template <class T, std::size_t CHANNELS_PER_ITER>
__global__ void resize_nn(
Span<T> output, size_type out_height, size_type out_width,
- View<T> input, size_type in_height, size_type in_width)
+ View<T> input, size_type in_height, size_type in_width,
+ float o2i_fy, float o2i_fx, bool round, bool half_pixel_centers)
{
auto in_image_size = in_height * in_width;
auto out_image_size = out_height * out_width;
const index_type y = (iter % out_image_size) / out_width;
const index_type x = iter % out_width;
- /* o2i = output to input */
- auto o2i_fy = static_cast<float>(in_height) / out_height;
- auto o2i_fx = static_cast<float>(in_width) / out_width;
+ auto in_yf = half_pixel_centers ? (y + 0.5f) * o2i_fy : y * o2i_fy;
+ auto in_xf = half_pixel_centers ? (x + 0.5f) * o2i_fx : x * o2i_fx;
+
+ using device::lround;
+ index_type in_y = round ? lround(in_yf) : static_cast<index_type>(in_yf);
+ index_type in_x = round ? lround(in_xf) : static_cast<index_type>(in_xf);
- auto in_y = static_cast<index_type>(y * o2i_fy);
- auto in_x = static_cast<index_type>(x * o2i_fx);
+ using device::min;
+ in_y = min(in_y, in_height - 1);
+ in_x = min(in_x, in_width - 1);
index_type in_idx = c_start * in_image_size + in_y * in_width + in_x;
index_type out_idx = c_start * out_image_size + y * out_width + x;
__global__ void resize_bilinear(
Span<T> output, size_type out_height, size_type out_width,
View<T> input, size_type in_height, size_type in_width,
- float o2i_fy, float o2i_fx)
+ float o2i_fy, float o2i_fx, bool half_pixel_centers)
{
auto in_image_size = in_height * in_width;
auto out_image_size = out_height * out_width;
const index_type y = (iter % out_image_size) / out_width;
const index_type x = iter % out_width;
- auto in_x = x * o2i_fx;
- auto in_y = y * o2i_fy;
+ using device::max;
+ auto in_x = half_pixel_centers ? max<float>((x + 0.5f) * o2i_fx - 0.5f, 0.0f) : x * o2i_fx;
+ auto in_y = half_pixel_centers ? max<float>((y + 0.5f) * o2i_fy - 0.5f, 0.0f) : y * o2i_fy;
auto in_x0 = static_cast<index_type>(in_x);
auto in_y0 = static_cast<index_type>(in_y);
template <class T, std::size_t CHANNELS_PER_ITER> static
void launch_multichannel_resize_nn(const Stream& stream,
Span<T> output, size_type out_height, size_type out_width,
- View<T> input, size_type in_height, size_type in_width)
+ View<T> input, size_type in_height, size_type in_width,
+ float scale_y, float scale_x, bool round, bool half_pixel_centers)
{
auto kernel = raw::resize_nn<T, CHANNELS_PER_ITER>;
auto policy = make_policy(kernel, output.size() / CHANNELS_PER_ITER, 0, stream);
- launch_kernel(kernel, policy, output, out_height, out_width, input, in_height, in_width);
+ launch_kernel(kernel, policy, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, round, half_pixel_centers);
}
template <class T>
- void resize_nn(const Stream& stream, TensorSpan<T> output, TensorView<T> input) {
+ void resize_nn(const Stream& stream, TensorSpan<T> output, TensorView<T> input, float scale_y, float scale_x, bool round, bool half_pixel_centers) {
auto out_height = output.get_axis_size(-2);
auto out_width = output.get_axis_size(-1);
auto num_iters = num_effective_channels * out_height * out_width;
if (num_effective_channels % 32 == 0 && num_iters > 655360) {
- launch_multichannel_resize_nn<T, 32>(stream, output, out_height, out_width, input, in_height, in_width);
+ launch_multichannel_resize_nn<T, 32>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, round, half_pixel_centers);
} else if (num_effective_channels % 16 == 0 && num_iters > 327680) {
- launch_multichannel_resize_nn<T, 16>(stream, output, out_height, out_width, input, in_height, in_width);
+ launch_multichannel_resize_nn<T, 16>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, round, half_pixel_centers);
} else if (num_effective_channels % 8 == 0 && num_iters > 163840) {
- launch_multichannel_resize_nn<T, 8>(stream, output, out_height, out_width, input, in_height, in_width);
+ launch_multichannel_resize_nn<T, 8>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, round, half_pixel_centers);
} else if (num_effective_channels % 4 == 0 && num_iters > 81920) {
- launch_multichannel_resize_nn<T, 4>(stream, output, out_height, out_width, input, in_height, in_width);
+ launch_multichannel_resize_nn<T, 4>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, round, half_pixel_centers);
} else if (num_effective_channels % 2 == 0) {
- launch_multichannel_resize_nn<T, 2>(stream, output, out_height, out_width, input, in_height, in_width);
+ launch_multichannel_resize_nn<T, 2>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, round, half_pixel_centers);
} else {
- launch_multichannel_resize_nn<T, 1>(stream, output, out_height, out_width, input, in_height, in_width);
+ launch_multichannel_resize_nn<T, 1>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, round, half_pixel_centers);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
- template void resize_nn<__half>(const Stream&, TensorSpan<__half>, TensorView<__half>);
+ template void resize_nn<__half>(const Stream&, TensorSpan<__half>, TensorView<__half>, float, float, bool, bool);
#endif
- template void resize_nn<float>(const Stream&, TensorSpan<float>, TensorView<float>);
+ template void resize_nn<float>(const Stream&, TensorSpan<float>, TensorView<float>, float, float, bool,bool);
template <class T, std::size_t CHANNELS_PER_ITER> static
void launch_multichannel_resize_bilinear(const Stream& stream,
Span<T> output, size_type out_height, size_type out_width,
View<T> input, size_type in_height, size_type in_width,
- float scale_y, float scale_x)
+ float scale_y, float scale_x, bool half_pixel_centers)
{
auto kernel = raw::resize_bilinear<T, CHANNELS_PER_ITER>;
auto policy = make_policy(kernel, output.size() / CHANNELS_PER_ITER, 0, stream);
- launch_kernel(kernel, policy, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
+ launch_kernel(kernel, policy, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, half_pixel_centers);
}
template <class T>
- void resize_bilinear(const Stream& stream, TensorSpan<T> output, TensorView<T> input, float scale_y, float scale_x) {
+ void resize_bilinear(const Stream& stream, TensorSpan<T> output, TensorView<T> input, float scale_y, float scale_x, bool half_pixel_centers) {
auto out_height = output.get_axis_size(-2);
auto out_width = output.get_axis_size(-1);
auto num_iters = num_effective_channels * out_height * out_width;
if (num_effective_channels % 16 == 0 && num_iters > 163840) {
- launch_multichannel_resize_bilinear<T, 16>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
+ launch_multichannel_resize_bilinear<T, 16>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, half_pixel_centers);
} else if (num_effective_channels % 8 == 0 && num_iters > 81920) {
- launch_multichannel_resize_bilinear<T, 8>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
+ launch_multichannel_resize_bilinear<T, 8>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, half_pixel_centers);
} else if (num_effective_channels % 4 == 0 && num_iters > 40960) {
- launch_multichannel_resize_bilinear<T, 4>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
+ launch_multichannel_resize_bilinear<T, 4>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, half_pixel_centers);
} else if (num_effective_channels % 2 == 0) {
- launch_multichannel_resize_bilinear<T, 2>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
+ launch_multichannel_resize_bilinear<T, 2>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, half_pixel_centers);
} else {
- launch_multichannel_resize_bilinear<T, 1>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
+ launch_multichannel_resize_bilinear<T, 1>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, half_pixel_centers);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
- template void resize_bilinear<__half>(const Stream&, TensorSpan<__half>, TensorView<__half>, float, float);
+ template void resize_bilinear<__half>(const Stream&, TensorSpan<__half>, TensorView<__half>, float, float, bool);
#endif
- template void resize_bilinear<float>(const Stream&, TensorSpan<float>, TensorView<float>, float, float);
+ template void resize_bilinear<float>(const Stream&, TensorSpan<float>, TensorView<float>, float, float, bool);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */