return false;
}
+//===----------------------------------------------------------------------===//
+// RISCV ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+class RISCVABIInfo : public DefaultABIInfo {
+private:
+ unsigned XLen; // Size of the integer ('x') registers in bits.
+ static const int NumArgGPRs = 8;
+
+public:
+ RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
+ : DefaultABIInfo(CGT), XLen(XLen) {}
+
+ // DefaultABIInfo's classifyReturnType and classifyArgumentType are
+ // non-virtual, but computeInfo is virtual, so we overload it.
+ void computeInfo(CGFunctionInfo &FI) const override;
+
+ ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed,
+ int &ArgGPRsLeft) const;
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+
+ Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty) const override;
+
+ ABIArgInfo extendType(QualType Ty) const;
+};
+} // end anonymous namespace
+
+void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ QualType RetTy = FI.getReturnType();
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(RetTy);
+
+ // IsRetIndirect is true if classifyArgumentType indicated the value should
+ // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128
+ // is passed direct in LLVM IR, relying on the backend lowering code to
+ // rewrite the argument list and pass indirectly on RV32.
+ bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect ||
+ getContext().getTypeSize(RetTy) > (2 * XLen);
+
+ // We must track the number of GPRs used in order to conform to the RISC-V
+ // ABI, as integer scalars passed in registers should have signext/zeroext
+ // when promoted, but are anyext if passed on the stack. As GPR usage is
+ // different for variadic arguments, we must also track whether we are
+ // examining a vararg or not.
+ int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
+ int NumFixedArgs = FI.getNumRequiredArgs();
+
+ int ArgNum = 0;
+ for (auto &ArgInfo : FI.arguments()) {
+ bool IsFixed = ArgNum < NumFixedArgs;
+ ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft);
+ ArgNum++;
+ }
+}
+
+ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
+ int &ArgGPRsLeft) const {
+ assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ // Structures with either a non-trivial destructor or a non-trivial
+ // copy constructor are always passed indirectly.
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+ if (ArgGPRsLeft)
+ ArgGPRsLeft -= 1;
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
+ CGCXXABI::RAA_DirectInMemory);
+ }
+
+ // Ignore empty structs/unions.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return ABIArgInfo::getIgnore();
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+ uint64_t NeededAlign = getContext().getTypeAlign(Ty);
+ bool MustUseStack = false;
+ // Determine the number of GPRs needed to pass the current argument
+ // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
+ // register pairs, so may consume 3 registers.
+ int NeededArgGPRs = 1;
+ if (!IsFixed && NeededAlign == 2 * XLen)
+ NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
+ else if (Size > XLen && Size <= 2 * XLen)
+ NeededArgGPRs = 2;
+
+ if (NeededArgGPRs > ArgGPRsLeft) {
+ MustUseStack = true;
+ NeededArgGPRs = ArgGPRsLeft;
+ }
+
+ ArgGPRsLeft -= NeededArgGPRs;
+
+ if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ // All integral types are promoted to XLen width, unless passed on the
+ // stack.
+ if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
+ return extendType(Ty);
+ }
+
+ return ABIArgInfo::getDirect();
+ }
+
+ // Aggregates which are <= 2*XLen will be passed in registers if possible,
+ // so coerce to integers.
+ if (Size <= 2 * XLen) {
+ unsigned Alignment = getContext().getTypeAlign(Ty);
+
+ // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
+ // required, and a 2-element XLen array if only XLen alignment is required.
+ if (Size <= XLen) {
+ return ABIArgInfo::getDirect(
+ llvm::IntegerType::get(getVMContext(), XLen));
+ } else if (Alignment == 2 * XLen) {
+ return ABIArgInfo::getDirect(
+ llvm::IntegerType::get(getVMContext(), 2 * XLen));
+ } else {
+ return ABIArgInfo::getDirect(llvm::ArrayType::get(
+ llvm::IntegerType::get(getVMContext(), XLen), 2));
+ }
+ }
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+}
+
+ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ int ArgGPRsLeft = 2;
+
+ // The rules for return and argument types are the same, so defer to
+ // classifyArgumentType.
+ return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft);
+}
+
+Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty) const {
+ CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
+
+ // Empty records are ignored for parameter passing purposes.
+ if (isEmptyRecord(getContext(), Ty, true)) {
+ Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
+ Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
+ return Addr;
+ }
+
+ std::pair<CharUnits, CharUnits> SizeAndAlign =
+ getContext().getTypeInfoInChars(Ty);
+
+ // Arguments bigger than 2*Xlen bytes are passed indirectly.
+ bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
+
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
+ SlotSize, /*AllowHigherAlign=*/true);
+}
+
+ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
+ int TySize = getContext().getTypeSize(Ty);
+ // RV64 ABI requires unsigned 32 bit integers to be sign extended.
+ if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
+ return ABIArgInfo::getSignExtend(Ty);
+ return ABIArgInfo::getExtend(Ty);
+}
+
+namespace {
+class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
+ : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {}
+};
+} // namespace
//===----------------------------------------------------------------------===//
// Driver code
case llvm::Triple::msp430:
return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
+ case llvm::Triple::riscv32:
+ return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32));
+ case llvm::Triple::riscv64:
+ return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64));
+
case llvm::Triple::systemz: {
bool HasVector = getTarget().getABI() == "vector";
return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
--- /dev/null
+// RUN: %clang_cc1 -triple riscv32 -emit-llvm %s -o - | FileCheck %s
+
+#include <stddef.h>
+#include <stdint.h>
+
+// CHECK-LABEL: define void @f_void()
+void f_void(void) {}
+
+// Scalar arguments and return values smaller than the word size are extended
+// according to the sign of their type, up to 32 bits
+
+// CHECK-LABEL: define zeroext i1 @f_scalar_0(i1 zeroext %x)
+_Bool f_scalar_0(_Bool x) { return x; }
+
+// CHECK-LABEL: define signext i8 @f_scalar_1(i8 signext %x)
+int8_t f_scalar_1(int8_t x) { return x; }
+
+// CHECK-LABEL: define zeroext i8 @f_scalar_2(i8 zeroext %x)
+uint8_t f_scalar_2(uint8_t x) { return x; }
+
+// CHECK-LABEL: define i32 @f_scalar_3(i32 %x)
+int32_t f_scalar_3(int32_t x) { return x; }
+
+// CHECK-LABEL: define i64 @f_scalar_4(i64 %x)
+int64_t f_scalar_4(int64_t x) { return x; }
+
+// CHECK-LABEL: define float @f_fp_scalar_1(float %x)
+float f_fp_scalar_1(float x) { return x; }
+
+// CHECK-LABEL: define double @f_fp_scalar_2(double %x)
+double f_fp_scalar_2(double x) { return x; }
+
+// Scalars larger than 2*xlen are passed/returned indirect. However, the
+// RISC-V LLVM backend can handle this fine, so the function doesn't need to
+// be modified.
+
+// CHECK-LABEL: define fp128 @f_fp_scalar_3(fp128 %x)
+long double f_fp_scalar_3(long double x) { return x; }
+
+// Empty structs or unions are ignored.
+
+struct empty_s {};
+
+// CHECK-LABEL: define void @f_agg_empty_struct()
+struct empty_s f_agg_empty_struct(struct empty_s x) {
+ return x;
+}
+
+union empty_u {};
+
+// CHECK-LABEL: define void @f_agg_empty_union()
+union empty_u f_agg_empty_union(union empty_u x) {
+ return x;
+}
+
+// Aggregates <= 2*xlen may be passed in registers, so will be coerced to
+// integer arguments. The rules for return are the same.
+
+struct tiny {
+ uint8_t a, b, c, d;
+};
+
+// CHECK-LABEL: define void @f_agg_tiny(i32 %x.coerce)
+void f_agg_tiny(struct tiny x) {
+ x.a += x.b;
+ x.c += x.d;
+}
+
+// CHECK-LABEL: define i32 @f_agg_tiny_ret()
+struct tiny f_agg_tiny_ret() {
+ return (struct tiny){1, 2, 3, 4};
+}
+
+typedef uint8_t v4i8 __attribute__((vector_size(4)));
+typedef int32_t v1i32 __attribute__((vector_size(4)));
+
+// CHECK-LABEL: define void @f_vec_tiny_v4i8(i32 %x.coerce)
+void f_vec_tiny_v4i8(v4i8 x) {
+ x[0] = x[1];
+ x[2] = x[3];
+}
+
+// CHECK-LABEL: define i32 @f_vec_tiny_v4i8_ret()
+v4i8 f_vec_tiny_v4i8_ret() {
+ return (v4i8){1, 2, 3, 4};
+}
+
+// CHECK-LABEL: define void @f_vec_tiny_v1i32(i32 %x.coerce)
+void f_vec_tiny_v1i32(v1i32 x) {
+ x[0] = 114;
+}
+
+// CHECK-LABEL: define i32 @f_vec_tiny_v1i32_ret()
+v1i32 f_vec_tiny_v1i32_ret() {
+ return (v1i32){1};
+}
+
+struct small {
+ int32_t a, *b;
+};
+
+// CHECK-LABEL: define void @f_agg_small([2 x i32] %x.coerce)
+void f_agg_small(struct small x) {
+ x.a += *x.b;
+ x.b = &x.a;
+}
+
+// CHECK-LABEL: define [2 x i32] @f_agg_small_ret()
+struct small f_agg_small_ret() {
+ return (struct small){1, 0};
+}
+
+typedef uint8_t v8i8 __attribute__((vector_size(8)));
+typedef int64_t v1i64 __attribute__((vector_size(8)));
+
+// CHECK-LABEL: define void @f_vec_small_v8i8(i64 %x.coerce)
+void f_vec_small_v8i8(v8i8 x) {
+ x[0] = x[7];
+}
+
+// CHECK-LABEL: define i64 @f_vec_small_v8i8_ret()
+v8i8 f_vec_small_v8i8_ret() {
+ return (v8i8){1, 2, 3, 4, 5, 6, 7, 8};
+}
+
+// CHECK-LABEL: define void @f_vec_small_v1i64(i64 %x.coerce)
+void f_vec_small_v1i64(v1i64 x) {
+ x[0] = 114;
+}
+
+// CHECK-LABEL: define i64 @f_vec_small_v1i64_ret()
+v1i64 f_vec_small_v1i64_ret() {
+ return (v1i64){1};
+}
+
+// Aggregates of 2*xlen size and 2*xlen alignment should be coerced to a
+// single 2*xlen-sized argument, to ensure that alignment can be maintained if
+// passed on the stack.
+
+struct small_aligned {
+ int64_t a;
+};
+
+// CHECK-LABEL: define void @f_agg_small_aligned(i64 %x.coerce)
+void f_agg_small_aligned(struct small_aligned x) {
+ x.a += x.a;
+}
+
+// CHECK-LABEL: define i64 @f_agg_small_aligned_ret(i64 %x.coerce)
+struct small_aligned f_agg_small_aligned_ret(struct small_aligned x) {
+ return (struct small_aligned){10};
+}
+
+// Aggregates greater > 2*xlen will be passed and returned indirectly
+struct large {
+ int32_t a, b, c, d;
+};
+
+// CHECK-LABEL: define void @f_agg_large(%struct.large* %x)
+void f_agg_large(struct large x) {
+ x.a = x.b + x.c + x.d;
+}
+
+// The address where the struct should be written to will be the first
+// argument
+// CHECK-LABEL: define void @f_agg_large_ret(%struct.large* noalias sret %agg.result, i32 %i, i8 signext %j)
+struct large f_agg_large_ret(int32_t i, int8_t j) {
+ return (struct large){1, 2, 3, 4};
+}
+
+typedef unsigned char v16i8 __attribute__((vector_size(16)));
+
+// CHECK-LABEL: define void @f_vec_large_v16i8(<16 x i8>*)
+void f_vec_large_v16i8(v16i8 x) {
+ x[0] = x[7];
+}
+
+// CHECK-LABEL: define void @f_vec_large_v16i8_ret(<16 x i8>* noalias sret %agg.result)
+v16i8 f_vec_large_v16i8_ret() {
+ return (v16i8){1, 2, 3, 4, 5, 6, 7, 8};
+}
+
+// Scalars passed on the stack should have signext/zeroext attributes (they
+// are anyext).
+
+// CHECK-LABEL: define i32 @f_scalar_stack_1(i32 %a.coerce, [2 x i32] %b.coerce, i64 %c.coerce, %struct.large* %d, i8 zeroext %e, i8 signext %f, i8 %g, i8 %h)
+int f_scalar_stack_1(struct tiny a, struct small b, struct small_aligned c,
+ struct large d, uint8_t e, int8_t f, uint8_t g, int8_t h) {
+ return g + h;
+}
+
+// CHECK-LABEL: define i32 @f_scalar_stack_2(i32 %a, i64 %b, float %c, double %d, fp128 %e, i8 zeroext %f, i8 %g, i8 %h)
+int f_scalar_stack_2(int32_t a, int64_t b, float c, double d, long double e,
+ uint8_t f, int8_t g, uint8_t h) {
+ return g + h;
+}
+
+// Ensure that scalars passed on the stack are still determined correctly in
+// the presence of large return values that consume a register due to the need
+// to pass a pointer.
+
+// CHECK-LABEL: define void @f_scalar_stack_3(%struct.large* noalias sret %agg.result, i32 %a, i64 %b, double %c, fp128 %d, i8 zeroext %e, i8 %f, i8 %g)
+struct large f_scalar_stack_3(int32_t a, int64_t b, double c, long double d,
+ uint8_t e, int8_t f, uint8_t g) {
+ return (struct large){a, e, f, g};
+}
+
+// CHECK-LABEL: define fp128 @f_scalar_stack_4(i32 %a, i64 %b, double %c, fp128 %d, i8 zeroext %e, i8 %f, i8 %g)
+long double f_scalar_stack_4(int32_t a, int64_t b, double c, long double d,
+ uint8_t e, int8_t f, uint8_t g) {
+ return d;
+}
+
+// Aggregates and >=XLen scalars passed on the stack should be lowered just as
+// they would be if passed via registers.
+
+// CHECK-LABEL: define void @f_scalar_stack_5(double %a, i64 %b, double %c, i64 %d, i32 %e, i64 %f, float %g, double %h, fp128 %i)
+void f_scalar_stack_5(double a, int64_t b, double c, int64_t d, int e,
+ int64_t f, float g, double h, long double i) {}
+
+// CHECK-LABEL: define void @f_agg_stack(double %a, i64 %b, double %c, i64 %d, i32 %e.coerce, [2 x i32] %f.coerce, i64 %g.coerce, %struct.large* %h)
+void f_agg_stack(double a, int64_t b, double c, int64_t d, struct tiny e,
+ struct small f, struct small_aligned g, struct large h) {}
+
+// Ensure that ABI lowering happens as expected for vararg calls. For RV32
+// with the base integer calling convention there will be no observable
+// differences in the lowered IR for a call with varargs vs without.
+
+int f_va_callee(int, ...);
+
+// CHECK-LABEL: define void @f_va_caller()
+// CHECK: call i32 (i32, ...) @f_va_callee(i32 1, i32 2, i64 3, double 4.000000e+00, double 5.000000e+00, i32 {{%.*}}, [2 x i32] {{%.*}}, i64 {{%.*}}, %struct.large* {{%.*}})
+void f_va_caller() {
+ f_va_callee(1, 2, 3LL, 4.0f, 5.0, (struct tiny){6, 7, 8, 9},
+ (struct small){10, NULL}, (struct small_aligned){11},
+ (struct large){12, 13, 14, 15});
+}
+
+// CHECK-LABEL: define i32 @f_va_1(i8* %fmt, ...) {{.*}} {
+// CHECK: [[FMT_ADDR:%.*]] = alloca i8*, align 4
+// CHECK: [[VA:%.*]] = alloca i8*, align 4
+// CHECK: [[V:%.*]] = alloca i32, align 4
+// CHECK: store i8* %fmt, i8** [[FMT_ADDR]], align 4
+// CHECK: [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK: call void @llvm.va_start(i8* [[VA1]])
+// CHECK: [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR]], i32 4
+// CHECK: store i8* [[ARGP_NEXT]], i8** [[VA]], align 4
+// CHECK: [[TMP0:%.*]] = bitcast i8* [[ARGP_CUR]] to i32*
+// CHECK: [[TMP1:%.*]] = load i32, i32* [[TMP0]], align 4
+// CHECK: store i32 [[TMP1]], i32* [[V]], align 4
+// CHECK: [[VA2:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK: call void @llvm.va_end(i8* [[VA2]])
+// CHECK: [[TMP2:%.*]] = load i32, i32* [[V]], align 4
+// CHECK: ret i32 [[TMP2]]
+// CHECK: }
+int f_va_1(char *fmt, ...) {
+ __builtin_va_list va;
+
+ __builtin_va_start(va, fmt);
+ int v = __builtin_va_arg(va, int);
+ __builtin_va_end(va);
+
+ return v;
+}
+
+// An "aligned" register pair (where the first register is even-numbered) is
+// used to pass varargs with 2x xlen alignment and 2x xlen size. Ensure the
+// correct offsets are used.
+
+// CHECK-LABEL: @f_va_2(
+// CHECK-NEXT: entry:
+// CHECK-NEXT: [[FMT_ADDR:%.*]] = alloca i8*, align 4
+// CHECK-NEXT: [[VA:%.*]] = alloca i8*, align 4
+// CHECK-NEXT: [[V:%.*]] = alloca double, align 8
+// CHECK-NEXT: store i8* [[FMT:%.*]], i8** [[FMT_ADDR]], align 4
+// CHECK-NEXT: [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT: call void @llvm.va_start(i8* [[VA1]])
+// CHECK-NEXT: [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK-NEXT: [[TMP0:%.*]] = ptrtoint i8* [[ARGP_CUR]] to i32
+// CHECK-NEXT: [[TMP1:%.*]] = add i32 [[TMP0]], 7
+// CHECK-NEXT: [[TMP2:%.*]] = and i32 [[TMP1]], -8
+// CHECK-NEXT: [[ARGP_CUR_ALIGNED:%.*]] = inttoptr i32 [[TMP2]] to i8*
+// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR_ALIGNED]], i32 8
+// CHECK-NEXT: store i8* [[ARGP_NEXT]], i8** [[VA]], align 4
+// CHECK-NEXT: [[TMP3:%.*]] = bitcast i8* [[ARGP_CUR_ALIGNED]] to double*
+// CHECK-NEXT: [[TMP4:%.*]] = load double, double* [[TMP3]], align 8
+// CHECK-NEXT: store double [[TMP4]], double* [[V]], align 8
+// CHECK-NEXT: [[VA2:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT: call void @llvm.va_end(i8* [[VA2]])
+// CHECK-NEXT: [[TMP5:%.*]] = load double, double* [[V]], align 8
+// CHECK-NEXT: ret double [[TMP5]]
+double f_va_2(char *fmt, ...) {
+ __builtin_va_list va;
+
+ __builtin_va_start(va, fmt);
+ double v = __builtin_va_arg(va, double);
+ __builtin_va_end(va);
+
+ return v;
+}
+
+// Two "aligned" register pairs.
+
+// CHECK-LABEL: @f_va_3(
+// CHECK-NEXT: entry:
+// CHECK-NEXT: [[FMT_ADDR:%.*]] = alloca i8*, align 4
+// CHECK-NEXT: [[VA:%.*]] = alloca i8*, align 4
+// CHECK-NEXT: [[V:%.*]] = alloca double, align 8
+// CHECK-NEXT: [[W:%.*]] = alloca i32, align 4
+// CHECK-NEXT: [[X:%.*]] = alloca double, align 8
+// CHECK-NEXT: store i8* [[FMT:%.*]], i8** [[FMT_ADDR]], align 4
+// CHECK-NEXT: [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT: call void @llvm.va_start(i8* [[VA1]])
+// CHECK-NEXT: [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK-NEXT: [[TMP0:%.*]] = ptrtoint i8* [[ARGP_CUR]] to i32
+// CHECK-NEXT: [[TMP1:%.*]] = add i32 [[TMP0]], 7
+// CHECK-NEXT: [[TMP2:%.*]] = and i32 [[TMP1]], -8
+// CHECK-NEXT: [[ARGP_CUR_ALIGNED:%.*]] = inttoptr i32 [[TMP2]] to i8*
+// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR_ALIGNED]], i32 8
+// CHECK-NEXT: store i8* [[ARGP_NEXT]], i8** [[VA]], align 4
+// CHECK-NEXT: [[TMP3:%.*]] = bitcast i8* [[ARGP_CUR_ALIGNED]] to double*
+// CHECK-NEXT: [[TMP4:%.*]] = load double, double* [[TMP3]], align 8
+// CHECK-NEXT: store double [[TMP4]], double* [[V]], align 8
+// CHECK-NEXT: [[ARGP_CUR2:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK-NEXT: [[ARGP_NEXT3:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR2]], i32 4
+// CHECK-NEXT: store i8* [[ARGP_NEXT3]], i8** [[VA]], align 4
+// CHECK-NEXT: [[TMP5:%.*]] = bitcast i8* [[ARGP_CUR2]] to i32*
+// CHECK-NEXT: [[TMP6:%.*]] = load i32, i32* [[TMP5]], align 4
+// CHECK-NEXT: store i32 [[TMP6]], i32* [[W]], align 4
+// CHECK-NEXT: [[ARGP_CUR4:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK-NEXT: [[TMP7:%.*]] = ptrtoint i8* [[ARGP_CUR4]] to i32
+// CHECK-NEXT: [[TMP8:%.*]] = add i32 [[TMP7]], 7
+// CHECK-NEXT: [[TMP9:%.*]] = and i32 [[TMP8]], -8
+// CHECK-NEXT: [[ARGP_CUR4_ALIGNED:%.*]] = inttoptr i32 [[TMP9]] to i8*
+// CHECK-NEXT: [[ARGP_NEXT5:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR4_ALIGNED]], i32 8
+// CHECK-NEXT: store i8* [[ARGP_NEXT5]], i8** [[VA]], align 4
+// CHECK-NEXT: [[TMP10:%.*]] = bitcast i8* [[ARGP_CUR4_ALIGNED]] to double*
+// CHECK-NEXT: [[TMP11:%.*]] = load double, double* [[TMP10]], align 8
+// CHECK-NEXT: store double [[TMP11]], double* [[X]], align 8
+// CHECK-NEXT: [[VA6:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT: call void @llvm.va_end(i8* [[VA6]])
+// CHECK-NEXT: [[TMP12:%.*]] = load double, double* [[V]], align 8
+// CHECK-NEXT: [[TMP13:%.*]] = load double, double* [[X]], align 8
+// CHECK-NEXT: [[ADD:%.*]] = fadd double [[TMP12]], [[TMP13]]
+// CHECK-NEXT: ret double [[ADD]]
+double f_va_3(char *fmt, ...) {
+ __builtin_va_list va;
+
+ __builtin_va_start(va, fmt);
+ double v = __builtin_va_arg(va, double);
+ int w = __builtin_va_arg(va, int);
+ double x = __builtin_va_arg(va, double);
+ __builtin_va_end(va);
+
+ return v + x;
+}
+
+// CHECK-LABEL: define i32 @f_va_4(i8* %fmt, ...) {{.*}} {
+// CHECK-NEXT: entry:
+// CHECK-NEXT: [[FMT_ADDR:%.*]] = alloca i8*, align 4
+// CHECK-NEXT: [[VA:%.*]] = alloca i8*, align 4
+// CHECK-NEXT: [[V:%.*]] = alloca i32, align 4
+// CHECK-NEXT: [[LD:%.*]] = alloca fp128, align 16
+// CHECK-NEXT: [[TS:%.*]] = alloca [[STRUCT_TINY:%.*]], align 1
+// CHECK-NEXT: [[SS:%.*]] = alloca [[STRUCT_SMALL:%.*]], align 4
+// CHECK-NEXT: [[LS:%.*]] = alloca [[STRUCT_LARGE:%.*]], align 4
+// CHECK-NEXT: [[RET:%.*]] = alloca i32, align 4
+// CHECK-NEXT: store i8* [[FMT:%.*]], i8** [[FMT_ADDR]], align 4
+// CHECK-NEXT: [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT: call void @llvm.va_start(i8* [[VA1]])
+// CHECK-NEXT: [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR]], i32 4
+// CHECK-NEXT: store i8* [[ARGP_NEXT]], i8** [[VA]], align 4
+// CHECK-NEXT: [[TMP0:%.*]] = bitcast i8* [[ARGP_CUR]] to i32*
+// CHECK-NEXT: [[TMP1:%.*]] = load i32, i32* [[TMP0]], align 4
+// CHECK-NEXT: store i32 [[TMP1]], i32* [[V]], align 4
+// CHECK-NEXT: [[ARGP_CUR2:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK-NEXT: [[ARGP_NEXT3:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR2]], i32 4
+// CHECK-NEXT: store i8* [[ARGP_NEXT3]], i8** [[VA]], align 4
+// CHECK-NEXT: [[TMP2:%.*]] = bitcast i8* [[ARGP_CUR2]] to fp128**
+// CHECK-NEXT: [[TMP3:%.*]] = load fp128*, fp128** [[TMP2]], align 4
+// CHECK-NEXT: [[TMP4:%.*]] = load fp128, fp128* [[TMP3]], align 16
+// CHECK-NEXT: store fp128 [[TMP4]], fp128* [[LD]], align 16
+// CHECK-NEXT: [[ARGP_CUR4:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK-NEXT: [[ARGP_NEXT5:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR4]], i32 4
+// CHECK-NEXT: store i8* [[ARGP_NEXT5]], i8** [[VA]], align 4
+// CHECK-NEXT: [[TMP5:%.*]] = bitcast i8* [[ARGP_CUR4]] to %struct.tiny*
+// CHECK-NEXT: [[TMP6:%.*]] = bitcast %struct.tiny* [[TS]] to i8*
+// CHECK-NEXT: [[TMP7:%.*]] = bitcast %struct.tiny* [[TMP5]] to i8*
+// CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* [[TMP6]], i8* [[TMP7]], i32 4, i32 1, i1 false)
+// CHECK-NEXT: [[ARGP_CUR6:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK-NEXT: [[ARGP_NEXT7:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR6]], i32 8
+// CHECK-NEXT: store i8* [[ARGP_NEXT7]], i8** [[VA]], align 4
+// CHECK-NEXT: [[TMP8:%.*]] = bitcast i8* [[ARGP_CUR6]] to %struct.small*
+// CHECK-NEXT: [[TMP9:%.*]] = bitcast %struct.small* [[SS]] to i8*
+// CHECK-NEXT: [[TMP10:%.*]] = bitcast %struct.small* [[TMP8]] to i8*
+// CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* [[TMP9]], i8* [[TMP10]], i32 8, i32 4, i1 false)
+// CHECK-NEXT: [[ARGP_CUR8:%.*]] = load i8*, i8** [[VA]], align 4
+// CHECK-NEXT: [[ARGP_NEXT9:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR8]], i32 4
+// CHECK-NEXT: store i8* [[ARGP_NEXT9]], i8** [[VA]], align 4
+// CHECK-NEXT: [[TMP11:%.*]] = bitcast i8* [[ARGP_CUR8]] to %struct.large**
+// CHECK-NEXT: [[TMP12:%.*]] = load %struct.large*, %struct.large** [[TMP11]], align 4
+// CHECK-NEXT: [[TMP13:%.*]] = bitcast %struct.large* [[LS]] to i8*
+// CHECK-NEXT: [[TMP14:%.*]] = bitcast %struct.large* [[TMP12]] to i8*
+// CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* [[TMP13]], i8* [[TMP14]], i32 16, i32 4, i1 false)
+// CHECK-NEXT: [[VA10:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT: call void @llvm.va_end(i8* [[VA10]])
+int f_va_4(char *fmt, ...) {
+ __builtin_va_list va;
+
+ __builtin_va_start(va, fmt);
+ int v = __builtin_va_arg(va, int);
+ long double ld = __builtin_va_arg(va, long double);
+ struct tiny ts = __builtin_va_arg(va, struct tiny);
+ struct small ss = __builtin_va_arg(va, struct small);
+ struct large ls = __builtin_va_arg(va, struct large);
+ __builtin_va_end(va);
+
+ int ret = (int)((long double)v + ld);
+ ret = ret + ts.a + ts.b + ts.c + ts.d;
+ ret = ret + ss.a + (int)ss.b;
+ ret = ret + ls.a + ls.b + ls.c + ls.d;
+
+ return ret;
+}
--- /dev/null
+// RUN: %clang_cc1 -triple riscv64 -emit-llvm %s -o - | FileCheck %s
+
+#include <stddef.h>
+#include <stdint.h>
+
+// CHECK-LABEL: define void @f_void()
+void f_void(void) {}
+
+// Scalar arguments and return values smaller than the word size are extended
+// according to the sign of their type, up to 32 bits
+
+// CHECK-LABEL: define zeroext i1 @f_scalar_0(i1 zeroext %x)
+_Bool f_scalar_0(_Bool x) { return x; }
+
+// CHECK-LABEL: define signext i8 @f_scalar_1(i8 signext %x)
+int8_t f_scalar_1(int8_t x) { return x; }
+
+// CHECK-LABEL: define zeroext i8 @f_scalar_2(i8 zeroext %x)
+uint8_t f_scalar_2(uint8_t x) { return x; }
+
+// CHECK-LABEL: define signext i32 @f_scalar_3(i32 signext %x)
+uint32_t f_scalar_3(int32_t x) { return x; }
+
+// CHECK-LABEL: define i64 @f_scalar_4(i64 %x)
+int64_t f_scalar_4(int64_t x) { return x; }
+
+// CHECK-LABEL: define float @f_fp_scalar_1(float %x)
+float f_fp_scalar_1(float x) { return x; }
+
+// CHECK-LABEL: define double @f_fp_scalar_2(double %x)
+double f_fp_scalar_2(double x) { return x; }
+
+// CHECK-LABEL: define fp128 @f_fp_scalar_3(fp128 %x)
+long double f_fp_scalar_3(long double x) { return x; }
+
+// Empty structs or unions are ignored.
+
+struct empty_s {};
+
+// CHECK-LABEL: define void @f_agg_empty_struct()
+struct empty_s f_agg_empty_struct(struct empty_s x) {
+ return x;
+}
+
+union empty_u {};
+
+// CHECK-LABEL: define void @f_agg_empty_union()
+union empty_u f_agg_empty_union(union empty_u x) {
+ return x;
+}
+
+// Aggregates <= 2*xlen may be passed in registers, so will be coerced to
+// integer arguments. The rules for return are the same.
+
+struct tiny {
+ uint16_t a, b, c, d;
+};
+
+// CHECK-LABEL: define void @f_agg_tiny(i64 %x.coerce)
+void f_agg_tiny(struct tiny x) {
+ x.a += x.b;
+ x.c += x.d;
+}
+
+// CHECK-LABEL: define i64 @f_agg_tiny_ret()
+struct tiny f_agg_tiny_ret() {
+ return (struct tiny){1, 2, 3, 4};
+}
+
+typedef uint16_t v4i16 __attribute__((vector_size(8)));
+typedef int64_t v1i64 __attribute__((vector_size(8)));
+
+// CHECK-LABEL: define void @f_vec_tiny_v4i16(i64 %x.coerce)
+void f_vec_tiny_v4i16(v4i16 x) {
+ x[0] = x[1];
+ x[2] = x[3];
+}
+
+// CHECK-LABEL: define i64 @f_vec_tiny_v4i16_ret()
+v4i16 f_vec_tiny_v4i16_ret() {
+ return (v4i16){1, 2, 3, 4};
+}
+
+// CHECK-LABEL: define void @f_vec_tiny_v1i64(i64 %x.coerce)
+void f_vec_tiny_v1i64(v1i64 x) {
+ x[0] = 114;
+}
+
+// CHECK-LABEL: define i64 @f_vec_tiny_v1i64_ret()
+v1i64 f_vec_tiny_v1i64_ret() {
+ return (v1i64){1};
+}
+
+struct small {
+ int64_t a, *b;
+};
+
+// CHECK-LABEL: define void @f_agg_small([2 x i64] %x.coerce)
+void f_agg_small(struct small x) {
+ x.a += *x.b;
+ x.b = &x.a;
+}
+
+// CHECK-LABEL: define [2 x i64] @f_agg_small_ret()
+struct small f_agg_small_ret() {
+ return (struct small){1, 0};
+}
+
+typedef uint16_t v8i16 __attribute__((vector_size(16)));
+typedef __int128_t v1i128 __attribute__((vector_size(16)));
+
+// CHECK-LABEL: define void @f_vec_small_v8i16(i128 %x.coerce)
+void f_vec_small_v8i16(v8i16 x) {
+ x[0] = x[7];
+}
+
+// CHECK-LABEL: define i128 @f_vec_small_v8i16_ret()
+v8i16 f_vec_small_v8i16_ret() {
+ return (v8i16){1, 2, 3, 4, 5, 6, 7, 8};
+}
+
+// CHECK-LABEL: define void @f_vec_small_v1i128(i128 %x.coerce)
+void f_vec_small_v1i128(v1i128 x) {
+ x[0] = 114;
+}
+
+// CHECK-LABEL: define i128 @f_vec_small_v1i128_ret()
+v1i128 f_vec_small_v1i128_ret() {
+ return (v1i128){1};
+}
+
+// Aggregates of 2*xlen size and 2*xlen alignment should be coerced to a
+// single 2*xlen-sized argument, to ensure that alignment can be maintained if
+// passed on the stack.
+
+struct small_aligned {
+ __int128_t a;
+};
+
+// CHECK-LABEL: define void @f_agg_small_aligned(i128 %x.coerce)
+void f_agg_small_aligned(struct small_aligned x) {
+ x.a += x.a;
+}
+
+// CHECK-LABEL: define i128 @f_agg_small_aligned_ret(i128 %x.coerce)
+struct small_aligned f_agg_small_aligned_ret(struct small_aligned x) {
+ return (struct small_aligned){10};
+}
+
+// Aggregates greater > 2*xlen will be passed and returned indirectly
+struct large {
+ int64_t a, b, c, d;
+};
+
+// CHECK-LABEL: define void @f_agg_large(%struct.large* %x)
+void f_agg_large(struct large x) {
+ x.a = x.b + x.c + x.d;
+}
+
+// The address where the struct should be written to will be the first
+// argument
+// CHECK-LABEL: define void @f_agg_large_ret(%struct.large* noalias sret %agg.result, i32 signext %i, i8 signext %j)
+struct large f_agg_large_ret(int32_t i, int8_t j) {
+ return (struct large){1, 2, 3, 4};
+}
+
+typedef unsigned char v32i8 __attribute__((vector_size(32)));
+
+// CHECK-LABEL: define void @f_vec_large_v32i8(<32 x i8>*)
+void f_vec_large_v32i8(v32i8 x) {
+ x[0] = x[7];
+}
+
+// CHECK-LABEL: define void @f_vec_large_v32i8_ret(<32 x i8>* noalias sret %agg.result)
+v32i8 f_vec_large_v32i8_ret() {
+ return (v32i8){1, 2, 3, 4, 5, 6, 7, 8};
+}
+
+// Scalars passed on the stack should have signext/zeroext attributes (they
+// are anyext).
+
+// CHECK-LABEL: define signext i32 @f_scalar_stack_1(i64 %a.coerce, [2 x i64] %b.coerce, i128 %c.coerce, %struct.large* %d, i8 zeroext %e, i8 signext %f, i8 %g, i8 %h)
+int f_scalar_stack_1(struct tiny a, struct small b, struct small_aligned c,
+ struct large d, uint8_t e, int8_t f, uint8_t g, int8_t h) {
+ return g + h;
+}
+
+// CHECK-LABEL: define signext i32 @f_scalar_stack_2(i32 signext %a, i128 %b, float %c, fp128 %d, <32 x i8>*, i8 zeroext %f, i8 %g, i8 %h)
+int f_scalar_stack_2(int32_t a, __int128_t b, float c, long double d, v32i8 e,
+ uint8_t f, int8_t g, uint8_t h) {
+ return g + h;
+}
+
+// Ensure that scalars passed on the stack are still determined correctly in
+// the presence of large return values that consume a register due to the need
+// to pass a pointer.
+
+// CHECK-LABEL: define void @f_scalar_stack_3(%struct.large* noalias sret %agg.result, i32 signext %a, i128 %b, fp128 %c, <32 x i8>*, i8 zeroext %e, i8 %f, i8 %g)
+struct large f_scalar_stack_3(uint32_t a, __int128_t b, long double c, v32i8 d,
+ uint8_t e, int8_t f, uint8_t g) {
+ return (struct large){a, e, f, g};
+}
+
+// Ensure that ABI lowering happens as expected for vararg calls.
+// Specifically, ensure that signext is emitted for varargs that will be
+// passed in registers but not on the stack. Ensure this takes into account
+// the use of "aligned" register pairs for varargs with 2*xlen alignment.
+
+int f_va_callee(int, ...);
+
+// CHECK-LABEL: define void @f_va_caller()
+void f_va_caller() {
+ // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i64 3, double 4.000000e+00, double 5.000000e+00, i64 {{%.*}}, [2 x i64] {{%.*}}, i128 {{%.*}}, %struct.large* {{%.*}})
+ f_va_callee(1, 2, 3LL, 4.0f, 5.0, (struct tiny){6, 7, 8, 9},
+ (struct small){10, NULL}, (struct small_aligned){11},
+ (struct large){12, 13, 14, 15});
+ // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i32 signext 3, i32 signext 4, fp128 0xL00000000000000004001400000000000, i32 signext 6, i32 signext 7, i32 8, i32 9)
+ f_va_callee(1, 2, 3, 4, 5.0L, 6, 7, 8, 9);
+ // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i32 signext 3, i32 signext 4, i128 {{%.*}}, i32 signext 6, i32 signext 7, i32 8, i32 9)
+ f_va_callee(1, 2, 3, 4, (struct small_aligned){5}, 6, 7, 8, 9);
+ // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i32 signext 3, i32 signext 4, [2 x i64] {{%.*}}, i32 signext 6, i32 signext 7, i32 8, i32 9)
+ f_va_callee(1, 2, 3, 4, (struct small){5, NULL}, 6, 7, 8, 9);
+ // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i32 signext 3, i32 signext 4, i32 signext 5, fp128 0xL00000000000000004001800000000000, i32 7, i32 8, i32 9)
+ f_va_callee(1, 2, 3, 4, 5, 6.0L, 7, 8, 9);
+ // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i32 signext 3, i32 signext 4, i32 signext 5, i128 {{%.*}}, i32 7, i32 8, i32 9)
+ f_va_callee(1, 2, 3, 4, 5, (struct small_aligned){6}, 7, 8, 9);
+ // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i32 signext 3, i32 signext 4, i32 signext 5, [2 x i64] {{%.*}}, i32 signext 7, i32 8, i32 9)
+ f_va_callee(1, 2, 3, 4, 5, (struct small){6, NULL}, 7, 8, 9);
+ // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i32 signext 3, i32 signext 4, i32 signext 5, i32 signext 6, fp128 0xL00000000000000004001C00000000000, i32 8, i32 9)
+ f_va_callee(1, 2, 3, 4, 5, 6, 7.0L, 8, 9);
+ // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i32 signext 3, i32 signext 4, i32 signext 5, i32 signext 6, i128 {{%.*}}, i32 8, i32 9)
+ f_va_callee(1, 2, 3, 4, 5, 6, (struct small_aligned){7}, 8, 9);
+ // CHECK: call signext i32 (i32, ...) @f_va_callee(i32 signext 1, i32 signext 2, i32 signext 3, i32 signext 4, i32 signext 5, i32 signext 6, [2 x i64] {{.*}}, i32 8, i32 9)
+ f_va_callee(1, 2, 3, 4, 5, 6, (struct small){7, NULL}, 8, 9);
+}
+
+// CHECK-LABEL: define signext i32 @f_va_1(i8* %fmt, ...) {{.*}} {
+// CHECK: [[FMT_ADDR:%.*]] = alloca i8*, align 8
+// CHECK: [[VA:%.*]] = alloca i8*, align 8
+// CHECK: [[V:%.*]] = alloca i32, align 4
+// CHECK: store i8* %fmt, i8** [[FMT_ADDR]], align 8
+// CHECK: [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK: call void @llvm.va_start(i8* [[VA1]])
+// CHECK: [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 8
+// CHECK: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR]], i64 8
+// CHECK: store i8* [[ARGP_NEXT]], i8** [[VA]], align 8
+// CHECK: [[TMP0:%.*]] = bitcast i8* [[ARGP_CUR]] to i32*
+// CHECK: [[TMP1:%.*]] = load i32, i32* [[TMP0]], align 8
+// CHECK: store i32 [[TMP1]], i32* [[V]], align 4
+// CHECK: [[VA2:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK: call void @llvm.va_end(i8* [[VA2]])
+// CHECK: [[TMP2:%.*]] = load i32, i32* [[V]], align 4
+// CHECK: ret i32 [[TMP2]]
+// CHECK: }
+int f_va_1(char *fmt, ...) {
+ __builtin_va_list va;
+
+ __builtin_va_start(va, fmt);
+ int v = __builtin_va_arg(va, int);
+ __builtin_va_end(va);
+
+ return v;
+}
+
+// An "aligned" register pair (where the first register is even-numbered) is
+// used to pass varargs with 2x xlen alignment and 2x xlen size. Ensure the
+// correct offsets are used.
+
+// CHECK-LABEL: @f_va_2(
+// CHECK-NEXT: entry:
+// CHECK-NEXT: [[FMT_ADDR:%.*]] = alloca i8*, align 8
+// CHECK-NEXT: [[VA:%.*]] = alloca i8*, align 8
+// CHECK-NEXT: [[V:%.*]] = alloca fp128, align 16
+// CHECK-NEXT: store i8* [[FMT:%.*]], i8** [[FMT_ADDR]], align 8
+// CHECK-NEXT: [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT: call void @llvm.va_start(i8* [[VA1]])
+// CHECK-NEXT: [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 8
+// CHECK-NEXT: [[TMP0:%.*]] = ptrtoint i8* [[ARGP_CUR]] to i64
+// CHECK-NEXT: [[TMP1:%.*]] = add i64 [[TMP0]], 15
+// CHECK-NEXT: [[TMP2:%.*]] = and i64 [[TMP1]], -16
+// CHECK-NEXT: [[ARGP_CUR_ALIGNED:%.*]] = inttoptr i64 [[TMP2]] to i8*
+// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR_ALIGNED]], i64 16
+// CHECK-NEXT: store i8* [[ARGP_NEXT]], i8** [[VA]], align 8
+// CHECK-NEXT: [[TMP3:%.*]] = bitcast i8* [[ARGP_CUR_ALIGNED]] to fp128*
+// CHECK-NEXT: [[TMP4:%.*]] = load fp128, fp128* [[TMP3]], align 16
+// CHECK-NEXT: store fp128 [[TMP4]], fp128* [[V]], align 16
+// CHECK-NEXT: [[VA2:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT: call void @llvm.va_end(i8* [[VA2]])
+// CHECK-NEXT: [[TMP5:%.*]] = load fp128, fp128* [[V]], align 16
+// CHECK-NEXT: ret fp128 [[TMP5]]
+long double f_va_2(char *fmt, ...) {
+ __builtin_va_list va;
+
+ __builtin_va_start(va, fmt);
+ long double v = __builtin_va_arg(va, long double);
+ __builtin_va_end(va);
+
+ return v;
+}
+
+// Two "aligned" register pairs.
+
+// CHECK-LABEL: @f_va_3(
+// CHECK-NEXT: entry:
+// CHECK-NEXT: [[FMT_ADDR:%.*]] = alloca i8*, align 8
+// CHECK-NEXT: [[VA:%.*]] = alloca i8*, align 8
+// CHECK-NEXT: [[V:%.*]] = alloca fp128, align 16
+// CHECK-NEXT: [[W:%.*]] = alloca i32, align 4
+// CHECK-NEXT: [[X:%.*]] = alloca fp128, align 16
+// CHECK-NEXT: store i8* [[FMT:%.*]], i8** [[FMT_ADDR]], align 8
+// CHECK-NEXT: [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT: call void @llvm.va_start(i8* [[VA1]])
+// CHECK-NEXT: [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 8
+// CHECK-NEXT: [[TMP0:%.*]] = ptrtoint i8* [[ARGP_CUR]] to i64
+// CHECK-NEXT: [[TMP1:%.*]] = add i64 [[TMP0]], 15
+// CHECK-NEXT: [[TMP2:%.*]] = and i64 [[TMP1]], -16
+// CHECK-NEXT: [[ARGP_CUR_ALIGNED:%.*]] = inttoptr i64 [[TMP2]] to i8*
+// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR_ALIGNED]], i64 16
+// CHECK-NEXT: store i8* [[ARGP_NEXT]], i8** [[VA]], align 8
+// CHECK-NEXT: [[TMP3:%.*]] = bitcast i8* [[ARGP_CUR_ALIGNED]] to fp128*
+// CHECK-NEXT: [[TMP4:%.*]] = load fp128, fp128* [[TMP3]], align 16
+// CHECK-NEXT: store fp128 [[TMP4]], fp128* [[V]], align 16
+// CHECK-NEXT: [[ARGP_CUR2:%.*]] = load i8*, i8** [[VA]], align 8
+// CHECK-NEXT: [[ARGP_NEXT3:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR2]], i64 8
+// CHECK-NEXT: store i8* [[ARGP_NEXT3]], i8** [[VA]], align 8
+// CHECK-NEXT: [[TMP5:%.*]] = bitcast i8* [[ARGP_CUR2]] to i32*
+// CHECK-NEXT: [[TMP6:%.*]] = load i32, i32* [[TMP5]], align 8
+// CHECK-NEXT: store i32 [[TMP6]], i32* [[W]], align 4
+// CHECK-NEXT: [[ARGP_CUR4:%.*]] = load i8*, i8** [[VA]], align 8
+// CHECK-NEXT: [[TMP7:%.*]] = ptrtoint i8* [[ARGP_CUR4]] to i64
+// CHECK-NEXT: [[TMP8:%.*]] = add i64 [[TMP7]], 15
+// CHECK-NEXT: [[TMP9:%.*]] = and i64 [[TMP8]], -16
+// CHECK-NEXT: [[ARGP_CUR4_ALIGNED:%.*]] = inttoptr i64 [[TMP9]] to i8*
+// CHECK-NEXT: [[ARGP_NEXT5:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR4_ALIGNED]], i64 16
+// CHECK-NEXT: store i8* [[ARGP_NEXT5]], i8** [[VA]], align 8
+// CHECK-NEXT: [[TMP10:%.*]] = bitcast i8* [[ARGP_CUR4_ALIGNED]] to fp128*
+// CHECK-NEXT: [[TMP11:%.*]] = load fp128, fp128* [[TMP10]], align 16
+// CHECK-NEXT: store fp128 [[TMP11]], fp128* [[X]], align 16
+// CHECK-NEXT: [[VA6:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT: call void @llvm.va_end(i8* [[VA6]])
+// CHECK-NEXT: [[TMP12:%.*]] = load fp128, fp128* [[V]], align 16
+// CHECK-NEXT: [[TMP13:%.*]] = load fp128, fp128* [[X]], align 16
+// CHECK-NEXT: [[ADD:%.*]] = fadd fp128 [[TMP12]], [[TMP13]]
+// CHECK-NEXT: ret fp128 [[ADD]]
+long double f_va_3(char *fmt, ...) {
+ __builtin_va_list va;
+
+ __builtin_va_start(va, fmt);
+ long double v = __builtin_va_arg(va, long double);
+ int w = __builtin_va_arg(va, int);
+ long double x = __builtin_va_arg(va, long double);
+ __builtin_va_end(va);
+
+ return v + x;
+}
+
+// CHECK-LABEL: @f_va_4(
+// CHECK-NEXT: entry:
+// CHECK-NEXT: [[FMT_ADDR:%.*]] = alloca i8*, align 8
+// CHECK-NEXT: [[VA:%.*]] = alloca i8*, align 8
+// CHECK-NEXT: [[V:%.*]] = alloca i32, align 4
+// CHECK-NEXT: [[TS:%.*]] = alloca [[STRUCT_TINY:%.*]], align 2
+// CHECK-NEXT: [[SS:%.*]] = alloca [[STRUCT_SMALL:%.*]], align 8
+// CHECK-NEXT: [[LS:%.*]] = alloca [[STRUCT_LARGE:%.*]], align 8
+// CHECK-NEXT: [[RET:%.*]] = alloca i32, align 4
+// CHECK-NEXT: store i8* [[FMT:%.*]], i8** [[FMT_ADDR]], align 8
+// CHECK-NEXT: [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT: call void @llvm.va_start(i8* [[VA1]])
+// CHECK-NEXT: [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 8
+// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR]], i64 8
+// CHECK-NEXT: store i8* [[ARGP_NEXT]], i8** [[VA]], align 8
+// CHECK-NEXT: [[TMP0:%.*]] = bitcast i8* [[ARGP_CUR]] to i32*
+// CHECK-NEXT: [[TMP1:%.*]] = load i32, i32* [[TMP0]], align 8
+// CHECK-NEXT: store i32 [[TMP1]], i32* [[V]], align 4
+// CHECK-NEXT: [[ARGP_CUR2:%.*]] = load i8*, i8** [[VA]], align 8
+// CHECK-NEXT: [[ARGP_NEXT3:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR2]], i64 8
+// CHECK-NEXT: store i8* [[ARGP_NEXT3]], i8** [[VA]], align 8
+// CHECK-NEXT: [[TMP2:%.*]] = bitcast i8* [[ARGP_CUR2]] to %struct.tiny*
+// CHECK-NEXT: [[TMP3:%.*]] = bitcast %struct.tiny* [[TS]] to i8*
+// CHECK-NEXT: [[TMP4:%.*]] = bitcast %struct.tiny* [[TMP2]] to i8*
+// CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[TMP3]], i8* [[TMP4]], i64 8, i32 2, i1 false)
+// CHECK-NEXT: [[ARGP_CUR4:%.*]] = load i8*, i8** [[VA]], align 8
+// CHECK-NEXT: [[ARGP_NEXT5:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR4]], i64 16
+// CHECK-NEXT: store i8* [[ARGP_NEXT5]], i8** [[VA]], align 8
+// CHECK-NEXT: [[TMP5:%.*]] = bitcast i8* [[ARGP_CUR4]] to %struct.small*
+// CHECK-NEXT: [[TMP6:%.*]] = bitcast %struct.small* [[SS]] to i8*
+// CHECK-NEXT: [[TMP7:%.*]] = bitcast %struct.small* [[TMP5]] to i8*
+// CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[TMP6]], i8* [[TMP7]], i64 16, i32 8, i1 false)
+// CHECK-NEXT: [[ARGP_CUR6:%.*]] = load i8*, i8** [[VA]], align 8
+// CHECK-NEXT: [[ARGP_NEXT7:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR6]], i64 8
+// CHECK-NEXT: store i8* [[ARGP_NEXT7]], i8** [[VA]], align 8
+// CHECK-NEXT: [[TMP8:%.*]] = bitcast i8* [[ARGP_CUR6]] to %struct.large**
+// CHECK-NEXT: [[TMP9:%.*]] = load %struct.large*, %struct.large** [[TMP8]], align 8
+// CHECK-NEXT: [[TMP10:%.*]] = bitcast %struct.large* [[LS]] to i8*
+// CHECK-NEXT: [[TMP11:%.*]] = bitcast %struct.large* [[TMP9]] to i8*
+// CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[TMP10]], i8* [[TMP11]], i64 32, i32 8, i1 false)
+// CHECK-NEXT: [[VA8:%.*]] = bitcast i8** [[VA]] to i8*
+// CHECK-NEXT: call void @llvm.va_end(i8* [[VA8]])
+// CHECK-NEXT: [[A:%.*]] = getelementptr inbounds [[STRUCT_TINY]], %struct.tiny* [[TS]], i32 0, i32 0
+// CHECK-NEXT: [[TMP12:%.*]] = load i16, i16* [[A]], align 2
+// CHECK-NEXT: [[CONV:%.*]] = zext i16 [[TMP12]] to i64
+// CHECK-NEXT: [[A9:%.*]] = getelementptr inbounds [[STRUCT_SMALL]], %struct.small* [[SS]], i32 0, i32 0
+// CHECK-NEXT: [[TMP13:%.*]] = load i64, i64* [[A9]], align 8
+// CHECK-NEXT: [[ADD:%.*]] = add nsw i64 [[CONV]], [[TMP13]]
+// CHECK-NEXT: [[C:%.*]] = getelementptr inbounds [[STRUCT_LARGE]], %struct.large* [[LS]], i32 0, i32 2
+// CHECK-NEXT: [[TMP14:%.*]] = load i64, i64* [[C]], align 8
+// CHECK-NEXT: [[ADD10:%.*]] = add nsw i64 [[ADD]], [[TMP14]]
+// CHECK-NEXT: [[CONV11:%.*]] = trunc i64 [[ADD10]] to i32
+// CHECK-NEXT: store i32 [[CONV11]], i32* [[RET]], align 4
+// CHECK-NEXT: [[TMP15:%.*]] = load i32, i32* [[RET]], align 4
+// CHECK-NEXT: ret i32 [[TMP15]]
+int f_va_4(char *fmt, ...) {
+ __builtin_va_list va;
+
+ __builtin_va_start(va, fmt);
+ int v = __builtin_va_arg(va, int);
+ struct tiny ts = __builtin_va_arg(va, struct tiny);
+ struct small ss = __builtin_va_arg(va, struct small);
+ struct large ls = __builtin_va_arg(va, struct large);
+ __builtin_va_end(va);
+
+ int ret = ts.a + ss.a + ls.c;
+
+ return ret;
+}
// CHECK: @align_vl = global i32 4
int align_vl = __alignof(va_list);
+
+// Check types
+
+// CHECK: zeroext i8 @check_char()
+char check_char() { return 0; }
+
+// CHECK: define signext i16 @check_short()
+short check_short() { return 0; }
+
+// CHECK: define i32 @check_int()
+int check_int() { return 0; }
+
+// CHECK: define i32 @check_wchar_t()
+int check_wchar_t() { return 0; }
+
+// CHECK: define i32 @check_long()
+long check_long() { return 0; }
+
+// CHECK: define i64 @check_longlong()
+long long check_longlong() { return 0; }
+
+// CHECK: define zeroext i8 @check_uchar()
+unsigned char check_uchar() { return 0; }
+
+// CHECK: define zeroext i16 @check_ushort()
+unsigned short check_ushort() { return 0; }
+
+// CHECK: define i32 @check_uint()
+unsigned int check_uint() { return 0; }
+
+// CHECK: define i32 @check_ulong()
+unsigned long check_ulong() { return 0; }
+
+// CHECK: define i64 @check_ulonglong()
+unsigned long long check_ulonglong() { return 0; }
+
+// CHECK: define i32 @check_size_t()
+size_t check_size_t() { return 0; }
+
+// CHECK: define float @check_float()
+float check_float() { return 0; }
+
+// CHECK: define double @check_double()
+double check_double() { return 0; }
+
+// CHECK: define fp128 @check_longdouble()
+long double check_longdouble() { return 0; }
// CHECK: @align_vl = global i32 8
int align_vl = __alignof(va_list);
+
+// Check types
+
+// CHECK: define zeroext i8 @check_char()
+char check_char() { return 0; }
+
+// CHECK: define signext i16 @check_short()
+short check_short() { return 0; }
+
+// CHECK: define signext i32 @check_int()
+int check_int() { return 0; }
+
+// CHECK: define signext i32 @check_wchar_t()
+int check_wchar_t() { return 0; }
+
+// CHECK: define i64 @check_long()
+long check_long() { return 0; }
+
+// CHECK: define i64 @check_longlong()
+long long check_longlong() { return 0; }
+
+// CHECK: define zeroext i8 @check_uchar()
+unsigned char check_uchar() { return 0; }
+
+// CHECK: define zeroext i16 @check_ushort()
+unsigned short check_ushort() { return 0; }
+
+// CHECK: define signext i32 @check_uint()
+unsigned int check_uint() { return 0; }
+
+// CHECK: define i64 @check_ulong()
+unsigned long check_ulong() { return 0; }
+
+// CHECK: define i64 @check_ulonglong()
+unsigned long long check_ulonglong() { return 0; }
+
+// CHECK: define i64 @check_size_t()
+size_t check_size_t() { return 0; }
+
+// CHECK: define float @check_float()
+float check_float() { return 0; }
+
+// CHECK: define double @check_double()
+double check_double() { return 0; }
+
+// CHECK: define fp128 @check_longdouble()
+long double check_longdouble() { return 0; }