return Comparison::Equal;
}
-static Comparison
-isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
- const OverloadCandidate &Cand2) {
+static bool isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
+ const OverloadCandidate &Cand2) {
if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
!Cand2.Function->isMultiVersion())
- return Comparison::Equal;
+ return false;
- // If both are invalid, they are equal. If one of them is invalid, the other
- // is better.
- if (Cand1.Function->isInvalidDecl()) {
- if (Cand2.Function->isInvalidDecl())
- return Comparison::Equal;
- return Comparison::Worse;
- }
- if (Cand2.Function->isInvalidDecl())
- return Comparison::Better;
+ // If Cand1 is invalid, it cannot be a better match, if Cand2 is invalid, this
+ // is obviously better.
+ if (Cand1.Function->isInvalidDecl()) return false;
+ if (Cand2.Function->isInvalidDecl()) return true;
// If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
// cpu_dispatch, else arbitrarily based on the identifiers.
const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();
if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
- return Comparison::Equal;
+ return false;
if (Cand1CPUDisp && !Cand2CPUDisp)
- return Comparison::Better;
+ return true;
if (Cand2CPUDisp && !Cand1CPUDisp)
- return Comparison::Worse;
+ return false;
if (Cand1CPUSpec && Cand2CPUSpec) {
if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
- return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size()
- ? Comparison::Better
- : Comparison::Worse;
+ return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size();
std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
FirstDiff = std::mismatch(
assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&
"Two different cpu-specific versions should not have the same "
"identifier list, otherwise they'd be the same decl!");
- return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName()
- ? Comparison::Better
- : Comparison::Worse;
+ return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName();
}
llvm_unreachable("No way to get here unless both had cpu_dispatch");
}
else if (!Cand1.Viable)
return false;
- // [CUDA] A function with 'never' preference is marked not viable, therefore
- // is never shown up here. The worst preference shown up here is 'wrong side',
- // e.g. a host function called by a device host function in device
- // compilation. This is valid AST as long as the host device function is not
- // emitted, e.g. it is an inline function which is called only by a host
- // function. A deferred diagnostic will be triggered if it is emitted.
- // However a wrong-sided function is still a viable candidate here.
- //
- // If Cand1 can be emitted and Cand2 cannot be emitted in the current
- // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2
- // can be emitted, Cand1 is not better than Cand2. This rule should have
- // precedence over other rules.
- //
- // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then
- // other rules should be used to determine which is better. This is because
- // host/device based overloading resolution is mostly for determining
- // viability of a function. If two functions are both viable, other factors
- // should take precedence in preference, e.g. the standard-defined preferences
- // like argument conversion ranks or enable_if partial-ordering. The
- // preference for pass-object-size parameters is probably most similar to a
- // type-based-overloading decision and so should take priority.
- //
- // If other rules cannot determine which is better, CUDA preference will be
- // used again to determine which is better.
- //
- // TODO: Currently IdentifyCUDAPreference does not return correct values
- // for functions called in global variable initializers due to missing
- // correct context about device/host. Therefore we can only enforce this
- // rule when there is a caller. We should enforce this rule for functions
- // in global variable initializers once proper context is added.
- if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
- if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) {
- auto P1 = S.IdentifyCUDAPreference(Caller, Cand1.Function);
- auto P2 = S.IdentifyCUDAPreference(Caller, Cand2.Function);
- assert(P1 != Sema::CFP_Never && P2 != Sema::CFP_Never);
- auto Cand1Emittable = P1 > Sema::CFP_WrongSide;
- auto Cand2Emittable = P2 > Sema::CFP_WrongSide;
- if (Cand1Emittable && !Cand2Emittable)
- return true;
- if (!Cand1Emittable && Cand2Emittable)
- return false;
- }
- }
-
// C++ [over.match.best]p1:
//
// -- if F is a static member function, ICS1(F) is defined such
return Cmp == Comparison::Better;
}
+ if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
+ FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
+ return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
+ S.IdentifyCUDAPreference(Caller, Cand2.Function);
+ }
+
bool HasPS1 = Cand1.Function != nullptr &&
functionHasPassObjectSizeParams(Cand1.Function);
bool HasPS2 = Cand2.Function != nullptr &&
if (HasPS1 != HasPS2 && HasPS1)
return true;
- auto MV = isBetterMultiversionCandidate(Cand1, Cand2);
- if (MV == Comparison::Better)
- return true;
- if (MV == Comparison::Worse)
- return false;
-
- // If other rules cannot determine which is better, CUDA preference is used
- // to determine which is better.
- if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
- if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) {
- return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
- S.IdentifyCUDAPreference(Caller, Cand2.Function);
- }
- }
-
- return false;
+ return isBetterMultiversionCandidate(Cand1, Cand2);
}
/// Determine whether two declarations are "equivalent" for the purposes of
std::transform(begin(), end(), std::back_inserter(Candidates),
[](OverloadCandidate &Cand) { return &Cand; });
+ // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
+ // are accepted by both clang and NVCC. However, during a particular
+ // compilation mode only one call variant is viable. We need to
+ // exclude non-viable overload candidates from consideration based
+ // only on their host/device attributes. Specifically, if one
+ // candidate call is WrongSide and the other is SameSide, we ignore
+ // the WrongSide candidate.
+ if (S.getLangOpts().CUDA) {
+ const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
+ bool ContainsSameSideCandidate =
+ llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
+ // Check viable function only.
+ return Cand->Viable && Cand->Function &&
+ S.IdentifyCUDAPreference(Caller, Cand->Function) ==
+ Sema::CFP_SameSide;
+ });
+ if (ContainsSameSideCandidate) {
+ auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
+ // Check viable function only to avoid unnecessary data copying/moving.
+ return Cand->Viable && Cand->Function &&
+ S.IdentifyCUDAPreference(Caller, Cand->Function) ==
+ Sema::CFP_WrongSide;
+ };
+ llvm::erase_if(Candidates, IsWrongSideCandidate);
+ }
+ }
+
// Find the best viable function.
Best = end();
for (auto *Cand : Candidates) {
// If we have a mix of HD and H-only or D-only candidates in the overload set,
// normal C++ overload resolution rules apply first.
template <typename T> TemplateReturnTy template_vs_hd_function(T arg)
+#ifdef __CUDA_ARCH__
+//expected-note@-2 {{declared here}}
+#endif
{
return TemplateReturnTy();
}
}
__host__ __device__ void test_host_device_calls_hd_template() {
+ HostDeviceReturnTy ret1 = template_vs_hd_function(1.0f);
+ TemplateReturnTy ret2 = template_vs_hd_function(1);
#ifdef __CUDA_ARCH__
- typedef HostDeviceReturnTy ExpectedReturnTy;
-#else
- typedef TemplateReturnTy ExpectedReturnTy;
+ // expected-error@-2 {{reference to __host__ function 'template_vs_hd_function<int>' in __host__ __device__ function}}
#endif
- HostDeviceReturnTy ret1 = template_vs_hd_function(1.0f);
- ExpectedReturnTy ret2 = template_vs_hd_function(1);
}
__host__ void test_host_calls_hd_template() {
__device__ DeviceReturnTy device_only_function(int arg) { return DeviceReturnTy(); }
__device__ DeviceReturnTy2 device_only_function(float arg) { return DeviceReturnTy2(); }
#ifndef __CUDA_ARCH__
- // expected-note@-3 2{{'device_only_function' declared here}}
- // expected-note@-3 2{{'device_only_function' declared here}}
+ // expected-note@-3 {{'device_only_function' declared here}}
+ // expected-note@-3 {{'device_only_function' declared here}}
#endif
__host__ HostReturnTy host_only_function(int arg) { return HostReturnTy(); }
__host__ HostReturnTy2 host_only_function(float arg) { return HostReturnTy2(); }
#ifdef __CUDA_ARCH__
- // expected-note@-3 2{{'host_only_function' declared here}}
- // expected-note@-3 2{{'host_only_function' declared here}}
+ // expected-note@-3 {{'host_only_function' declared here}}
+ // expected-note@-3 {{'host_only_function' declared here}}
#endif
__host__ __device__ void test_host_device_single_side_overloading() {
#endif
}
-// wrong-sided overloading should not cause diagnostic unless it is emitted.
-// This inline function is not emitted.
-inline __host__ __device__ void test_host_device_wrong_side_overloading_inline_no_diag() {
- DeviceReturnTy ret1 = device_only_function(1);
- DeviceReturnTy2 ret2 = device_only_function(1.0f);
- HostReturnTy ret3 = host_only_function(1);
- HostReturnTy2 ret4 = host_only_function(1.0f);
-}
-
-// wrong-sided overloading should cause diagnostic if it is emitted.
-// This inline function is emitted since it is called by an emitted function.
-inline __host__ __device__ void test_host_device_wrong_side_overloading_inline_diag() {
- DeviceReturnTy ret1 = device_only_function(1);
- DeviceReturnTy2 ret2 = device_only_function(1.0f);
-#ifndef __CUDA_ARCH__
- // expected-error@-3 {{reference to __device__ function 'device_only_function' in __host__ __device__ function}}
- // expected-error@-3 {{reference to __device__ function 'device_only_function' in __host__ __device__ function}}
-#endif
- HostReturnTy ret3 = host_only_function(1);
- HostReturnTy2 ret4 = host_only_function(1.0f);
-#ifdef __CUDA_ARCH__
- // expected-error@-3 {{reference to __host__ function 'host_only_function' in __host__ __device__ function}}
- // expected-error@-3 {{reference to __host__ function 'host_only_function' in __host__ __device__ function}}
-#endif
-}
-
-__host__ __device__ void test_host_device_wrong_side_overloading_inline_diag_caller() {
- test_host_device_wrong_side_overloading_inline_diag();
- // expected-note@-1 {{called by 'test_host_device_wrong_side_overloading_inline_diag_caller'}}
-}
-
// Verify that we allow overloading function templates.
template <typename T> __host__ T template_overload(const T &a) { return a; };
template <typename T> __device__ T template_overload(const T &a) { return a; };