @f_va_1(i8* %fmt, ...) {{.*}} {
+// CHECK:   [[FMT_ADDR:%.*]] = alloca i8*, align 4
+// CHECK:   [[VA:%.*]] = alloca i8*, align 4
+// CHECK:   [[V:%.*]] = alloca i32, align 4
+// CHECK:   store i8* %fmt, i8** [[FMT_ADDR]], align 4
+// CHECK:   [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK:   call void @llvm.va_start(i8* [[VA1]])
+// CHECK:   [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK:   [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR]], i32 4
+// CHECK:   store i8* [[ARGP_NEXT]], i8** [[VA]], align 4
+// CHECK:   [[TMP0:%.*]] = bitcast i8* [[ARGP_CUR]] to i32*
+// CHECK:   [[TMP1:%.*]] = load i32, i32* [[TMP0]], align 4
+// CHECK:   store i32 [[TMP1]], i32* [[V]], align 4
+// CHECK:   [[VA2:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK:   call void @llvm.va_end(i8* [[VA2]])
+// CHECK:   [[TMP2:%.*]] = load i32, i32* [[V]], align 4
+// CHECK:   ret i32 [[TMP2]]
+// CHECK: }
+int f_va_1(char *fmt, ...) {
+  __builtin_va_list va;
+
+  __builtin_va_start(va, fmt);
+  int v = __builtin_va_arg(va, int);
+  __builtin_va_end(va);
+
+  return v;
+}
+
+// An "aligned" register pair (where the first register is even-numbered) is
+// used to pass varargs with 2x xlen alignment and 2x xlen size. Ensure the
+// correct offsets are used.
+
+// CHECK-LABEL: @f_va_2(
+// CHECK-NEXT:  entry:
+// CHECK-NEXT:    [[FMT_ADDR:%.*]] = alloca i8*, align 4
+// CHECK-NEXT:    [[VA:%.*]] = alloca i8*, align 4
+// CHECK-NEXT:    [[V:%.*]] = alloca double, align 8
+// CHECK-NEXT:    store i8* [[FMT:%.*]], i8** [[FMT_ADDR]], align 4
+// CHECK-NEXT:    [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT:    call void @llvm.va_start(i8* [[VA1]])
+// CHECK-NEXT:    [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK-NEXT:    [[TMP0:%.*]] = ptrtoint i8* [[ARGP_CUR]] to i32
+// CHECK-NEXT:    [[TMP1:%.*]] = add i32 [[TMP0]], 7
+// CHECK-NEXT:    [[TMP2:%.*]] = and i32 [[TMP1]], -8
+// CHECK-NEXT:    [[ARGP_CUR_ALIGNED:%.*]] = inttoptr i32 [[TMP2]] to i8*
+// CHECK-NEXT:    [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR_ALIGNED]], i32 8
+// CHECK-NEXT:    store i8* [[ARGP_NEXT]], i8** [[VA]], align 4
+// CHECK-NEXT:    [[TMP3:%.*]] = bitcast i8* [[ARGP_CUR_ALIGNED]] to double*
+// CHECK-NEXT:    [[TMP4:%.*]] = load double, double* [[TMP3]], align 8
+// CHECK-NEXT:    store double [[TMP4]], double* [[V]], align 8
+// CHECK-NEXT:    [[VA2:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT:    call void @llvm.va_end(i8* [[VA2]])
+// CHECK-NEXT:    [[TMP5:%.*]] = load double, double* [[V]], align 8
+// CHECK-NEXT:    ret double [[TMP5]]
+double f_va_2(char *fmt, ...) {
+  __builtin_va_list va;
+
+  __builtin_va_start(va, fmt);
+  double v = __builtin_va_arg(va, double);
+  __builtin_va_end(va);
+
+  return v;
+}
+
+// Two "aligned" register pairs.
+
+// CHECK-LABEL: @f_va_3(
+// CHECK-NEXT:  entry:
+// CHECK-NEXT:    [[FMT_ADDR:%.*]] = alloca i8*, align 4
+// CHECK-NEXT:    [[VA:%.*]] = alloca i8*, align 4
+// CHECK-NEXT:    [[V:%.*]] = alloca double, align 8
+// CHECK-NEXT:    [[W:%.*]] = alloca i32, align 4
+// CHECK-NEXT:    [[X:%.*]] = alloca double, align 8
+// CHECK-NEXT:    store i8* [[FMT:%.*]], i8** [[FMT_ADDR]], align 4
+// CHECK-NEXT:    [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT:    call void @llvm.va_start(i8* [[VA1]])
+// CHECK-NEXT:    [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK-NEXT:    [[TMP0:%.*]] = ptrtoint i8* [[ARGP_CUR]] to i32
+// CHECK-NEXT:    [[TMP1:%.*]] = add i32 [[TMP0]], 7
+// CHECK-NEXT:    [[TMP2:%.*]] = and i32 [[TMP1]], -8
+// CHECK-NEXT:    [[ARGP_CUR_ALIGNED:%.*]] = inttoptr i32 [[TMP2]] to i8*
+// CHECK-NEXT:    [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR_ALIGNED]], i32 8
+// CHECK-NEXT:    store i8* [[ARGP_NEXT]], i8** [[VA]], align 4
+// CHECK-NEXT:    [[TMP3:%.*]] = bitcast i8* [[ARGP_CUR_ALIGNED]] to double*
+// CHECK-NEXT:    [[TMP4:%.*]] = load double, double* [[TMP3]], align 8
+// CHECK-NEXT:    store double [[TMP4]], double* [[V]], align 8
+// CHECK-NEXT:    [[ARGP_CUR2:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK-NEXT:    [[ARGP_NEXT3:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR2]], i32 4
+// CHECK-NEXT:    store i8* [[ARGP_NEXT3]], i8** [[VA]], align 4
+// CHECK-NEXT:    [[TMP5:%.*]] = bitcast i8* [[ARGP_CUR2]] to i32*
+// CHECK-NEXT:    [[TMP6:%.*]] = load i32, i32* [[TMP5]], align 4
+// CHECK-NEXT:    store i32 [[TMP6]], i32* [[W]], align 4
+// CHECK-NEXT:    [[ARGP_CUR4:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK-NEXT:    [[TMP7:%.*]] = ptrtoint i8* [[ARGP_CUR4]] to i32
+// CHECK-NEXT:    [[TMP8:%.*]] = add i32 [[TMP7]], 7
+// CHECK-NEXT:    [[TMP9:%.*]] = and i32 [[TMP8]], -8
+// CHECK-NEXT:    [[ARGP_CUR4_ALIGNED:%.*]] = inttoptr i32 [[TMP9]] to i8*
+// CHECK-NEXT:    [[ARGP_NEXT5:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR4_ALIGNED]], i32 8
+// CHECK-NEXT:    store i8* [[ARGP_NEXT5]], i8** [[VA]], align 4
+// CHECK-NEXT:    [[TMP10:%.*]] = bitcast i8* [[ARGP_CUR4_ALIGNED]] to double*
+// CHECK-NEXT:    [[TMP11:%.*]] = load double, double* [[TMP10]], align 8
+// CHECK-NEXT:    store double [[TMP11]], double* [[X]], align 8
+// CHECK-NEXT:    [[VA6:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT:    call void @llvm.va_end(i8* [[VA6]])
+// CHECK-NEXT:    [[TMP12:%.*]] = load double, double* [[V]], align 8
+// CHECK-NEXT:    [[TMP13:%.*]] = load double, double* [[X]], align 8
+// CHECK-NEXT:    [[ADD:%.*]] = fadd double [[TMP12]], [[TMP13]]
+// CHECK-NEXT:    ret double [[ADD]]
+double f_va_3(char *fmt, ...) {
+  __builtin_va_list va;
+
+  __builtin_va_start(va, fmt);
+  double v = __builtin_va_arg(va, double);
+  int w = __builtin_va_arg(va, int);
+  double x = __builtin_va_arg(va, double);
+  __builtin_va_end(va);
+
+  return v + x;
+}
+
+// CHECK-LABEL: define i32 @f_va_4(i8* %fmt, ...) {{.*}} {
+// CHECK-NEXT:  entry:
+// CHECK-NEXT:    [[FMT_ADDR:%.*]] = alloca i8*, align 4
+// CHECK-NEXT:    [[VA:%.*]] = alloca i8*, align 4
+// CHECK-NEXT:    [[V:%.*]] = alloca i32, align 4
+// CHECK-NEXT:    [[LD:%.*]] = alloca fp128, align 16
+// CHECK-NEXT:    [[TS:%.*]] = alloca [[STRUCT_TINY:%.*]], align 1
+// CHECK-NEXT:    [[SS:%.*]] = alloca [[STRUCT_SMALL:%.*]], align 4
+// CHECK-NEXT:    [[LS:%.*]] = alloca [[STRUCT_LARGE:%.*]], align 4
+// CHECK-NEXT:    [[RET:%.*]] = alloca i32, align 4
+// CHECK-NEXT:    store i8* [[FMT:%.*]], i8** [[FMT_ADDR]], align 4
+// CHECK-NEXT:    [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT:    call void @llvm.va_start(i8* [[VA1]])
+// CHECK-NEXT:    [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK-NEXT:    [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR]], i32 4
+// CHECK-NEXT:    store i8* [[ARGP_NEXT]], i8** [[VA]], align 4
+// CHECK-NEXT:    [[TMP0:%.*]] = bitcast i8* [[ARGP_CUR]] to i32*
+// CHECK-NEXT:    [[TMP1:%.*]] = load i32, i32* [[TMP0]], align 4
+// CHECK-NEXT:    store i32 [[TMP1]], i32* [[V]], align 4
+// CHECK-NEXT:    [[ARGP_CUR2:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK-NEXT:    [[ARGP_NEXT3:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR2]], i32 4
+// CHECK-NEXT:    store i8* [[ARGP_NEXT3]], i8** [[VA]], align 4
+// CHECK-NEXT:    [[TMP2:%.*]] = bitcast i8* [[ARGP_CUR2]] to fp128**
+// CHECK-NEXT:    [[TMP3:%.*]] = load fp128*, fp128** [[TMP2]], align 4
+// CHECK-NEXT:    [[TMP4:%.*]] = load fp128, fp128* [[TMP3]], align 16
+// CHECK-NEXT:    store fp128 [[TMP4]], fp128* [[LD]], align 16
+// CHECK-NEXT:    [[ARGP_CUR4:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK-NEXT:    [[ARGP_NEXT5:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR4]], i32 4
+// CHECK-NEXT:    store i8* [[ARGP_NEXT5]], i8** [[VA]], align 4
+// CHECK-NEXT:    [[TMP5:%.*]] = bitcast i8* [[ARGP_CUR4]] to %struct.tiny*
+// CHECK-NEXT:    [[TMP6:%.*]] = bitcast %struct.tiny* [[TS]] to i8*
+// CHECK-NEXT:    [[TMP7:%.*]] = bitcast %struct.tiny* [[TMP5]] to i8*
+// CHECK-NEXT:    call void @llvm.memcpy.p0i8.p0i8.i32(i8* [[TMP6]], i8* [[TMP7]], i32 4, i32 1, i1 false)
+// CHECK-NEXT:    [[ARGP_CUR6:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK-NEXT:    [[ARGP_NEXT7:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR6]], i32 8
+// CHECK-NEXT:    store i8* [[ARGP_NEXT7]], i8** [[VA]], align 4
+// CHECK-NEXT:    [[TMP8:%.*]] = bitcast i8* [[ARGP_CUR6]] to %struct.small*
+// CHECK-NEXT:    [[TMP9:%.*]] = bitcast %struct.small* [[SS]] to i8*
+// CHECK-NEXT:    [[TMP10:%.*]] = bitcast %struct.small* [[TMP8]] to i8*
+// CHECK-NEXT:    call void @llvm.memcpy.p0i8.p0i8.i32(i8* [[TMP9]], i8* [[TMP10]], i32 8, i32 4, i1 false)
+// CHECK-NEXT:    [[ARGP_CUR8:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK-NEXT:    [[ARGP_NEXT9:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR8]], i32 4
+// CHECK-NEXT:    store i8* [[ARGP_NEXT9]], i8** [[VA]], align 4
+// CHECK-NEXT:    [[TMP11:%.*]] = bitcast i8* [[ARGP_CUR8]] to %struct.large**
+// CHECK-NEXT:    [[TMP12:%.*]] = load %struct.large*, %struct.large** [[TMP11]], align 4
+// CHECK-NEXT:    [[TMP13:%.*]] = bitcast %struct.large* [[LS]] to i8*
+// CHECK-NEXT:    [[TMP14:%.*]] = bitcast %struct.large* [[TMP12]] to i8*
+// CHECK-NEXT:    call void @llvm.memcpy.p0i8.p0i8.i32(i8* [[TMP13]], i8* [[TMP14]], i32 16, i32 4, i1 false)
+// CHECK-NEXT:    [[VA10:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT:    call void @llvm.va_end(i8* [[VA10]])
+int f_va_4(char *fmt, ...) {
+  __builtin_va_list va;
+
+  __builtin_va_start(va, fmt);
+  int v = __builtin_va_arg(va, int);
+  long double ld = __builtin_va_arg(va, long double);
+  struct tiny ts = __builtin_va_arg(va, struct tiny);
+  struct small ss = __builtin_va_arg(va, struct small);
+  struct large ls = __builtin_va_arg(va, struct large);
+  __builtin_va_end(va);
+
+  int ret = (int)((long double)v + ld);
+  ret = ret + ts.a + ts.b + ts.c + ts.d;
+  ret = ret + ss.a + (int)ss.b;
+  ret = ret + ls.a + ls.b + ls.c + ls.d;
+
+  return ret;
+}
diff --git a/clang/test/CodeGen/riscv64-abi.c b/clang/test/CodeGen/riscv64-abi.c
new file mode 100644 (file)
index 0000000..90bc54f
--- /dev/null
@@ -0,0 +1,425 @@
+// RUN: %clang_cc1 -triple riscv64 -emit-llvm %s -o - | FileCheck %s
+
+#include <stddef.h>
+#include <stdint.h>
+
+// CHECK-LABEL: define void @f_void()
+void f_void(void) {}
+
+// Scalar arguments and return values smaller than the word size are extended
+// according to the sign of their type, up to 32 bits
+
+// CHECK-LABEL: define zeroext i1 @f_scalar_0(i1 zeroext %x)
+_Bool f_scalar_0(_Bool x) { return x; }
+
+// CHECK-LABEL: define signext i8 @f_scalar_1(i8 signext %x)
+int8_t f_scalar_1(int8_t x) { return x; }
+
+// CHECK-LABEL: define zeroext i8 @f_scalar_2(i8 zeroext %x)
+uint8_t f_scalar_2(uint8_t x) { return x; }
+
+// CHECK-LABEL: define signext i32 @f_scalar_3(i32 signext %x)
+uint32_t f_scalar_3(int32_t x) { return x; }
+
+// CHECK-LABEL: define i64 @f_scalar_4(i64 %x)
+int64_t f_scalar_4(int64_t x) { return x; }
+
+// CHECK-LABEL: define float @f_fp_scalar_1(float %x)
+float f_fp_scalar_1(float x) { return x; }
+
+// CHECK-LABEL: define double @f_fp_scalar_2(double %x)
+double f_fp_scalar_2(double x) { return x; }
+
+// CHECK-LABEL: define fp128 @f_fp_scalar_3(fp128 %x)
+long double f_fp_scalar_3(long double x) { return x; }
+
+// Empty structs or unions are ignored.
+
+struct empty_s {};
+
+// CHECK-LABEL: define void @f_agg_empty_struct()
+struct empty_s f_agg_empty_struct(struct empty_s x) {
+  return x;
+}
+
+union empty_u {};
+
+// CHECK-LABEL: define void @f_agg_empty_union()
+union empty_u f_agg_empty_union(union empty_u x) {
+  return x;
+}
+
+// Aggregates <= 2*xlen may be passed in registers, so will be coerced to
+// integer arguments. The rules for return are the same.
+
+struct tiny {
+  uint16_t a, b, c, d;
+};
+
+// CHECK-LABEL: define void @f_agg_tiny(i64 %x.coerce)
+void f_agg_tiny(struct tiny x) {
+  x.a += x.b;
+  x.c += x.d;
+}
+
+// CHECK-LABEL: define i64 @f_agg_tiny_ret()
+struct tiny f_agg_tiny_ret() {
+  return (struct tiny){1, 2, 3, 4};
+}
+
+typedef uint16_t v4i16 __attribute__((vector_size(8)));
+typedef int64_t v1i64 __attribute__((vector_size(8)));
+
+// CHECK-LABEL: define void @f_vec_tiny_v4i16(i64 %x.coerce)
+void f_vec_tiny_v4i16(v4i16 x) {
+  x[0] = x[1];
+  x[2] = x[3];
+}
+
+// CHECK-LABEL: define i64 @f_vec_tiny_v4i16_ret()
+v4i16 f_vec_tiny_v4i16_ret() {
+  return (v4i16){1, 2, 3, 4};
+}
+
+// CHECK-LABEL: define void @f_vec_tiny_v1i64(i64 %x.coerce)
+void f_vec_tiny_v1i64(v1i64 x) {
+  x[0] = 114;
+}
+
+// CHECK-LABEL: define i64 @f_vec_tiny_v1i64_ret()
+v1i64 f_vec_tiny_v1i64_ret() {
+  return (v1i64){1};
+}
+
+struct small {
+  int64_t a, *b;
+};
+
+// CHECK-LABEL: define void @f_agg_small([2 x i64] %x.coerce)
+void f_agg_small(struct small x) {
+  x.a += *x.b;
+  x.b = &x.a;
+}
+
+// CHECK-LABEL: define [2 x i64] @f_agg_small_ret()
+struct small f_agg_small_ret() {
+  return (struct small){1, 0};
+}
+
+typedef uint16_t v8i16 __attribute__((vector_size(16)));
+typedef __int128_t v1i128 __attribute__((vector_size(16)));
+
+// CHECK-LABEL: define void @f_vec_small_v8i16(i128 %x.coerce)
+void f_vec_small_v8i16(v8i16 x) {
+  x[0] = x[7];
+}
+
+// CHECK-LABEL: define i128 @f_vec_small_v8i16_ret()
+v8i16 f_vec_small_v8i16_ret() {
+  return (v8i16){1, 2, 3, 4, 5, 6, 7, 8};
+}
+
+// CHECK-LABEL: define void @f_vec_small_v1i128(i128 %x.coerce)
+void f_vec_small_v1i128(v1i128 x) {
+  x[0] = 114;
+}
+
+// CHECK-LABEL: define i128 @f_vec_small_v1i128_ret()
+v1i128 f_vec_small_v1i128_ret() {
+  return (v1i128){1};
+}
+
+// Aggregates of 2*xlen size and 2*xlen alignment should be coerced to a
+// single 2*xlen-sized argument, to ensure that alignment can be maintained if
+// passed on the stack.
+
+struct small_aligned {
+  __int128_t a;
+};
+
+// CHECK-LABEL: define void @f_agg_small_aligned(i128 %x.coerce)
+void f_agg_small_aligned(struct small_aligned x) {
+  x.a += x.a;
+}
+
+// CHECK-LABEL: define i128 @f_agg_small_aligned_ret(i128 %x.coerce)
+struct small_aligned f_agg_small_aligned_ret(struct small_aligned x) {
+  return (struct small_aligned){10};
+}
+
+// Aggregates greater > 2*xlen will be passed and returned indirectly
+struct large {
+  int64_t a, b, c, d;
+};
+
+// CHECK-LABEL: define void @f_agg_large(%struct.large* %x)
+void f_agg_large(struct large x) {
+  x.a = x.b + x.c + x.d;
+}
+
+// The address where the struct should be written to will be the first
+// argument
+// CHECK-LABEL: define void @f_agg_large_ret(%struct.large* noalias sret %agg.result, i32 signext %i, i8 signext %j)
+struct large f_agg_large_ret(int32_t i, int8_t j) {
+  return (struct large){1, 2, 3, 4};
+}
+
+typedef unsigned char v32i8 __attribute__((vector_size(32)));
+
+// CHECK-LABEL: define void @f_vec_large_v32i8(<32 x i8>*)
+void f_vec_large_v32i8(v32i8 x) {
+  x[0] = x[7];
+}
+
+// CHECK-LABEL: define void @f_vec_large_v32i8_ret(<32 x i8>* noalias sret %agg.result)
+v32i8 f_vec_large_v32i8_ret() {
+  return (v32i8){1, 2, 3, 4, 5, 6, 7, 8};
+}
+
+// Scalars passed on the stack should have signext/zeroext attributes (they
+// are anyext).
+
+// CHECK-LABEL: define signext i32 @f_scalar_stack_1(i64 %a.coerce, [2 x i64] %b.coerce, i128 %c.coerce, %struct.large* %d, i8 zeroext %e, i8 signext %f, i8 %g, i8 %h)
+int f_scalar_stack_1(struct tiny a, struct small b, struct small_aligned c,
+                     struct large d, uint8_t e, int8_t f, uint8_t g, int8_t h) {
+  return g + h;
+}
+
+// CHECK-LABEL: define signext i32 @f_scalar_stack_2(i32 signext %a, i128 %b, float %c, fp128 %d, <32 x i8>*, i8 zeroext %f, i8 %g, i8 %h)
+int f_scalar_stack_2(int32_t a, __int128_t b, float c, long double d, v32i8 e,
+                     uint8_t f, int8_t g, uint8_t h) {
+  return g + h;
+}
+
+// Ensure that scalars passed on the stack are still determined correctly in
+// the presence of large return values that consume a register due to the need
+// to pass a pointer.
+
+// CHECK-LABEL: define void @f_scalar_stack_3(%struct.large* noalias sret %agg.result, i32 signext %a, i128 %b, fp128 %c, <32 x i8>*, i8 zeroext %e, i8 %f, i8 %g)
+struct large f_scalar_stack_3(uint32_t a, __int128_t b, long double c, v32i8 d,
+                              uint8_t e, int8_t f, uint8_t g) {
+  return (struct large){a, e, f, g};
+}
+
+// Ensure that ABI lowering happens as expected for vararg calls.
+// Specifically, ensure that signext is emitted for varargs that will be
+// passed in registers but not on the stack. Ensure this takes into account
+// the use of "aligned" register pairs for varargs with 2*xlen alignment.
+
+int f_va_callee(int, ...);
+
+// CHECK-LABEL: define void @f_va_caller()
+void f_va_caller() {
+  // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i64 3, double 4.000000e+00, double 5.000000e+00, i64 {{%.*}}, [2 x i64] {{%.*}}, i128 {{%.*}}, %struct.large* {{%.*}})
+  f_va_callee(1, 2, 3LL, 4.0f, 5.0, (struct tiny){6, 7, 8, 9},
+              (struct small){10, NULL}, (struct small_aligned){11},
+              (struct large){12, 13, 14, 15});
+  // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i32 signext 3, i32 signext 4, fp128 0xL00000000000000004001400000000000, i32 signext 6, i32 signext 7, i32 8, i32 9)
+  f_va_callee(1, 2, 3, 4, 5.0L, 6, 7, 8, 9);
+  // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i32 signext 3, i32 signext 4, i128 {{%.*}}, i32 signext 6, i32 signext 7, i32 8, i32 9)
+  f_va_callee(1, 2, 3, 4, (struct small_aligned){5}, 6, 7, 8, 9);
+  // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i32 signext 3, i32 signext 4, [2 x i64] {{%.*}}, i32 signext 6, i32 signext 7, i32 8, i32 9)
+  f_va_callee(1, 2, 3, 4, (struct small){5, NULL}, 6, 7, 8, 9);
+  // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i32 signext 3, i32 signext 4, i32 signext 5, fp128 0xL00000000000000004001800000000000, i32 7, i32 8, i32 9)
+  f_va_callee(1, 2, 3, 4, 5, 6.0L, 7, 8, 9);
+  // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i32 signext 3, i32 signext 4, i32 signext 5, i128 {{%.*}}, i32 7, i32 8, i32 9)
+  f_va_callee(1, 2, 3, 4, 5, (struct small_aligned){6}, 7, 8, 9);
+  // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i32 signext 3, i32 signext 4, i32 signext 5, [2 x i64] {{%.*}}, i32 signext 7, i32 8, i32 9)
+  f_va_callee(1, 2, 3, 4, 5, (struct small){6, NULL}, 7, 8, 9);
+  // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i32 signext 3, i32 signext 4, i32 signext 5, i32 signext 6, fp128 0xL00000000000000004001C00000000000, i32 8, i32 9)
+  f_va_callee(1, 2, 3, 4, 5, 6, 7.0L, 8, 9);
+  // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i32 signext 3, i32 signext 4, i32 signext 5, i32 signext 6, i128 {{%.*}}, i32 8, i32 9)
+  f_va_callee(1, 2, 3, 4, 5, 6, (struct small_aligned){7}, 8, 9);
+  // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i32 signext 3, i32 signext 4, i32 signext 5, i32 signext 6, [2 x i64] {{.*}}, i32 8, i32 9)
+  f_va_callee(1, 2, 3, 4, 5, 6, (struct small){7, NULL}, 8, 9);
+}
+
+// CHECK-LABEL: define signext i32 @f_va_1(i8* %fmt, ...) {{.*}} {
+// CHECK:   [[FMT_ADDR:%.*]] = alloca i8*, align 8
+// CHECK:   [[VA:%.*]] = alloca i8*, align 8
+// CHECK:   [[V:%.*]] = alloca i32, align 4
+// CHECK:   store i8* %fmt, i8** [[FMT_ADDR]], align 8
+// CHECK:   [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK:   call void @llvm.va_start(i8* [[VA1]])
+// CHECK:   [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 8
+// CHECK:   [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR]], i64 8
+// CHECK:   store i8* [[ARGP_NEXT]], i8** [[VA]], align 8
+// CHECK:   [[TMP0:%.*]] = bitcast i8* [[ARGP_CUR]] to i32*
+// CHECK:   [[TMP1:%.*]] = load i32, i32* [[TMP0]], align 8
+// CHECK:   store i32 [[TMP1]], i32* [[V]], align 4
+// CHECK:   [[VA2:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK:   call void @llvm.va_end(i8* [[VA2]])
+// CHECK:   [[TMP2:%.*]] = load i32, i32* [[V]], align 4
+// CHECK:   ret i32 [[TMP2]]
+// CHECK: }
+int f_va_1(char *fmt, ...) {
+  __builtin_va_list va;
+
+  __builtin_va_start(va, fmt);
+  int v = __builtin_va_arg(va, int);
+  __builtin_va_end(va);
+
+  return v;
+}
+
+// An "aligned" register pair (where the first register is even-numbered) is
+// used to pass varargs with 2x xlen alignment and 2x xlen size. Ensure the
+// correct offsets are used.
+
+// CHECK-LABEL: @f_va_2(
+// CHECK-NEXT:  entry:
+// CHECK-NEXT:    [[FMT_ADDR:%.*]] = alloca i8*, align 8
+// CHECK-NEXT:    [[VA:%.*]] = alloca i8*, align 8
+// CHECK-NEXT:    [[V:%.*]] = alloca fp128, align 16
+// CHECK-NEXT:    store i8* [[FMT:%.*]], i8** [[FMT_ADDR]], align 8
+// CHECK-NEXT:    [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT:    call void @llvm.va_start(i8* [[VA1]])
+// CHECK-NEXT:    [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 8
+// CHECK-NEXT:    [[TMP0:%.*]] = ptrtoint i8* [[ARGP_CUR]] to i64
+// CHECK-NEXT:    [[TMP1:%.*]] = add i64 [[TMP0]], 15
+// CHECK-NEXT:    [[TMP2:%.*]] = and i64 [[TMP1]], -16
+// CHECK-NEXT:    [[ARGP_CUR_ALIGNED:%.*]] = inttoptr i64 [[TMP2]] to i8*
+// CHECK-NEXT:    [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR_ALIGNED]], i64 16
+// CHECK-NEXT:    store i8* [[ARGP_NEXT]], i8** [[VA]], align 8
+// CHECK-NEXT:    [[TMP3:%.*]] = bitcast i8* [[ARGP_CUR_ALIGNED]] to fp128*
+// CHECK-NEXT:    [[TMP4:%.*]] = load fp128, fp128* [[TMP3]], align 16
+// CHECK-NEXT:    store fp128 [[TMP4]], fp128* [[V]], align 16
+// CHECK-NEXT:    [[VA2:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT:    call void @llvm.va_end(i8* [[VA2]])
+// CHECK-NEXT:    [[TMP5:%.*]] = load fp128, fp128* [[V]], align 16
+// CHECK-NEXT:    ret fp128 [[TMP5]]
+long double f_va_2(char *fmt, ...) {
+  __builtin_va_list va;
+
+  __builtin_va_start(va, fmt);
+  long double v = __builtin_va_arg(va, long double);
+  __builtin_va_end(va);
+
+  return v;
+}
+
+// Two "aligned" register pairs.
+
+// CHECK-LABEL: @f_va_3(
+// CHECK-NEXT:  entry:
+// CHECK-NEXT:    [[FMT_ADDR:%.*]] = alloca i8*, align 8
+// CHECK-NEXT:    [[VA:%.*]] = alloca i8*, align 8
+// CHECK-NEXT:    [[V:%.*]] = alloca fp128, align 16
+// CHECK-NEXT:    [[W:%.*]] = alloca i32, align 4
+// CHECK-NEXT:    [[X:%.*]] = alloca fp128, align 16
+// CHECK-NEXT:    store i8* [[FMT:%.*]], i8** [[FMT_ADDR]], align 8
+// CHECK-NEXT:    [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT:    call void @llvm.va_start(i8* [[VA1]])
+// CHECK-NEXT:    [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 8
+// CHECK-NEXT:    [[TMP0:%.*]] = ptrtoint i8* [[ARGP_CUR]] to i64
+// CHECK-NEXT:    [[TMP1:%.*]] = add i64 [[TMP0]], 15
+// CHECK-NEXT:    [[TMP2:%.*]] = and i64 [[TMP1]], -16
+// CHECK-NEXT:    [[ARGP_CUR_ALIGNED:%.*]] = inttoptr i64 [[TMP2]] to i8*
+// CHECK-NEXT:    [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR_ALIGNED]], i64 16
+// CHECK-NEXT:    store i8* [[ARGP_NEXT]], i8** [[VA]], align 8
+// CHECK-NEXT:    [[TMP3:%.*]] = bitcast i8* [[ARGP_CUR_ALIGNED]] to fp128*
+// CHECK-NEXT:    [[TMP4:%.*]] = load fp128, fp128* [[TMP3]], align 16
+// CHECK-NEXT:    store fp128 [[TMP4]], fp128* [[V]], align 16
+// CHECK-NEXT:    [[ARGP_CUR2:%.*]] = load i8*, i8** [[VA]], align 8
+// CHECK-NEXT:    [[ARGP_NEXT3:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR2]], i64 8
+// CHECK-NEXT:    store i8* [[ARGP_NEXT3]], i8** [[VA]], align 8
+// CHECK-NEXT:    [[TMP5:%.*]] = bitcast i8* [[ARGP_CUR2]] to i32*
+// CHECK-NEXT:    [[TMP6:%.*]] = load i32, i32* [[TMP5]], align 8
+// CHECK-NEXT:    store i32 [[TMP6]], i32* [[W]], align 4
+// CHECK-NEXT:    [[ARGP_CUR4:%.*]] = load i8*, i8** [[VA]], align 8
+// CHECK-NEXT:    [[TMP7:%.*]] = ptrtoint i8* [[ARGP_CUR4]] to i64
+// CHECK-NEXT:    [[TMP8:%.*]] = add i64 [[TMP7]], 15
+// CHECK-NEXT:    [[TMP9:%.*]] = and i64 [[TMP8]], -16
+// CHECK-NEXT:    [[ARGP_CUR4_ALIGNED:%.*]] = inttoptr i64 [[TMP9]] to i8*
+// CHECK-NEXT:    [[ARGP_NEXT5:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR4_ALIGNED]], i64 16
+// CHECK-NEXT:    store i8* [[ARGP_NEXT5]], i8** [[VA]], align 8
+// CHECK-NEXT:    [[TMP10:%.*]] = bitcast i8* [[ARGP_CUR4_ALIGNED]] to fp128*
+// CHECK-NEXT:    [[TMP11:%.*]] = load fp128, fp128* [[TMP10]], align 16
+// CHECK-NEXT:    store fp128 [[TMP11]], fp128* [[X]], align 16
+// CHECK-NEXT:    [[VA6:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT:    call void @llvm.va_end(i8* [[VA6]])
+// CHECK-NEXT:    [[TMP12:%.*]] = load fp128, fp128* [[V]], align 16
+// CHECK-NEXT:    [[TMP13:%.*]] = load fp128, fp128* [[X]], align 16
+// CHECK-NEXT:    [[ADD:%.*]] = fadd fp128 [[TMP12]], [[TMP13]]
+// CHECK-NEXT:    ret fp128 [[ADD]]
+long double f_va_3(char *fmt, ...) {
+  __builtin_va_list va;
+
+  __builtin_va_start(va, fmt);
+  long double v = __builtin_va_arg(va, long double);
+  int w = __builtin_va_arg(va, int);
+  long double x = __builtin_va_arg(va, long double);
+  __builtin_va_end(va);
+
+  return v + x;
+}
+
+// CHECK-LABEL: @f_va_4(
+// CHECK-NEXT:  entry:
+// CHECK-NEXT:    [[FMT_ADDR:%.*]] = alloca i8*, align 8
+// CHECK-NEXT:    [[VA:%.*]] = alloca i8*, align 8
+// CHECK-NEXT:    [[V:%.*]] = alloca i32, align 4
+// CHECK-NEXT:    [[TS:%.*]] = alloca [[STRUCT_TINY:%.*]], align 2
+// CHECK-NEXT:    [[SS:%.*]] = alloca [[STRUCT_SMALL:%.*]], align 8
+// CHECK-NEXT:    [[LS:%.*]] = alloca [[STRUCT_LARGE:%.*]], align 8
+// CHECK-NEXT:    [[RET:%.*]] = alloca i32, align 4
+// CHECK-NEXT:    store i8* [[FMT:%.*]], i8** [[FMT_ADDR]], align 8
+// CHECK-NEXT:    [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT:    call void @llvm.va_start(i8* [[VA1]])
+// CHECK-NEXT:    [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 8
+// CHECK-NEXT:    [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR]], i64 8
+// CHECK-NEXT:    store i8* [[ARGP_NEXT]], i8** [[VA]], align 8
+// CHECK-NEXT:    [[TMP0:%.*]] = bitcast i8* [[ARGP_CUR]] to i32*
+// CHECK-NEXT:    [[TMP1:%.*]] = load i32, i32* [[TMP0]], align 8
+// CHECK-NEXT:    store i32 [[TMP1]], i32* [[V]], align 4
+// CHECK-NEXT:    [[ARGP_CUR2:%.*]] = load i8*, i8** [[VA]], align 8
+// CHECK-NEXT:    [[ARGP_NEXT3:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR2]], i64 8
+// CHECK-NEXT:    store i8* [[ARGP_NEXT3]], i8** [[VA]], align 8
+// CHECK-NEXT:    [[TMP2:%.*]] = bitcast i8* [[ARGP_CUR2]] to %struct.tiny*
+// CHECK-NEXT:    [[TMP3:%.*]] = bitcast %struct.tiny* [[TS]] to i8*
+// CHECK-NEXT:    [[TMP4:%.*]] = bitcast %struct.tiny* [[TMP2]] to i8*
+// CHECK-NEXT:    call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[TMP3]], i8* [[TMP4]], i64 8, i32 2, i1 false)
+// CHECK-NEXT:    [[ARGP_CUR4:%.*]] = load i8*, i8** [[VA]], align 8
+// CHECK-NEXT:    [[ARGP_NEXT5:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR4]], i64 16
+// CHECK-NEXT:    store i8* [[ARGP_NEXT5]], i8** [[VA]], align 8
+// CHECK-NEXT:    [[TMP5:%.*]] = bitcast i8* [[ARGP_CUR4]] to %struct.small*
+// CHECK-NEXT:    [[TMP6:%.*]] = bitcast %struct.small* [[SS]] to i8*
+// CHECK-NEXT:    [[TMP7:%.*]] = bitcast %struct.small* [[TMP5]] to i8*
+// CHECK-NEXT:    call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[TMP6]], i8* [[TMP7]], i64 16, i32 8, i1 false)
+// CHECK-NEXT:    [[ARGP_CUR6:%.*]] = load i8*, i8** [[VA]], align 8
+// CHECK-NEXT:    [[ARGP_NEXT7:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR6]], i64 8
+// CHECK-NEXT:    store i8* [[ARGP_NEXT7]], i8** [[VA]], align 8
+// CHECK-NEXT:    [[TMP8:%.*]] = bitcast i8* [[ARGP_CUR6]] to %struct.large**
+// CHECK-NEXT:    [[TMP9:%.*]] = load %struct.large*, %struct.large** [[TMP8]], align 8
+// CHECK-NEXT:    [[TMP10:%.*]] = bitcast %struct.large* [[LS]] to i8*
+// CHECK-NEXT:    [[TMP11:%.*]] = bitcast %struct.large* [[TMP9]] to i8*
+// CHECK-NEXT:    call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[TMP10]], i8* [[TMP11]], i64 32, i32 8, i1 false)
+// CHECK-NEXT:    [[VA8:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT:    call void @llvm.va_end(i8* [[VA8]])
+// CHECK-NEXT:    [[A:%.*]] = getelementptr inbounds [[STRUCT_TINY]], %struct.tiny* [[TS]], i32 0, i32 0
+// CHECK-NEXT:    [[TMP12:%.*]] = load i16, i16* [[A]], align 2
+// CHECK-NEXT:    [[CONV:%.*]] = zext i16 [[TMP12]] to i64
+// CHECK-NEXT:    [[A9:%.*]] = getelementptr inbounds [[STRUCT_SMALL]], %struct.small* [[SS]], i32 0, i32 0
+// CHECK-NEXT:    [[TMP13:%.*]] = load i64, i64* [[A9]], align 8
+// CHECK-NEXT:    [[ADD:%.*]] = add nsw i64 [[CONV]], [[TMP13]]
+// CHECK-NEXT:    [[C:%.*]] = getelementptr inbounds [[STRUCT_LARGE]], %struct.large* [[LS]], i32 0, i32 2
+// CHECK-NEXT:    [[TMP14:%.*]] = load i64, i64* [[C]], align 8
+// CHECK-NEXT:    [[ADD10:%.*]] = add nsw i64 [[ADD]], [[TMP14]]
+// CHECK-NEXT:    [[CONV11:%.*]] = trunc i64 [[ADD10]] to i32
+// CHECK-NEXT:    store i32 [[CONV11]], i32* [[RET]], align 4
+// CHECK-NEXT:    [[TMP15:%.*]] = load i32, i32* [[RET]], align 4
+// CHECK-NEXT:    ret i32 [[TMP15]]
+int f_va_4(char *fmt, ...) {
+  __builtin_va_list va;
+
+  __builtin_va_start(va, fmt);
+  int v = __builtin_va_arg(va, int);
+  struct tiny ts = __builtin_va_arg(va, struct tiny);
+  struct small ss = __builtin_va_arg(va, struct small);
+  struct large ls = __builtin_va_arg(va, struct large);
+  __builtin_va_end(va);
+
+  int ret = ts.a + ss.a + ls.c;
+
+  return ret;
+}
index efe550e..3839f8e 100644 (file)
@@ -73,3 +73,50 @@ int align_ld = __alignof(long double);
 
 // CHECK: @align_vl = global i32 4
 int align_vl = __alignof(va_list);
+
+// Check types
+
+// CHECK: zeroext i8 @check_char()
+char check_char() { return 0; }
+
+// CHECK: define signext i16 @check_short()
+short check_short() { return 0; }
+
+// CHECK: define i32 @check_int()
+int check_int() { return 0; }
+
+// CHECK: define i32 @check_wchar_t()
+int check_wchar_t() { return 0; }
+
+// CHECK: define i32 @check_long()
+long check_long() { return 0; }
+
+// CHECK: define i64 @check_longlong()
+long long check_longlong() { return 0; }
+
+// CHECK: define zeroext i8 @check_uchar()
+unsigned char check_uchar() { return 0; }
+
+// CHECK: define zeroext i16 @check_ushort()
+unsigned short check_ushort() { return 0; }
+
+// CHECK: define i32 @check_uint()
+unsigned int check_uint() { return 0; }
+
+// CHECK: define i32 @check_ulong()
+unsigned long check_ulong() { return 0; }
+
+// CHECK: define i64 @check_ulonglong()
+unsigned long long check_ulonglong() { return 0; }
+
+// CHECK: define i32 @check_size_t()
+size_t check_size_t() { return 0; }
+
+// CHECK: define float @check_float()
+float check_float() { return 0; }
+
+// CHECK: define double @check_double()
+double check_double() { return 0; }
+
+// CHECK: define fp128 @check_longdouble()
+long double check_longdouble() { return 0; }
index 5c7d760..8a3f322 100644 (file)
@@ -42,3 +42,50 @@ int align_ld = __alignof(long double);
 
 // CHECK: @align_vl = global i32 8
 int align_vl = __alignof(va_list);
+
+// Check types
+
+// CHECK: define zeroext i8 @check_char()
+char check_char() { return 0; }
+
+// CHECK: define signext i16 @check_short()
+short check_short() { return 0; }
+
+// CHECK: define signext i32 @check_int()
+int check_int() { return 0; }
+
+// CHECK: define signext i32 @check_wchar_t()
+int check_wchar_t() { return 0; }
+
+// CHECK: define i64 @check_long()
+long check_long() { return 0; }
+
+// CHECK: define i64 @check_longlong()
+long long check_longlong() { return 0; }
+
+// CHECK: define zeroext i8 @check_uchar()
+unsigned char check_uchar() { return 0; }
+
+// CHECK: define zeroext i16 @check_ushort()
+unsigned short check_ushort() { return 0; }
+
+// CHECK: define signext i32 @check_uint()
+unsigned int check_uint() { return 0; }
+
+// CHECK: define i64 @check_ulong()
+unsigned long check_ulong() { return 0; }
+
+// CHECK: define i64 @check_ulonglong()
+unsigned long long check_ulonglong() { return 0; }
+
+// CHECK: define i64 @check_size_t()
+size_t check_size_t() { return 0; }
+
+// CHECK: define float @check_float()
+float check_float() { return 0; }
+
+// CHECK: define double @check_double()
+double check_double() { return 0; }
+
+// CHECK: define fp128 @check_longdouble()
+long double check_longdouble() { return 0; }