COMPMID-3101 Fuse activation with floating point elementwise operation layers in CL
authorGiorgio Arena <giorgio.arena@arm.com>
Tue, 11 Feb 2020 17:21:31 +0000 (17:21 +0000)
committerSiCong Li <sicong.li@arm.com>
Fri, 3 Apr 2020 08:51:12 +0000 (08:51 +0000)
Signed-off-by: Giorgio Arena <giorgio.arena@arm.com>
Change-Id: I1693f8664ba7c0dc8c076bbe7365cef1e667bd25
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/2718
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Gian Marco Iodice <gianmarco.iodice@arm.com>
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>

43 files changed:
arm_compute/core/CL/kernels/CLElementwiseOperationKernel.h
arm_compute/core/CL/kernels/CLPixelWiseMultiplicationKernel.h
arm_compute/graph/LayerDescriptors.h
arm_compute/graph/backends/FunctionHelpers.h
arm_compute/graph/nodes/EltwiseLayerNode.h
arm_compute/runtime/CL/functions/CLElementwiseOperations.h
arm_compute/runtime/CL/functions/CLPixelWiseMultiplication.h
arm_compute/runtime/GLES_COMPUTE/functions/GCArithmeticAddition.h
arm_compute/runtime/GLES_COMPUTE/functions/GCPixelWiseMultiplication.h
arm_compute/runtime/NEON/functions/NEArithmeticAddition.h
arm_compute/runtime/NEON/functions/NEArithmeticSubtraction.h
arm_compute/runtime/NEON/functions/NEElementwiseOperations.h
arm_compute/runtime/NEON/functions/NEPixelWiseMultiplication.h
src/core/CL/cl_kernels/activation_float_helpers.h
src/core/CL/cl_kernels/elementwise_operation.cl
src/core/CL/cl_kernels/pixelwise_mul_float.cl
src/core/CL/kernels/CLElementwiseOperationKernel.cpp
src/core/CL/kernels/CLPixelWiseMultiplicationKernel.cpp
src/graph/mutators/NodeFusionMutator.cpp
src/graph/nodes/EltwiseLayerNode.cpp
src/runtime/CL/functions/CLElementwiseOperations.cpp
src/runtime/CL/functions/CLPixelWiseMultiplication.cpp
src/runtime/GLES_COMPUTE/functions/GCArithmeticAddition.cpp
src/runtime/GLES_COMPUTE/functions/GCPixelWiseMultiplication.cpp
src/runtime/NEON/functions/NEArithmeticAddition.cpp
src/runtime/NEON/functions/NEArithmeticSubtraction.cpp
src/runtime/NEON/functions/NEElementwiseOperators.cpp
src/runtime/NEON/functions/NEPixelWiseMultiplication.cpp
tests/datasets/ShapeDatasets.h
tests/validation/CL/ArithmeticAddition.cpp
tests/validation/CL/ArithmeticDivision.cpp
tests/validation/CL/ArithmeticSubtraction.cpp
tests/validation/CL/ElementwiseMax.cpp
tests/validation/CL/ElementwiseMin.cpp
tests/validation/CL/ElementwisePower.cpp
tests/validation/CL/ElementwiseSquaredDiff.cpp
tests/validation/CL/PixelWiseMultiplication.cpp
tests/validation/NEON/ElementwiseDivision.cpp
tests/validation/fixtures/ArithmeticOperationsFixture.h
tests/validation/fixtures/ElementwiseOperationsFixture.h
tests/validation/fixtures/PixelWiseMultiplicationFixture.h
tests/validation/reference/ActivationLayer.cpp
tests/validation/reference/ActivationLayer.h

index 34fafaa3a5cdc980556bb7cca45f4c0220135992..85961f28bc7af7425414ca5bfdf97228be25fa34 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018-2019 ARM Limited.
+ * Copyright (c) 2018-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -97,6 +97,8 @@ protected:
      */
     void configure_common(const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output);
 
+    ActivationLayerInfo _act_info;
+
 private:
     const ICLTensor *_input1; /**< Source tensor 1 */
     const ICLTensor *_input2; /**< Source tensor 2 */
@@ -114,25 +116,28 @@ public:
 
     /** Static function to check if given info will lead to a valid configuration of @ref CLSaturatedArithmeticOperationKernel
      *
-     * @param[in] op     Arithmetic operation to be executed.
-     * @param[in] input1 First tensor input. Data types supported: U8/S8/QASYMM8/QASYMM8_SIGNED/U16/S16/QSYMM16/F16/U32/S32/F32.
-     * @param[in] input2 Second tensor input. Data types supported: Same as @p input1.
-     * @param[in] output Output tensor. Data types supported: Same as @p input1.
-     * @param[in] policy Policy to use to handle overflow.
+     * @param[in] op       Arithmetic operation to be executed.
+     * @param[in] input1   First tensor input. Data types supported: U8/S8/QASYMM8/QASYMM8_SIGNED/U16/S16/QSYMM16/F16/U32/S32/F32.
+     * @param[in] input2   Second tensor input. Data types supported: Same as @p input1.
+     * @param[in] output   Output tensor. Data types supported: Same as @p input1.
+     * @param[in] policy   Policy to use to handle overflow.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation.
      */
-    void configure(ArithmeticOperation op, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, const ConvertPolicy &policy);
+    void configure(ArithmeticOperation op, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, const ConvertPolicy &policy, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 
     /** Static function to check if given info will lead to a valid configuration of @ref CLSaturatedArithmeticOperationKernel
      *
-     * @param[in] op     Arithmetic operation to be executed.
-     * @param[in] input1 First tensor input info. Data types supported: U8/S8/QASYMM8/QASYMM8_SIGNED/U16/S16/QSYMM16/F16/U32/S32/F32.
-     * @param[in] input2 Second tensor input info. Data types supported: Same as @p input1.
-     * @param[in] output Output tensor info. Data types supported: Same as @p input1.
-     * @param[in] policy Policy to use to handle overflow.
+     * @param[in] op       Arithmetic operation to be executed.
+     * @param[in] input1   First tensor input info. Data types supported: U8/S8/QASYMM8/QASYMM8_SIGNED/U16/S16/QSYMM16/F16/U32/S32/F32.
+     * @param[in] input2   Second tensor input info. Data types supported: Same as @p input1.
+     * @param[in] output   Output tensor info. Data types supported: Same as @p input1.
+     * @param[in] policy   Policy to use to handle overflow.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation.
      *
      * @return a Status
      */
-    static Status validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ConvertPolicy &policy);
+    static Status validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ConvertPolicy &policy,
+                           const ActivationLayerInfo &act_info = ActivationLayerInfo());
 
 protected:
     // Inherited methods overridden:
@@ -157,23 +162,25 @@ public:
 
     /** Static function to check if given info will lead to a valid configuration of @ref CLArithmeticOperationKernel
      *
-     * @param[in] op     Arithmetic operation to be executed.
-     * @param[in] input1 First tensor input. Data types supported: U8/S8/QASYMM8/QASYMM8_SIGNED/U16/S16/QSYMM16/F16/U32/S32/F32.
-     * @param[in] input2 Second tensor input. Data types supported: Same as @p input1.
-     * @param[in] output Output tensor. Data types supported: Same as @p input1.
+     * @param[in] op       Arithmetic operation to be executed.
+     * @param[in] input1   First tensor input. Data types supported: U8/S8/QASYMM8/QASYMM8_SIGNED/U16/S16/QSYMM16/F16/U32/S32/F32.
+     * @param[in] input2   Second tensor input. Data types supported: Same as @p input1.
+     * @param[in] output   Output tensor. Data types supported: Same as @p input1.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation.
      */
-    void configure(ArithmeticOperation op, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output);
+    void configure(ArithmeticOperation op, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 
     /** Static function to check if given info will lead to a valid configuration of @ref CLArithmeticOperationKernel
      *
-     * @param[in] op     Arithmetic operation to be executed.
-     * @param[in] input1 First tensor input info. Data types supported: U8/S8/QASYMM8/QASYMM8_SIGNED/U16/S16/QSYMM16/F16/U32/S32/F32.
-     * @param[in] input2 Second tensor input info. Data types supported: Same as @p input1.
-     * @param[in] output Output tensor info. Data types supported: Same as @p input1.
+     * @param[in] op       Arithmetic operation to be executed.
+     * @param[in] input1   First tensor input info. Data types supported: U8/S8/QASYMM8/QASYMM8_SIGNED/U16/S16/QSYMM16/F16/U32/S32/F32.
+     * @param[in] input2   Second tensor input info. Data types supported: Same as @p input1.
+     * @param[in] output   Output tensor info. Data types supported: Same as @p input1.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation.
      *
      * @return a Status
      */
-    static Status validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output);
+    static Status validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 
 protected:
     // Inherited methods overridden:
index 58471ab2991e2d8d2d858ceb80823eba337eb6d7..eacdb44c09c1afc17cb5fb18220fa2086b3a9826 100644 (file)
@@ -55,9 +55,10 @@ public:
      *                             Scale must be positive and its value must be either 1/255 or 1/2^n where n is between 0 and 15.
      * @param[in]  overflow_policy Overflow policy. Supported overflow policies: Wrap, Saturate
      * @param[in]  rounding_policy Rounding policy. Supported rounding modes: to zero, to nearest even.
+     * @param[in]  act_info        (Optional) Activation layer information in case of a fused activation.
      */
     void configure(const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, float scale,
-                   ConvertPolicy overflow_policy, RoundingPolicy rounding_policy);
+                   ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref CLPixelWiseMultiplicationKernel
      *
      * @param[in] input1          An input tensor info. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/S16/QSYMM16/F16/F32.
@@ -67,11 +68,12 @@ public:
      *                            Scale must be positive and its value must be either 1/255 or 1/2^n where n is between 0 and 15.
      * @param[in] overflow_policy Overflow policy. Supported overflow policies: Wrap, Saturate
      * @param[in] rounding_policy Rounding policy. Supported rounding modes: to zero, to nearest even.
+     * @param[in] act_info        (Optional) Activation layer information in case of a fused activation.
      *
      * @return a status
      */
     static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale,
-                           ConvertPolicy overflow_policy, RoundingPolicy rounding_policy);
+                           ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 
     // Inherited methods overridden:
     void run(const Window &window, cl::CommandQueue &queue) override;
@@ -99,20 +101,22 @@ public:
     CLComplexPixelWiseMultiplicationKernel &operator=(CLComplexPixelWiseMultiplicationKernel &&) = default;
     /** Initialise the kernel's input, output and border mode.
      *
-     * @param[in]  input1 An input tensor. Data types supported: F32. Number of channels supported: 2.
-     * @param[in]  input2 An input tensor. Data types supported: same as @p input1. Number of channels supported: same as @p input1.
-     * @param[out] output The output tensor, Data types supported: same as @p input1. Number of channels supported: same as @p input1.
+     * @param[in]  input1   An input tensor. Data types supported: F32. Number of channels supported: 2.
+     * @param[in]  input2   An input tensor. Data types supported: same as @p input1. Number of channels supported: same as @p input1.
+     * @param[out] output   The output tensor, Data types supported: same as @p input1. Number of channels supported: same as @p input1.
+     * @param[in]  act_info (Optional) Activation layer information in case of a fused activation.
      */
-    void configure(const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output);
+    void configure(const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref CLComplexPixelWiseMultiplicationKernel
      *
-     * @param[in] input1 An input tensor info. Data types supported: F32. Number of channels supported: 2.
-     * @param[in] input2 An input tensor info. Data types supported: same as @p input1. Number of channels supported: same as @p input1.
-     * @param[in] output The output tensor info. Data types supported: same as @p input1. Number of channels supported: same as @p input1.
+     * @param[in] input1   An input tensor info. Data types supported: F32. Number of channels supported: 2.
+     * @param[in] input2   An input tensor info. Data types supported: same as @p input1. Number of channels supported: same as @p input1.
+     * @param[in] output   The output tensor info. Data types supported: same as @p input1. Number of channels supported: same as @p input1.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation.
      *
      * @return a status
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 
     // Inherited methods overridden:
     void run(const Window &window, cl::CommandQueue &queue) override;
index 0cf203174ef9087444fad44a9e556ab6f240358b..d8e6a6a87b5d2c2ace4c8ca1fbef3ca2f9c026a4 100644 (file)
@@ -70,20 +70,23 @@ struct EltwiseLayerDescriptor
 {
     /** Constructor
      *
-     * @param[in] op             Element-wise operation to perform
-     * @param[in] out_quant_info (Optional) Output quantization information. Defaults to empty @ref QuantizationInfo
-     * @param[in] c_policy       (Optional) Convert policy used for the operation. Defaults to @ref ConvertPolicy::SATURATE
-     * @param[in] r_policy       (Optional) Rounding policy used for the operation. Defaults to @ref RoundingPolicy::TO_ZERO
+     * @param[in] op               Element-wise operation to perform
+     * @param[in] out_quant_info   (Optional) Output quantization information. Defaults to empty @ref QuantizationInfo
+     * @param[in] c_policy         (Optional) Convert policy used for the operation. Defaults to @ref ConvertPolicy::SATURATE
+     * @param[in] r_policy         (Optional) Rounding policy used for the operation. Defaults to @ref RoundingPolicy::TO_ZERO
+     * @param[in] fused_activation (Optional) Fused activation information. Defaults to empty (identity) @ref ActivationLayerInfo
      */
-    EltwiseLayerDescriptor(EltwiseOperation op, QuantizationInfo out_quant_info = QuantizationInfo(), ConvertPolicy c_policy = ConvertPolicy::SATURATE, RoundingPolicy r_policy = RoundingPolicy::TO_ZERO)
-        : op(op), out_quant_info(out_quant_info), c_policy(c_policy), r_policy(r_policy)
+    EltwiseLayerDescriptor(EltwiseOperation op, QuantizationInfo out_quant_info = QuantizationInfo(), ConvertPolicy c_policy = ConvertPolicy::SATURATE, RoundingPolicy r_policy = RoundingPolicy::TO_ZERO,
+                           ActivationLayerInfo fused_activation = ActivationLayerInfo())
+        : op(op), out_quant_info(out_quant_info), c_policy(c_policy), r_policy(r_policy), fused_activation(fused_activation)
     {
     }
 
-    EltwiseOperation op;             /**< Element-wise operation to perform */
-    QuantizationInfo out_quant_info; /**< Output quantization information */
-    ConvertPolicy    c_policy;       /**< Convert policy */
-    RoundingPolicy   r_policy;       /**< Rounding policy */
+    EltwiseOperation    op;               /**< Element-wise operation to perform */
+    QuantizationInfo    out_quant_info;   /**< Output quantization information */
+    ConvertPolicy       c_policy;         /**< Convert policy */
+    RoundingPolicy      r_policy;         /**< Rounding policy */
+    ActivationLayerInfo fused_activation; /**< Fused activation info */
 };
 
 /** Deconvolution layer descriptor */
index 44b24b58bf1d93dffb6762abfe27780721b3b9ea..382b18a8884162004c4ba434c42f5c06ac06f89c 100644 (file)
@@ -773,6 +773,7 @@ std::unique_ptr<IFunction> create_eltwise_layer(EltwiseLayerNode &node)
     typename TargetInfo::TensorType *output         = get_backing_tensor<TargetInfo>(node.output(0));
     const EltwiseOperation           eltwise_op     = node.eltwise_operation();
     const ConvertPolicy              convert_policy = node.convert_policy();
+    const ActivationLayerInfo        act_info       = node.fused_activation();
     ARM_COMPUTE_ERROR_ON(input1 == nullptr);
     ARM_COMPUTE_ERROR_ON(input2 == nullptr);
     ARM_COMPUTE_ERROR_ON(output == nullptr);
@@ -783,19 +784,19 @@ std::unique_ptr<IFunction> create_eltwise_layer(EltwiseLayerNode &node)
     {
         std::tie(func, func_name) = create_named_function<typename EltwiseFunctions::Addition>(
                                         std::string("ArithmeticAddition"),
-                                        input1, input2, output, convert_policy);
+                                        input1, input2, output, convert_policy, act_info);
     }
     else if(eltwise_op == EltwiseOperation::Sub)
     {
         std::tie(func, func_name) = create_named_function<typename EltwiseFunctions::Subtraction>(
                                         std::string("ArithmeticSubtraction"),
-                                        input1, input2, output, convert_policy);
+                                        input1, input2, output, convert_policy, act_info);
     }
     else if(eltwise_op == EltwiseOperation::Mul)
     {
         std::tie(func, func_name) = create_named_function<typename EltwiseFunctions::Multiplication>(
                                         std::string("PixelWiseMultiplication"),
-                                        input1, input2, output, 1.f, convert_policy, node.rounding_policy());
+                                        input1, input2, output, 1.f, convert_policy, node.rounding_policy(), act_info);
     }
     else
     {
index 21c220a54832785c7a6f9fc4b738b7719f2ef597..d619ad2588d6a071f8e0156e75b74c3ec949f460 100644 (file)
@@ -57,12 +57,26 @@ public:
      */
     RoundingPolicy rounding_policy() const;
 
+    /** Returns fused activation
+     *
+     * @return Fused activation
+     */
+    ActivationLayerInfo fused_activation() const;
+
+    /** Sets fused activation
+     *
+     * @param[in] fused_activation Fused activation to set
+     */
+    void set_fused_activation(ActivationLayerInfo fused_activation);
+
     // Inherited overridden methods:
     NodeType         type() const override;
     bool             forward_descriptors() override;
     TensorDescriptor configure_output(size_t idx) const override;
     void accept(INodeVisitor &v) override;
 
+    static constexpr NodeType node_type = NodeType::EltwiseLayer;
+
 private:
     descriptors::EltwiseLayerDescriptor descriptor;
 };
index a7cb8b42261116c11e2bb3cef980d11c42c3f3d1..6d9f3a0e970f9dff8d932567c5fc3dfbb27095e1 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018-2019 ARM Limited.
+ * Copyright (c) 2018-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -41,24 +41,26 @@ class CLArithmeticAddition : public ICLSimpleFunction
 public:
     /** Initialise the kernel's inputs, output and conversion policy.
      *
-     * @param[in, out] input1 First tensor input. Data types supported: U8/QASYMM8/S16/QSYMM16/S32/U32/F16/F32.
-     *                        The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
-     * @param[in, out] input2 Second tensor input. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), QSYMM16 (only if @p input1 is QSYMM16), S16/F16/F32.
-     *                        The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
-     * @param[out]     output Output tensor. Data types supported: U8 (Only if both inputs are U8), QASYMM8 (only if both inputs are QASYMM8), QSYMM16 (only if both inputs is QSYMM16), S16/F16/F32.
-     * @param[in]      policy Policy to use to handle overflow.
+     * @param[in, out] input1   First tensor input. Data types supported: U8/QASYMM8/S16/QSYMM16/S32/U32/F16/F32.
+     *                          The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
+     * @param[in, out] input2   Second tensor input. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), QSYMM16 (only if @p input1 is QSYMM16), S16/F16/F32.
+     *                          The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
+     * @param[out]     output   Output tensor. Data types supported: U8 (Only if both inputs are U8), QASYMM8 (only if both inputs are QASYMM8), QSYMM16 (only if both inputs is QSYMM16), S16/F16/F32.
+     * @param[in]      policy   Policy to use to handle overflow.
+     * @param[in]      act_info (Optional) Activation layer information in case of a fused activation.
      */
-    void configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, ConvertPolicy policy);
+    void configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, ConvertPolicy policy, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref CLSaturatedArithmeticOperationKernel for addition
      *
-     * @param[in] input1 First tensor input info. Data types supported: U8/QASYMM8/S16/QSYMM16/S32/U32/F16/F32.
-     * @param[in] input2 Second tensor input info. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), QSYMM16 (only if @p input1 is QSYMM16), S16/F16/F32.
-     * @param[in] output Output tensor info. Data types supported: U8 (Only if both inputs are U8), QASYMM8 (only if both inputs are QASYMM8), QSYMM16 (only if both inputs is QSYMM16), S16/F16/F32.
-     * @param[in] policy Policy to use to handle overflow.
+     * @param[in] input1   First tensor input info. Data types supported: U8/QASYMM8/S16/QSYMM16/S32/U32/F16/F32.
+     * @param[in] input2   Second tensor input info. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), QSYMM16 (only if @p input1 is QSYMM16), S16/F16/F32.
+     * @param[in] output   Output tensor info. Data types supported: U8 (Only if both inputs are U8), QASYMM8 (only if both inputs are QASYMM8), QSYMM16 (only if both inputs is QSYMM16), S16/F16/F32.
+     * @param[in] policy   Policy to use to handle overflow.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation.
      *
      * @return a status
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 
 /** Basic function to run @ref CLSaturatedArithmeticOperationKernel for subtraction
@@ -71,24 +73,26 @@ class CLArithmeticSubtraction : public ICLSimpleFunction
 public:
     /** Initialise the kernel's inputs, output and conversion policy.
      *
-     * @param[in, out] input1 First tensor input. Data types supported: U8/QASYMM8/S16/S32/U32/F16/F32.
-     *                        The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
-     * @param[in, out] input2 Second tensor input. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), S16/F16/F32.
-     *                        The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
-     * @param[out]     output Output tensor. Data types supported: U8 (Only if both inputs are U8), QASYMM8 (only if both inputs are QASYMM8), S16/F16/F32.
-     * @param[in]      policy Policy to use to handle overflow.
+     * @param[in, out] input1   First tensor input. Data types supported: U8/QASYMM8/S16/S32/U32/F16/F32.
+     *                          The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
+     * @param[in, out] input2   Second tensor input. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), S16/F16/F32.
+     *                          The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
+     * @param[out]     output   Output tensor. Data types supported: U8 (Only if both inputs are U8), QASYMM8 (only if both inputs are QASYMM8), S16/F16/F32.
+     * @param[in]      policy   Policy to use to handle overflow.
+     * @param[in]      act_info (Optional) Activation layer information in case of a fused activation.
      */
-    void configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, ConvertPolicy policy);
+    void configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, ConvertPolicy policy, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref CLSaturatedArithmeticOperationKernel for subtraction
      *
-     * @param[in] input1 First tensor input info. Data types supported: U8/QASYMM8/S16/S32/U32/F16/F32.
-     * @param[in] input2 Second tensor input info. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), S16/F16/F32.
-     * @param[in] output Output tensor info. Data types supported: U8 (Only if both inputs are U8), QASYMM8 ( only if both inputs are QASYMM8), S16/F16/F32.
-     * @param[in] policy Policy to use to handle overflow.
+     * @param[in] input1   First tensor input info. Data types supported: U8/QASYMM8/S16/S32/U32/F16/F32.
+     * @param[in] input2   Second tensor input info. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), S16/F16/F32.
+     * @param[in] output   Output tensor info. Data types supported: U8 (Only if both inputs are U8), QASYMM8 ( only if both inputs are QASYMM8), S16/F16/F32.
+     * @param[in] policy   Policy to use to handle overflow.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation.
      *
      * @return a status
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 
 /** Basic function to run @ref CLSaturatedArithmeticOperationKernel for division
@@ -101,22 +105,24 @@ class CLArithmeticDivision : public ICLSimpleFunction
 public:
     /** Initialise the kernel's inputs, output.
      *
-     * @param[in, out] input1 First tensor input. Data types supported: F16/F32.
-     *                        The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
-     * @param[in, out] input2 Second tensor input. Same as @p input1.
-     *                        The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
-     * @param[out]     output Output tensor. Data types supported: Same as @p input1.
+     * @param[in, out] input1   First tensor input. Data types supported: F16/F32.
+     *                          The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
+     * @param[in, out] input2   Second tensor input. Same as @p input1.
+     *                          The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
+     * @param[out]     output   Output tensor. Data types supported: Same as @p input1.
+     * @param[in]      act_info (Optional) Activation layer information in case of a fused activation.
      */
-    void configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output);
+    void configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref CLArithmeticDivision
      *
-     * @param[in] input1 First tensor input info. Data types supported: F16/F32.
-     * @param[in] input2 Second tensor input info. Data types supported: Same as @p input1.
-     * @param[in] output Output tensor info. Data types supported: Same as @p input1.
+     * @param[in] input1   First tensor input info. Data types supported: F16/F32.
+     * @param[in] input2   Second tensor input info. Data types supported: Same as @p input1.
+     * @param[in] output   Output tensor info. Data types supported: Same as @p input1.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation.
      *
      * @return a status
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 
 /** Basic function to run @ref CLArithmeticOperationKernel for max
@@ -129,22 +135,24 @@ class CLElementwiseMax : public ICLSimpleFunction
 public:
     /** Initialise the kernel's inputs, output and conversion policy.
      *
-     * @param[in, out] input1 First tensor input. Data types supported: U8/QASYMM8/S16/QSYMM16/S32/U32/F16/F32.
-     *                        The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
-     * @param[in, out] input2 Second tensor input. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), S16, QSYMM16 (only if @p input1 is QSYMM16), F16/F32.
-     *                        The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
-     * @param[out]     output Output tensor. Data types supported: U8 (Only if both inputs are U8), QASYMM8 (only if both inputs are QASYMM8), S16, QSYMM16 (only if both inputs are QSYMM16), F16/F32.
+     * @param[in, out] input1   First tensor input. Data types supported: U8/QASYMM8/S16/QSYMM16/S32/U32/F16/F32.
+     *                          The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
+     * @param[in, out] input2   Second tensor input. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), S16, QSYMM16 (only if @p input1 is QSYMM16), F16/F32.
+     *                          The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
+     * @param[out]     output   Output tensor. Data types supported: U8 (Only if both inputs are U8), QASYMM8 (only if both inputs are QASYMM8), S16, QSYMM16 (only if both inputs are QSYMM16), F16/F32.
+     * @param[in]      act_info (Optional) Activation layer information in case of a fused activation.
      */
-    void configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output);
+    void configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref CLArithmeticOperationKernel for max
      *
-     * @param[in] input1 First tensor input info. Data types supported: U8/QASYMM8/S16/QSYMM16/S32/U32/F16/F32.
-     * @param[in] input2 Second tensor input info. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), S16, QSYMM16 (only if @p input1 is QSYMM16), F16/F32.
-     * @param[in] output Output tensor info. Data types supported: U8 (Only if both inputs are U8), QASYMM8 ( only if both inputs are QASYMM8), S16, QSYMM16 (only if both inputs are QSYMM16), F16/F32.
+     * @param[in] input1   First tensor input info. Data types supported: U8/QASYMM8/S16/QSYMM16/S32/U32/F16/F32.
+     * @param[in] input2   Second tensor input info. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), S16, QSYMM16 (only if @p input1 is QSYMM16), F16/F32.
+     * @param[in] output   Output tensor info. Data types supported: U8 (Only if both inputs are U8), QASYMM8 ( only if both inputs are QASYMM8), S16, QSYMM16 (only if both inputs are QSYMM16), F16/F32.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation.
      *
      * @return a status
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 
 /** Basic function to run @ref CLArithmeticOperationKernel for min
@@ -157,22 +165,24 @@ class CLElementwiseMin : public ICLSimpleFunction
 public:
     /** Initialise the kernel's inputs, output and conversion policy.
      *
-     * @param[in, out] input1 First tensor input. Data types supported: U8/QASYMM8/S16/QSYMM16/S32/U32/F16/F32.
-     *                        The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
-     * @param[in, out] input2 Second tensor input. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), S16, QSYMM16 (only if @p input1 is QSYMM16), F16/F32.
-     *                        The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
-     * @param[out]     output Output tensor. Data types supported: U8 (Only if both inputs are U8), QASYMM8 (only if both inputs are QASYMM8), S16, QSYMM16 (only if both inputs are QSYMM16), F16/F32.
+     * @param[in, out] input1   First tensor input. Data types supported: U8/QASYMM8/S16/QSYMM16/S32/U32/F16/F32.
+     *                          The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
+     * @param[in, out] input2   Second tensor input. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), S16, QSYMM16 (only if @p input1 is QSYMM16), F16/F32.
+     *                          The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
+     * @param[out]     output   Output tensor. Data types supported: U8 (Only if both inputs are U8), QASYMM8 (only if both inputs are QASYMM8), S16, QSYMM16 (only if both inputs are QSYMM16), F16/F32.
+     * @param[in]      act_info (Optional) Activation layer information in case of a fused activation.
      */
-    void configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output);
+    void configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref CLArithmeticOperationKernel for min
      *
-     * @param[in] input1 First tensor input info. Data types supported: U8/QASYMM8/S16/QSYMM16/S32/U32/F16/F32.
-     * @param[in] input2 Second tensor input info. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), S16, QSYMM16 (only if @p input1 is QSYMM16), F16/F32.
-     * @param[in] output Output tensor info. Data types supported: U8 (Only if both inputs are U8), QASYMM8 ( only if both inputs are QASYMM8), S16, QSYMM16 (only if both inputs are QSYMM16), F16/F32.
+     * @param[in] input1   First tensor input info. Data types supported: U8/QASYMM8/S16/QSYMM16/S32/U32/F16/F32.
+     * @param[in] input2   Second tensor input info. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), S16, QSYMM16 (only if @p input1 is QSYMM16), F16/F32.
+     * @param[in] output   Output tensor info. Data types supported: U8 (Only if both inputs are U8), QASYMM8 ( only if both inputs are QASYMM8), S16, QSYMM16 (only if both inputs are QSYMM16), F16/F32.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation.
      *
      * @return a status
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 
 /** Basic function to run @ref CLArithmeticOperationKernel for squared difference
@@ -185,22 +195,24 @@ class CLElementwiseSquaredDiff : public ICLSimpleFunction
 public:
     /** Initialise the kernel's inputs, output and conversion policy.
      *
-     * @param[in, out] input1 First tensor input. Data types supported: U8/QASYMM8/S16/QSYMM16/F16/F32.
-     *                        The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
-     * @param[in, out] input2 Second tensor input. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), S16, QSYMM16 (only if @p input1 is QSYMM16), F16/F32.
-     *                        The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
-     * @param[out]     output Output tensor. Data types supported: U8 (Only if both inputs are U8), QASYMM8 (only if both inputs are QASYMM8), S16, QSYMM16 (only if both inputs are QSYMM16), F16/F32.
+     * @param[in, out] input1   First tensor input. Data types supported: U8/QASYMM8/S16/QSYMM16/F16/F32.
+     *                          The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
+     * @param[in, out] input2   Second tensor input. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), S16, QSYMM16 (only if @p input1 is QSYMM16), F16/F32.
+     *                          The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
+     * @param[out]     output   Output tensor. Data types supported: U8 (Only if both inputs are U8), QASYMM8 (only if both inputs are QASYMM8), S16, QSYMM16 (only if both inputs are QSYMM16), F16/F32.
+     * @param[in]      act_info (Optional) Activation layer information in case of a fused activation.
      */
-    void configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output);
+    void configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref CLArithmeticOperationKernel for squared difference
      *
-     * @param[in] input1 First tensor input info. Data types supported: U8/QASYMM8/S16/QSYMM16/F16/F32.
-     * @param[in] input2 Second tensor input info. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), S16, QSYMM16 (only if @p input1 is QSYMM16), F16/F32.
-     * @param[in] output Output tensor info. Data types supported: U8 (Only if both inputs are U8), QASYMM8 ( only if both inputs are QASYMM8), S16, QSYMM16 (only if both inputs are QSYMM16), F16/F32.
+     * @param[in] input1   First tensor input info. Data types supported: U8/QASYMM8/S16/QSYMM16/F16/F32.
+     * @param[in] input2   Second tensor input info. Data types supported: U8, QASYMM8 (only if @p input1 is QASYMM8), S16, QSYMM16 (only if @p input1 is QSYMM16), F16/F32.
+     * @param[in] output   Output tensor info. Data types supported: U8 (Only if both inputs are U8), QASYMM8 ( only if both inputs are QASYMM8), S16, QSYMM16 (only if both inputs are QSYMM16), F16/F32.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation.
      *
      * @return a status
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 
 /** Basic function to run @ref CLArithmeticOperationKernel for power
@@ -213,22 +225,24 @@ class CLElementwisePower : public ICLSimpleFunction
 public:
     /** Initialise the kernel's inputs, output and conversion policy.
      *
-     * @param[in, out] input1 First tensor input. Data types supported: F16/F32.
-     *                        The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
-     * @param[in, out] input2 Second tensor input. Data types supported: F16/F32.
-     *                        The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
-     * @param[out]     output Output tensor. Data types supported:F16/F32.
+     * @param[in, out] input1   First tensor input. Data types supported: F16/F32.
+     *                          The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
+     * @param[in, out] input2   Second tensor input. Data types supported: F16/F32.
+     *                          The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
+     * @param[out]     output   Output tensor. Data types supported:F16/F32.
+     * @param[in]      act_info (Optional) Activation layer information in case of a fused activation.
      */
-    void configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output);
+    void configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref CLArithmeticOperationKernel for power
      *
-     * @param[in] input1 First tensor input info. Data types supported: F16/F32.
-     * @param[in] input2 Second tensor input info. Data types supported: F16/F32.
-     * @param[in] output Output tensor info. Data types supported: F16/F32.
+     * @param[in] input1   First tensor input info. Data types supported: F16/F32.
+     * @param[in] input2   Second tensor input info. Data types supported: F16/F32.
+     * @param[in] output   Output tensor info. Data types supported: F16/F32.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation.
      *
      * @return a status
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 } // namespace arm_compute
 #endif /* ARM_COMPUTE_CLELEMENTWISEOPERATIONS_H */
index 72b1587b02e0b6beae22ff84d0bb1d899c4f53f7..a5ab829c83080928d1ea4dccf2a5389bed9698b2 100644 (file)
@@ -47,9 +47,10 @@ public:
      *                                 Scale must be positive and its value must be either 1/255 or 1/2^n where n is between 0 and 15.
      * @param[in]      overflow_policy Overflow policy. Supported overflow policies: Wrap, Saturate
      * @param[in]      rounding_policy Rounding policy. Supported rounding modes: to zero, to nearest even.
+     * @param[in]      act_info        (Optional) Activation layer information in case of a fused activation.
      */
     void configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, float scale,
-                   ConvertPolicy overflow_policy, RoundingPolicy rounding_policy);
+                   ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref CLPixelWiseMultiplication
      *
      * @param[in] input1          An input tensor info. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/S16/QSYMM16/F16/F32.
@@ -59,11 +60,12 @@ public:
      *                            Scale must be positive and its value must be either 1/255 or 1/2^n where n is between 0 and 15.
      * @param[in] overflow_policy Overflow policy. Supported overflow policies: Wrap, Saturate
      * @param[in] rounding_policy Rounding policy. Supported rounding modes: to zero, to nearest even.
+     * @param[in] act_info        (Optional) Activation layer information in case of a fused activation.
      *
      * @return a status
      */
     static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale,
-                           ConvertPolicy overflow_policy, RoundingPolicy rounding_policy);
+                           ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 
 /** Basic function to run @ref CLComplexPixelWiseMultiplicationKernel. */
@@ -72,20 +74,22 @@ class CLComplexPixelWiseMultiplication : public ICLSimpleFunction
 public:
     /** Initialise the kernel's inputs, output.
      *
-     * @param[in, out] input1 An input tensor. Data types supported: F32. Number of channels supported: 2.
-     *                        The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
-     * @param[in, out] input2 An input tensor. Data types supported: same as @p input1. Number of channels supported: same as @p input1.
-     *                        The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
-     * @param[out]     output The output tensor, Data types supported: same as @p input1. Number of channels supported: same as @p input1.
+     * @param[in, out] input1   An input tensor. Data types supported: F32. Number of channels supported: 2.
+     *                          The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
+     * @param[in, out] input2   An input tensor. Data types supported: same as @p input1. Number of channels supported: same as @p input1.
+     *                          The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
+     * @param[out]     output   The output tensor, Data types supported: same as @p input1. Number of channels supported: same as @p input1.
+     * @param[in]      act_info (Optional) Activation layer information in case of a fused activation.
      */
-    void configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output);
+    void configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref CLComplexPixelWiseMultiplication
      *
-     * @param[in] input1 An input tensor info. Data types supported: F32. Number of channels supported: 2.
-     * @param[in] input2 An input tensor info. Data types supported: same as @p input1. Number of channels supported: same as @p input1.
-     * @param[in] output The output tensor info, Data types supported: same as @p input1. Number of channels supported: same as @p input1.
+     * @param[in] input1   An input tensor info. Data types supported: F32. Number of channels supported: 2.
+     * @param[in] input2   An input tensor info. Data types supported: same as @p input1. Number of channels supported: same as @p input1.
+     * @param[in] output   The output tensor info, Data types supported: same as @p input1. Number of channels supported: same as @p input1.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation.
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 } // namespace arm_compute
 #endif /*ARM_COMPUTE_CLPIXELWISEMULTIPLICATION_H */
index a16ab2d1ab8ef847bec8b5ed5c8e4aa6a70ef70c..65bbacf272e17cd93c4d6660344323b7b67cef63 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2016-2019 ARM Limited.
+ * Copyright (c) 2016-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -41,22 +41,24 @@ class GCArithmeticAddition : public IGCSimpleFunction
 public:
     /** Initialise the kernel's inputs, output and convertion policy.
      *
-     * @param[in]  input1 First tensor input. Data types supported: F16.
-     * @param[in]  input2 Second tensor input. Data types supported: F16.
-     * @param[out] output Output tensor. Data types supported: F16.
-     * @param[in]  policy Policy to use to handle overflow.
+     * @param[in]  input1   First tensor input. Data types supported: F16.
+     * @param[in]  input2   Second tensor input. Data types supported: F16.
+     * @param[out] output   Output tensor. Data types supported: F16.
+     * @param[in]  policy   Policy to use to handle overflow.
+     * @param[in]  act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      */
-    void configure(const IGCTensor *input1, const IGCTensor *input2, IGCTensor *output, ConvertPolicy policy);
+    void configure(const IGCTensor *input1, const IGCTensor *input2, IGCTensor *output, ConvertPolicy policy, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref GCArithmeticAddition
      *
-     * @param[in] input1 First tensor input info. Data types supported: F16.
-     * @param[in] input2 Second tensor input info. Data types supported: F16.
-     * @param[in] output Output tensor info. Data types supported: F16.
-     * @param[in] policy Policy to use to handle overflow.
+     * @param[in] input1   First tensor input info. Data types supported: F16.
+     * @param[in] input2   Second tensor input info. Data types supported: F16.
+     * @param[in] output   Output tensor info. Data types supported: F16.
+     * @param[in] policy   Policy to use to handle overflow.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      *
      * @return a status
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 }
 #endif /* ARM_COMPUTE_GCARITHMETICADDITION_H */
index 6baa0de50143d8b5facb6ca833e3973b7adadb80..201e131dd9244e11ca58e37431b6fb6b51f33ff6 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2017-2019 ARM Limited.
+ * Copyright (c) 2017-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -37,12 +37,13 @@ class GCPixelWiseMultiplication : public IGCSimpleFunction
 public:
     /** Initialise the kernel's inputs, output and convertion policy.
      *
-     * @param[in]  input1 First tensor input. Data types supported: F32.
-     * @param[in]  input2 Second tensor input. Data types supported: Same as @p input1.
-     * @param[out] output Output tensor. Data types supported: Same as @p input1.
-     * @param[in]  scale  Scale to apply after multiplication. Must be a positive value.
+     * @param[in]  input1   First tensor input. Data types supported: F32.
+     * @param[in]  input2   Second tensor input. Data types supported: Same as @p input1.
+     * @param[out] output   Output tensor. Data types supported: Same as @p input1.
+     * @param[in]  scale    Scale to apply after multiplication. Must be a positive value.
+     * @param[in]  act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      */
-    void configure(const IGCTensor *input1, const IGCTensor *input2, IGCTensor *output, float scale);
+    void configure(const IGCTensor *input1, const IGCTensor *input2, IGCTensor *output, float scale, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 }
 #endif /*ARM_COMPUTE_GCPIXELWISEMULTIPLICATION_H */
index e17c255d2a1c85aca4ffb4fdc21dec7d071e1cce..6cab5b3547e56cb67590b0c4a95bd3ee0059b9df 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2016-2019 ARM Limited.
+ * Copyright (c) 2016-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -37,22 +37,24 @@ class NEArithmeticAddition : public INESimpleFunction
 public:
     /** Initialise the kernel's inputs, output and conversion policy.
      *
-     * @param[in]  input1 First tensor input. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/S16/QSYMM16/F16/F32
-     * @param[in]  input2 Second tensor input. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/S16/QSYMM16/F16/F32
-     * @param[out] output Output tensor. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/S16/QSYMM16/F16/F32
-     * @param[in]  policy Policy to use to handle overflow.
+     * @param[in]  input1   First tensor input. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/S16/QSYMM16/F16/F32
+     * @param[in]  input2   Second tensor input. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/S16/QSYMM16/F16/F32
+     * @param[out] output   Output tensor. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/S16/QSYMM16/F16/F32
+     * @param[in]  policy   Policy to use to handle overflow.
+     * @param[in]  act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      */
-    void configure(ITensor *input1, ITensor *input2, ITensor *output, ConvertPolicy policy);
+    void configure(ITensor *input1, ITensor *input2, ITensor *output, ConvertPolicy policy, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref NEArithmeticAddition
      *
-     * @param[in] input1 First tensor input. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/S16/QSYMM16/F16/F32
-     * @param[in] input2 Second tensor input. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/S16/QSYMM16/F16/F32
-     * @param[in] output Output tensor. Data types supported: U8/SQASYMM8/QASYMM8_SIGNED/S16/QSYMM16/F16/F32
-     * @param[in] policy Policy to use to handle overflow.
+     * @param[in] input1   First tensor input. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/S16/QSYMM16/F16/F32
+     * @param[in] input2   Second tensor input. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/S16/QSYMM16/F16/F32
+     * @param[in] output   Output tensor. Data types supported: U8/SQASYMM8/QASYMM8_SIGNED/S16/QSYMM16/F16/F32
+     * @param[in] policy   Policy to use to handle overflow
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      *
      * @return a status
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 } // namespace arm_compute
 #endif /*ARM_COMPUTE_NEARITHMETICADDITION_H */
index c8c3fd3d2f44b1c3f5efbb9bc3d7496d2519c435..69d7b4bcfb154cfc3d1a62ffe633ad97180ef13e 100644 (file)
@@ -45,22 +45,24 @@ class NEArithmeticSubtraction : public INESimpleFunction
 public:
     /** Initialise the kernel's inputs, output and conversion policy.
      *
-     * @param[in]  input1 First tensor input. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/QSYMM16/S16/F16/F32
-     * @param[in]  input2 Second tensor input. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/QSYMM16/S16/F16/F32
-     * @param[out] output Output tensor. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/QSYMM16/S16/F16/F32
-     * @param[in]  policy Policy to use to handle overflow. Convert policy cannot be WRAP if datatype is quantized.
+     * @param[in]  input1   First tensor input. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/QSYMM16/S16/F16/F32
+     * @param[in]  input2   Second tensor input. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/QSYMM16/S16/F16/F32
+     * @param[out] output   Output tensor. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/QSYMM16/S16/F16/F32
+     * @param[in]  policy   Policy to use to handle overflow. Convert policy cannot be WRAP if datatype is quantized.
+     * @param[in]  act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      */
-    void configure(ITensor *input1, ITensor *input2, ITensor *output, ConvertPolicy policy);
+    void configure(ITensor *input1, ITensor *input2, ITensor *output, ConvertPolicy policy, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref NEArithmeticSubtraction
      *
-     * @param[in] input1 First tensor input. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/S16/F16/F32
-     * @param[in] input2 Second tensor input. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/S16/F16/F32
-     * @param[in] output Output tensor. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/S16/F16/F32
-     * @param[in] policy Policy to use to handle overflow. Convert policy cannot be WRAP if datatype is quantized.
+     * @param[in] input1   First tensor input. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/S16/F16/F32
+     * @param[in] input2   Second tensor input. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/S16/F16/F32
+     * @param[in] output   Output tensor. Data types supported: U8/QASYMM8/QASYMM8_SIGNED/S16/F16/F32
+     * @param[in] policy   Policy to use to handle overflow. Convert policy cannot be WRAP if datatype is quantized.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      *
      * @return a status
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 }
 #endif /* ARM_COMPUTE_NEARITHMETICSUBTRACTION_H */
index e5af6bc841b24f06660a4b2a89575eb583e2f686..cac105cdb935f6ac9fe7066f899ae520304a11a9 100644 (file)
@@ -41,20 +41,22 @@ class NEElementwiseMax : public INESimpleFunction
 public:
     /** Initialise the kernel's inputs, output and conversion policy.
      *
-     * @param[in, out] input1 First tensor input. Data types supported: QASYMM8/QASYMM8_SIGNED/S16/F16/S32/F32.
-     * @param[in, out] input2 Second tensor input. Data types supported: Same as @p input1.
-     * @param[out]     output Output tensor. Data types supported: Same as @p input1.
+     * @param[in, out] input1   First tensor input. Data types supported: QASYMM8/QASYMM8_SIGNED/S16/F16/S32/F32.
+     * @param[in, out] input2   Second tensor input. Data types supported: Same as @p input1.
+     * @param[out]     output   Output tensor. Data types supported: Same as @p input1.
+     * @param[in]      act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      */
-    void configure(ITensor *input1, ITensor *input2, ITensor *output);
+    void configure(ITensor *input1, ITensor *input2, ITensor *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref NEArithmeticOperationKernel for max
      *
-     * @param[in] input1 First tensor input info. Data types supported: QASYMM8/QASYMM8_SIGNED/S16/F16/S32/F32.
-     * @param[in] input2 Second tensor input info. Data types supported: Same as @p input1.
-     * @param[in] output Output tensor info. Data types supported: Same as @p input1.
+     * @param[in] input1   First tensor input info. Data types supported: QASYMM8/QASYMM8_SIGNED/S16/F16/S32/F32.
+     * @param[in] input2   Second tensor input info. Data types supported: Same as @p input1.
+     * @param[in] output   Output tensor info. Data types supported: Same as @p input1.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      *
      * @return a status
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 
 /** Basic function to run @ref NEArithmeticOperationKernel for min
@@ -67,20 +69,22 @@ class NEElementwiseMin : public INESimpleFunction
 public:
     /** Initialise the kernel's inputs, output and conversion policy.
      *
-     * @param[in, out] input1 First tensor input. Data types supported: QASYMM8/QASYMM8_SIGNED/S16/F16/S32/F32.
-     * @param[in, out] input2 Second tensor input. Data types supported: Same as @p input1.
-     * @param[out]     output Output tensor. Data types supported: Same as @p input1.
+     * @param[in, out] input1   First tensor input. Data types supported: QASYMM8/QASYMM8_SIGNED/S16/F16/S32/F32.
+     * @param[in, out] input2   Second tensor input. Data types supported: Same as @p input1.
+     * @param[out]     output   Output tensor. Data types supported: Same as @p input1.
+     * @param[in]      act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      */
-    void configure(ITensor *input1, ITensor *input2, ITensor *output);
+    void configure(ITensor *input1, ITensor *input2, ITensor *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref NEArithmeticOperationKernel for min
      *
-     * @param[in] input1 First tensor input info. Data types supported: QASYMM8/QASYMM8_SIGNED/S16/F16/S32/F32.
-     * @param[in] input2 Second tensor input info. Data types supported: Same as @p input1.
-     * @param[in] output Output tensor info. Data types supported: Same as @p input1.
+     * @param[in] input1   First tensor input info. Data types supported: QASYMM8/QASYMM8_SIGNED/S16/F16/S32/F32.
+     * @param[in] input2   Second tensor input info. Data types supported: Same as @p input1.
+     * @param[in] output   Output tensor info. Data types supported: Same as @p input1.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      *
      * @return a status
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 
 /** Basic function to run @ref NEArithmeticOperationKernel for squared difference
@@ -93,20 +97,22 @@ class NEElementwiseSquaredDiff : public INESimpleFunction
 public:
     /** Initialise the kernel's inputs, output and conversion policy.
      *
-     * @param[in, out] input1 First tensor input. Data types supported: QASYMM8/QASYMM8_SIGNED/S16/F16/S32/F32.
-     * @param[in, out] input2 Second tensor input. Data types supported: Same as @p input1.
-     * @param[out]     output Output tensor. Data types supported: Same as @p input1.
+     * @param[in, out] input1   First tensor input. Data types supported: QASYMM8/QASYMM8_SIGNED/S16/F16/S32/F32.
+     * @param[in, out] input2   Second tensor input. Data types supported: Same as @p input1.
+     * @param[out]     output   Output tensor. Data types supported: Same as @p input1.
+     * @param[in]      act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      */
-    void configure(ITensor *input1, ITensor *input2, ITensor *output);
+    void configure(ITensor *input1, ITensor *input2, ITensor *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref NEArithmeticOperationKernel for squared difference
      *
-     * @param[in] input1 First tensor input info. Data types supported: QASYMM8/QASYMM8_SIGNED/S16/F16/S32/F32.
-     * @param[in] input2 Second tensor input info. Data types supported: Same as @p input1.
-     * @param[in] output Output tensor info. Data types supported: Same as @p input1.
+     * @param[in] input1   First tensor input info. Data types supported: QASYMM8/QASYMM8_SIGNED/S16/F16/S32/F32.
+     * @param[in] input2   Second tensor input info. Data types supported: Same as @p input1.
+     * @param[in] output   Output tensor info. Data types supported: Same as @p input1.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      *
      * @return a status
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 
 /** Basic function to run @ref NEArithmeticOperationKernel for division
@@ -119,20 +125,22 @@ class NEElementwiseDivision : public INESimpleFunction
 public:
     /** Initialise the kernel's inputs, output and conversion policy.
      *
-     * @param[in, out] input1 First tensor input. Data types supported: F16/F32.
-     * @param[in, out] input2 Second tensor input. Data types supported: Same as @p input1.
-     * @param[out]     output Output tensor. Data types supported: Same as @p input1.
+     * @param[in, out] input1   First tensor input. Data types supported: F16/F32.
+     * @param[in, out] input2   Second tensor input. Data types supported: Same as @p input1.
+     * @param[out]     output   Output tensor. Data types supported: Same as @p input1.
+     * @param[in]      act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      */
-    void configure(ITensor *input1, ITensor *input2, ITensor *output);
+    void configure(ITensor *input1, ITensor *input2, ITensor *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref NEArithmeticOperationKernel for division
      *
-     * @param[in] input1 First tensor input info. Data types supported: F16/F32.
-     * @param[in] input2 Second tensor input info. Data types supported: Same as @p input1.
-     * @param[in] output Output tensor info. Data types supported: Same as @p input1.
+     * @param[in] input1   First tensor input info. Data types supported: F16/F32.
+     * @param[in] input2   Second tensor input info. Data types supported: Same as @p input1.
+     * @param[in] output   Output tensor info. Data types supported: Same as @p input1.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      *
      * @return a status
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 
 /** Basic function to run @ref NEArithmeticOperationKernel for power
@@ -146,20 +154,22 @@ class NEElementwisePower : public INESimpleFunction
 public:
     /** Initialise the kernel's inputs, output and conversion policy.
      *
-     * @param[in, out] input1 First tensor input. Data types supported: F16/F32.
-     * @param[in, out] input2 Second tensor input. Data types supported: Same as @p input1.
-     * @param[out]     output Output tensor. Data types supported: Same as @p input1.
+     * @param[in, out] input1   First tensor input. Data types supported: F16/F32.
+     * @param[in, out] input2   Second tensor input. Data types supported: Same as @p input1.
+     * @param[out]     output   Output tensor. Data types supported: Same as @p input1.
+     * @param[in]      act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      */
-    void configure(ITensor *input1, ITensor *input2, ITensor *output);
+    void configure(ITensor *input1, ITensor *input2, ITensor *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref NEArithmeticOperationKernel for power
      *
-     * @param[in] input1 First tensor input info. Data types supported: F16/F32.
-     * @param[in] input2 Second tensor input info. Data types supported: Same as @p input1.
-     * @param[in] output Output tensor info. Data types supported: Same as @p input1.
+     * @param[in] input1   First tensor input info. Data types supported: F16/F32.
+     * @param[in] input2   Second tensor input info. Data types supported: Same as @p input1.
+     * @param[in] output   Output tensor info. Data types supported: Same as @p input1.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      *
      * @return a status
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 
 /** Basic function to run @ref NEComparisonOperationKernel.
index ede4327bfbf92e9bd52e3615fa298874402ea45c..2b310329319ad465d87128074d62b257b08c6d98 100644 (file)
@@ -57,8 +57,10 @@ public:
      *                                 Scale must be positive and its value must be either 1/255 or 1/2^n where n is between 0 and 15.
      * @param[in]      overflow_policy Overflow policy. ConvertPolicy cannot be WRAP if datatype is QASYMM8, QASYMM8_SIGNED or QSYMM16.
      * @param[in]      rounding_policy Rounding policy.
+     * @param[in]      act_info        (Optional) Activation layer information in case of a fused activation. Currently not supported.
      */
-    void configure(ITensor *input1, ITensor *input2, ITensor *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy);
+    void configure(ITensor *input1, ITensor *input2, ITensor *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy,
+                   const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref NEPixelWiseMultiplication
      *
      * @note For @p scale equal to 1/255 only round to nearest even (implemented as round half up) is supported.
@@ -79,10 +81,12 @@ public:
      *                            Scale must be positive and its value must be either 1/255 or 1/2^n where n is between 0 and 15.
      * @param[in] overflow_policy Overflow policy. ConvertPolicy cannot be WRAP if datatype is QASYMM8, QASYMM8_SIGNED or QSYMM16.
      * @param[in] rounding_policy Rounding policy.
+     * @param[in] act_info        (Optional) Activation layer information in case of a fused activation. Currently not supported.
      *
      * @return a status
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy,
+                           const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 
 /** Basic function to run @ref NEComplexPixelWiseMultiplicationKernel. */
@@ -91,20 +95,22 @@ class NEComplexPixelWiseMultiplication : public INESimpleFunction
 public:
     /** Initialise the kernel's inputs, output.
      *
-     * @param[in, out] input1 An input tensor. Data types supported: F32. Number of channels supported: 2 (complex tensor).
-     *                        The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
-     * @param[in, out] input2 An input tensor. Data types supported: same as @p input1. Number of channels supported: same as @p input1.
-     *                        The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
-     * @param[out]     output The output tensor. Data types supported: same as @p input1. Number of channels: same as @p input1.
+     * @param[in, out] input1   An input tensor. Data types supported: F32. Number of channels supported: 2 (complex tensor).
+     *                          The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
+     * @param[in, out] input2   An input tensor. Data types supported: same as @p input1. Number of channels supported: same as @p input1.
+     *                          The input tensor is [in, out] because its TensorInfo might be modified inside the kernel in case of broadcasting of dimension 0.
+     * @param[out]     output   The output tensor. Data types supported: same as @p input1. Number of channels: same as @p input1.
+     * @param[in]      act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      */
-    void configure(ITensor *input1, ITensor *input2, ITensor *output);
+    void configure(ITensor *input1, ITensor *input2, ITensor *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
     /** Static function to check if given info will lead to a valid configuration of @ref NEComplexPixelWiseMultiplication
      *
-     * @param[in] input1 An input tensor info. Data types supported: F32. Number of channels supported: 2 (complex tensor).
-     * @param[in] input2 An input tensor info. Data types supported: same as @p input1. Number of channels supported: same as @p input1.
-     * @param[in] output The output tensor info. Data types supported: same as @p input1. Number of channels supported: same as @p input1.
+     * @param[in] input1   An input tensor info. Data types supported: F32. Number of channels supported: 2 (complex tensor).
+     * @param[in] input2   An input tensor info. Data types supported: same as @p input1. Number of channels supported: same as @p input1.
+     * @param[in] output   The output tensor info. Data types supported: same as @p input1. Number of channels supported: same as @p input1.
+     * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Currently not supported.
      */
-    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output);
+    static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info = ActivationLayerInfo());
 };
 }
 #endif /*ARM_COMPUTE_NEPIXELWISEMULTIPLICATION_H */
index 8590f25635a9253bddb461f6f86d90b5b624696d..a1e742da0d7aafd05a861241050e2cfdba8fc6c2 100644 (file)
@@ -72,6 +72,6 @@
 // Identity Activation
 #define identity_op(DATA_TYPE, x, A_VAL, B_VAL) (x)
 
-#define OP(op, DATA_TYPE, x, A_VAL, B_VAL) op##_op(DATA_TYPE, x, A_VAL, B_VAL)
+#define ACT_OP(op, DATA_TYPE, x, A_VAL, B_VAL) op##_op(DATA_TYPE, x, A_VAL, B_VAL)
 
-#define ACTIVATION(op, DATA_TYPE, x, A_VAL, B_VAL) OP(op, DATA_TYPE, x, A_VAL, B_VAL)
+#define ACTIVATION(op, DATA_TYPE, x, A_VAL, B_VAL) ACT_OP(op, DATA_TYPE, x, A_VAL, B_VAL)
index 42d6d33e030ec905d6d41650c415e513f9cbb3af..9b87b526f78ecb3f0ae02f92dd4e0aa3fed6e85f 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018-2019 ARM Limited.
+ * Copyright (c) 2018-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
 #define OP_FUN_NAME(op) OP_FUN_NAME_STR(op)
 
 #if defined(OP) && defined(DATA_TYPE_IN1) && defined(DATA_TYPE_IN2) && defined(DATA_TYPE_OUT) && defined(VEC_SIZE)
+
+#if defined(ACTIVATION_TYPE)
+#include "activation_float_helpers.h"
+#endif // defined(ACTIVATION_TYPE)
+
 /** This function executes an element-wise operation among two tensors.
  *
  * @attention The input and output data_types need to be passed at compile time using -DDATA_TYPE_IN1, -DDATA_TYPE_IN2 and -DDATA_TYPE_OUT:
@@ -94,7 +99,12 @@ __kernel void OP_FUN_NAME(OP)(
     in_b = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE_IN2 *)in2.ptr), VEC_DATA_TYPE(DATA_TYPE_OUT, VEC_SIZE));
 
     // Calculate and store result
+#if defined(ACTIVATION_TYPE)
+    VSTORE(VEC_SIZE)
+    (ACTIVATION(ACTIVATION_TYPE, DATA_TYPE_OUT, CONVERT(OP(in_a, in_b), VEC_DATA_TYPE(DATA_TYPE_OUT, VEC_SIZE)), A_VAL, B_VAL), 0, (__global DATA_TYPE_OUT *)out.ptr);
+#else  // defined(ACTIVATION_TYPE)
     VSTORE(VEC_SIZE)
     (OP(in_a, in_b), 0, (__global DATA_TYPE_OUT *)out.ptr);
+#endif // defined(ACTIVATION_TYPE)
 }
 #endif /* defined(DATA_TYPE_IN1) && defined(DATA_TYPE_IN2) && defined(DATA_TYPE_OUT) && defined(VEC_SIZE) */
index d0e04b2ffe1c083b7efd3d335460839338f67c0f..aad4becc1ab27a75a9f73ab4ada029cb53a2ae6c 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2016-2019 ARM Limited.
+ * Copyright (c) 2016-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
 #define CONVERT_OP_FLOAT(x, type, round) CONVERT_OP_FLOAT_STR(x, type, round)
 
 #if defined(DATA_TYPE_IN1) && defined(DATA_TYPE_IN2) && defined(DATA_TYPE_RES) && defined(DATA_TYPE_OUT)
+
+#if defined(ACTIVATION_TYPE)
+#include "activation_float_helpers.h"
+#endif // defined(ACTIVATION_TYPE)
+
 /** Performs a pixelwise multiplication with float scale of either integer or float inputs.
  *
  * @attention The inputs and output data types need to be passed at compile time using -DDATA_TYPE_IN1, -DDATA_TYPE_IN2 and -DDATA_TYPE_OUT:
@@ -91,8 +96,12 @@ __kernel void pixelwise_mul_float(
     res = CONVERT_OP_FLOAT(CONVERT_OP_FLOAT((convert_float16(in1_data * in2_data) * scale), VEC_DATA_TYPE(DATA_TYPE_RES, 16), ROUND), VEC_DATA_TYPE(DATA_TYPE_OUT, 16), ROUND);
 #endif /* DATA_TYPE_FLOAT */
 
+#if defined(ACTIVATION_TYPE)
+    vstore16(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE_OUT, res, A_VAL, B_VAL), 0, (__global DATA_TYPE_OUT *)out.ptr);
+#else  // defined(ACTIVATION_TYPE)
     // Store result
     vstore16(res, 0, (__global DATA_TYPE_OUT *)out.ptr);
+#endif // defined(ACTIVATION_TYPE)
 }
 #endif /* defined(DATA_TYPE_IN1) && defined(DATA_TYPE_IN2) && defined(DATA_TYPE_RES) && defined(DATA_TYPE_OUT) */
 
@@ -140,6 +149,10 @@ __kernel void pixelwise_mul_complex(
     // Perform complex multiplication
     float2 res = { vin1.x *vin2.x - vin1.y * vin2.y, vin1.x *vin2.y + vin2.x * vin1.y };
 
+#if defined(ACTIVATION_TYPE)
+    vstore2(ACTIVATION(ACTIVATION_TYPE, float, res, A_VAL, B_VAL), 0, (__global float *)out.ptr);
+#else  // defined(ACTIVATION_TYPE)
     // Store result
     vstore2(res, 0, (__global float *)out.ptr);
+#endif // defined(ACTIVATION_TYPE)
 }
index 1ac35a286f5de62370e82e4e15fe33c484defade..0f2e26f1862d6bdeb39e2e115ab399b2ac8c563e 100644 (file)
@@ -231,7 +231,7 @@ std::pair<Status, Window> validate_and_configure_window_for_division(ITensorInfo
 } // namespace
 
 CLElementwiseOperationKernel::CLElementwiseOperationKernel()
-    : _input1(nullptr), _input2(nullptr), _output(nullptr)
+    : _act_info(), _input1(nullptr), _input2(nullptr), _output(nullptr)
 {
 }
 
@@ -256,6 +256,12 @@ void CLElementwiseOperationKernel::configure_common(const ICLTensor *input1, con
 
     // Set kernel build options
     CLBuildOptions build_opts = generate_build_options(*input1->info(), *input2->info(), *output->info());
+    if(_act_info.enabled())
+    {
+        build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(_act_info.activation())));
+        build_opts.add_option("-DA_VAL=" + float_to_string_with_full_precision(_act_info.a()));
+        build_opts.add_option("-DB_VAL=" + float_to_string_with_full_precision(_act_info.b()));
+    }
 
     // Create kernel
     _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
@@ -320,19 +326,23 @@ BorderSize CLElementwiseOperationKernel::border_size() const
 
 /** Arithmetic operations with saturation*/
 
-void CLSaturatedArithmeticOperationKernel::configure(ArithmeticOperation op, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, const ConvertPolicy &policy)
+void CLSaturatedArithmeticOperationKernel::configure(ArithmeticOperation op, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, const ConvertPolicy &policy,
+                                                     const ActivationLayerInfo &act_info)
 {
-    _policy = policy;
-    _op     = op;
+    _policy   = policy;
+    _op       = op;
+    _act_info = act_info;
     configure_common(input1, input2, output);
 }
 
-Status CLSaturatedArithmeticOperationKernel::validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ConvertPolicy &policy)
+Status CLSaturatedArithmeticOperationKernel::validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ConvertPolicy &policy,
+                                                      const ActivationLayerInfo &act_info)
 {
     ARM_COMPUTE_UNUSED(op, policy);
     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_with_arithmetic_rules(*input1, *input2, *output));
     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_for_arithmetic_operators(*input1->clone(), *input2->clone(), *output->clone()).first);
+    ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled() && !is_data_type_float(output->data_type()));
 
     return Status{};
 }
@@ -369,13 +379,14 @@ std::string CLSaturatedArithmeticOperationKernel::name()
 
 /** Arithmetic operations*/
 
-void CLArithmeticOperationKernel::configure(ArithmeticOperation op, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output)
+void CLArithmeticOperationKernel::configure(ArithmeticOperation op, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, const ActivationLayerInfo &act_info)
 {
-    _op = op;
+    _op       = op;
+    _act_info = act_info;
     configure_common(input1, input2, output);
 }
 
-Status CLArithmeticOperationKernel::validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+Status CLArithmeticOperationKernel::validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
 {
     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
     if(op == ArithmeticOperation::DIV || op == ArithmeticOperation::POWER)
@@ -389,6 +400,7 @@ Status CLArithmeticOperationKernel::validate(ArithmeticOperation op, const ITens
         ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_with_arithmetic_rules(*input1, *input2, *output));
         ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_for_arithmetic_operators(*input1->clone(), *input2->clone(), *output->clone()).first);
     }
+    ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled() && !is_data_type_float(output->data_type()));
 
     return Status{};
 }
index d31c1de402dd25b90dde23d6b6376693ba1a956b..ff5afa3d9554429bd23bf2c2b9327ef610fcf2d4 100644 (file)
@@ -46,7 +46,7 @@ namespace
 constexpr unsigned int num_elems_processed_per_iteration = 16;
 
 Status validate_arguments(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale,
-                          ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
+                          ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info)
 {
     ARM_COMPUTE_UNUSED(overflow_policy);
     ARM_COMPUTE_UNUSED(rounding_policy);
@@ -64,6 +64,7 @@ Status validate_arguments(const ITensorInfo *input1, const ITensorInfo *input2,
                                                          DataType::S16, DataType::QSYMM16, DataType::F16,
                                                          DataType::F32);
     ARM_COMPUTE_RETURN_ERROR_ON_MSG(scale < 0, "Scale cannot be negative.");
+    ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled() && !is_data_type_float(output->data_type()));
 
     const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());
 
@@ -148,11 +149,11 @@ CLPixelWiseMultiplicationKernel::CLPixelWiseMultiplicationKernel()
 }
 
 void CLPixelWiseMultiplicationKernel::configure(const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, float scale,
-                                                ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
+                                                ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info)
 {
     ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input1->info(), input2->info(), output->info(),
-                                                  scale, overflow_policy, rounding_policy));
+                                                  scale, overflow_policy, rounding_policy, act_info));
 
     // Configure kernel window
     auto win_config = validate_and_configure_window(input1->info(), input2->info(), output->info());
@@ -227,6 +228,12 @@ void CLPixelWiseMultiplicationKernel::configure(const ICLTensor *input1, const I
         build_opts.add_option_if_else(overflow_policy == ConvertPolicy::WRAP || is_data_type_float(output->info()->data_type()), "-DWRAP", "-DSATURATE");
         build_opts.add_option_if_else(rounding_policy == RoundingPolicy::TO_ZERO, "-DROUND=_rtz", "-DROUND=_rte");
         build_opts.add_option("-DDATA_TYPE_RES=" + compute_type);
+        if(act_info.enabled())
+        {
+            build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(act_info.activation())));
+            build_opts.add_option("-DA_VAL=" + float_to_string_with_full_precision(act_info.a()));
+            build_opts.add_option("-DB_VAL=" + float_to_string_with_full_precision(act_info.b()));
+        }
     }
 
     // Create kernel
@@ -248,10 +255,10 @@ void CLPixelWiseMultiplicationKernel::configure(const ICLTensor *input1, const I
 }
 
 Status CLPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale,
-                                                 ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
+                                                 ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info)
 {
     ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
-    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input1, input2, output, scale, overflow_policy, rounding_policy));
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input1, input2, output, scale, overflow_policy, rounding_policy, act_info));
     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input1->clone().get(), input2->clone().get(), output->clone().get()).first);
 
     return Status{};
@@ -311,7 +318,7 @@ namespace
 {
 constexpr unsigned int num_elems_processed_per_iteration_complex = 1;
 
-Status validate_arguments_complex(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+Status validate_arguments_complex(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
 {
     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 2, DataType::F32);
     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 2, DataType::F32);
@@ -319,6 +326,7 @@ Status validate_arguments_complex(const ITensorInfo *input1, const ITensorInfo *
     const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());
 
     ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
+    ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled() && !is_data_type_float(output->data_type()));
 
     // Validate in case of configured output
     if(output->total_size() > 0)
@@ -364,10 +372,10 @@ CLComplexPixelWiseMultiplicationKernel::CLComplexPixelWiseMultiplicationKernel()
 {
 }
 
-void CLComplexPixelWiseMultiplicationKernel::configure(const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output)
+void CLComplexPixelWiseMultiplicationKernel::configure(const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, const ActivationLayerInfo &act_info)
 {
     ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
-    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_complex(input1->info(), input2->info(), output->info()));
+    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_complex(input1->info(), input2->info(), output->info(), act_info));
 
     // Configure kernel window
     auto win_config = validate_and_configure_window_complex(input1->info(), input2->info(), output->info());
@@ -377,16 +385,24 @@ void CLComplexPixelWiseMultiplicationKernel::configure(const ICLTensor *input1,
     _input2 = input2;
     _output = output;
 
+    CLBuildOptions build_opts;
+    if(act_info.enabled())
+    {
+        build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(act_info.activation())));
+        build_opts.add_option("-DA_VAL=" + float_to_string_with_full_precision(act_info.a()));
+        build_opts.add_option("-DB_VAL=" + float_to_string_with_full_precision(act_info.b()));
+    }
+
     // Create kernel
-    _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel("pixelwise_mul_complex"));
+    _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel("pixelwise_mul_complex", build_opts.options()));
 
     ICLKernel::configure_internal(win_config.second);
 }
 
-Status CLComplexPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+Status CLComplexPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
 {
     ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
-    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_complex(input1, input2, output));
+    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_complex(input1, input2, output, act_info));
     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_complex(input1->clone().get(), input2->clone().get(), output->clone().get()).first);
 
     return Status{};
index 273e6ce746a89eedf2aa9c93b8ec9b794254d679..ae53b8ff7599218705962a3cb7e65b03b021e824 100644 (file)
@@ -294,13 +294,20 @@ IGraphMutator::MutationType NodeFusionMutator::type() const
 void NodeFusionMutator::mutate(Graph &g)
 {
     // Supported activations when fusing
-    const std::set<Activation> supported_fused_activations = { Activation::RELU, Activation::BOUNDED_RELU, Activation::LU_BOUNDED_RELU };
+    const std::set<Activation> supported_fused_activations_conv    = { Activation::RELU, Activation::BOUNDED_RELU, Activation::LU_BOUNDED_RELU };
+    const std::set<Activation> supported_fused_activations_eltwise = { Activation::RELU, Activation::BOUNDED_RELU, Activation::LU_BOUNDED_RELU,
+                                                                       Activation::TANH, Activation::LOGISTIC
+                                                                     };
 
     // Preconditions
     auto empty_prec = [](INode &)
     {
         return true;
     };
+    auto cl_target_prec = [](INode & n)
+    {
+        return n.assigned_target() == Target::CL;
+    };
     auto qs8_prec = [&g](INode & n)
     {
         ARM_COMPUTE_ERROR_ON(n.output(0) == nullptr);
@@ -315,10 +322,11 @@ void NodeFusionMutator::mutate(Graph &g)
     };
 
     // Fusion mutations
-    detail::fuse_layer<BatchNormalizationLayerNode, ActivationLayerNode>(g, empty_prec, detail::fuse_node_with_activation<BatchNormalizationLayerNode>, supported_fused_activations);
-    detail::fuse_layer<ConvolutionLayerNode, ActivationLayerNode>(g, empty_prec, detail::fuse_node_with_activation<ConvolutionLayerNode>, supported_fused_activations);
-    detail::fuse_layer<DepthwiseConvolutionLayerNode, ActivationLayerNode>(g, qs8_prec, detail::fuse_node_with_activation<DepthwiseConvolutionLayerNode>, supported_fused_activations);
-    detail::fuse_layer<FullyConnectedLayerNode, ActivationLayerNode>(g, empty_prec, detail::fuse_node_with_activation<FullyConnectedLayerNode>, supported_fused_activations);
+    detail::fuse_layer<BatchNormalizationLayerNode, ActivationLayerNode>(g, empty_prec, detail::fuse_node_with_activation<BatchNormalizationLayerNode>, supported_fused_activations_conv);
+    detail::fuse_layer<ConvolutionLayerNode, ActivationLayerNode>(g, empty_prec, detail::fuse_node_with_activation<ConvolutionLayerNode>, supported_fused_activations_conv);
+    detail::fuse_layer<DepthwiseConvolutionLayerNode, ActivationLayerNode>(g, qs8_prec, detail::fuse_node_with_activation<DepthwiseConvolutionLayerNode>, supported_fused_activations_conv);
+    detail::fuse_layer<FullyConnectedLayerNode, ActivationLayerNode>(g, empty_prec, detail::fuse_node_with_activation<FullyConnectedLayerNode>, supported_fused_activations_conv);
+    detail::fuse_layer<EltwiseLayerNode, ActivationLayerNode>(g, cl_target_prec, detail::fuse_node_with_activation<EltwiseLayerNode>, supported_fused_activations_eltwise);
     detail::fuse_layer<ConvolutionLayerNode, BatchNormalizationLayerNode>(g, empty_prec, detail::fuse_convolution_with_batch_normalization);
     detail::fuse_layer<DepthwiseConvolutionLayerNode, BatchNormalizationLayerNode>(g, empty_prec, detail::fuse_depthwise_convolution_with_batch_normalization);
 }
index a83a5fb3b2171e6ea2308386c0cd8c6c797a8e6f..92d183e69362d00e166d07cb3f56c417e34db5b9 100644 (file)
@@ -52,6 +52,16 @@ RoundingPolicy EltwiseLayerNode::rounding_policy() const
     return descriptor.r_policy;
 }
 
+ActivationLayerInfo EltwiseLayerNode::fused_activation() const
+{
+    return descriptor.fused_activation;
+}
+
+void EltwiseLayerNode::set_fused_activation(ActivationLayerInfo fused_activation)
+{
+    descriptor.fused_activation = fused_activation;
+}
+
 bool EltwiseLayerNode::forward_descriptors()
 {
     if((input_id(0) != NullTensorID) && (output_id(0) != NullTensorID))
index 69cebc7180fe8ea7f81009b724dae73649ecd400..7636a87e934f0c7fa43a058de8b0082f587023db 100644 (file)
@@ -47,96 +47,96 @@ void configure_border_handler(CLFillBorderKernel &border_handler, BorderSize bor
 }
 } // namespace
 
-void CLArithmeticAddition::configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, ConvertPolicy policy)
+void CLArithmeticAddition::configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, ConvertPolicy policy, const ActivationLayerInfo &act_info)
 {
     auto k = arm_compute::support::cpp14::make_unique<CLSaturatedArithmeticOperationKernel>();
-    k->configure(ArithmeticOperation::ADD, input1, input2, output, policy);
+    k->configure(ArithmeticOperation::ADD, input1, input2, output, policy, act_info);
     _kernel = std::move(k);
     configure_border_handler(_border_handler, _kernel->border_size(), input1, input2, output);
 }
 
-Status CLArithmeticAddition::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy)
+Status CLArithmeticAddition::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy, const ActivationLayerInfo &act_info)
 {
-    return CLSaturatedArithmeticOperationKernel::validate(ArithmeticOperation::ADD, input1, input2, output, policy);
+    return CLSaturatedArithmeticOperationKernel::validate(ArithmeticOperation::ADD, input1, input2, output, policy, act_info);
 }
 
-void CLArithmeticSubtraction::configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, ConvertPolicy policy)
+void CLArithmeticSubtraction::configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, ConvertPolicy policy, const ActivationLayerInfo &act_info)
 {
     auto k = arm_compute::support::cpp14::make_unique<CLSaturatedArithmeticOperationKernel>();
-    k->configure(ArithmeticOperation::SUB, input1, input2, output, policy);
+    k->configure(ArithmeticOperation::SUB, input1, input2, output, policy, act_info);
     _kernel = std::move(k);
     configure_border_handler(_border_handler, _kernel->border_size(), input1, input2, output);
 }
 
-Status CLArithmeticSubtraction::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy)
+Status CLArithmeticSubtraction::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy, const ActivationLayerInfo &act_info)
 {
     ARM_COMPUTE_UNUSED(policy);
-    return CLSaturatedArithmeticOperationKernel::validate(ArithmeticOperation::SUB, input1, input2, output, policy);
+    return CLSaturatedArithmeticOperationKernel::validate(ArithmeticOperation::SUB, input1, input2, output, policy, act_info);
 }
 
-void CLArithmeticDivision::configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output)
+void CLArithmeticDivision::configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, const ActivationLayerInfo &act_info)
 {
     auto k = arm_compute::support::cpp14::make_unique<CLArithmeticOperationKernel>();
-    k->configure(ArithmeticOperation::DIV, input1, input2, output);
+    k->configure(ArithmeticOperation::DIV, input1, input2, output, act_info);
     _kernel = std::move(k);
     configure_border_handler(_border_handler, _kernel->border_size(), input1, input2, output);
 }
 
-Status CLArithmeticDivision::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+Status CLArithmeticDivision::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
 {
-    return CLArithmeticOperationKernel::validate(ArithmeticOperation::DIV, input1, input2, output);
+    return CLArithmeticOperationKernel::validate(ArithmeticOperation::DIV, input1, input2, output, act_info);
 }
 
-void CLElementwiseMax::configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output)
+void CLElementwiseMax::configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, const ActivationLayerInfo &act_info)
 {
     auto k = arm_compute::support::cpp14::make_unique<CLArithmeticOperationKernel>();
-    k->configure(ArithmeticOperation::MAX, input1, input2, output);
+    k->configure(ArithmeticOperation::MAX, input1, input2, output, act_info);
     _kernel = std::move(k);
     configure_border_handler(_border_handler, _kernel->border_size(), input1, input2, output);
 }
 
-Status CLElementwiseMax::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+Status CLElementwiseMax::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
 {
-    return CLArithmeticOperationKernel::validate(ArithmeticOperation::MAX, input1, input2, output);
+    return CLArithmeticOperationKernel::validate(ArithmeticOperation::MAX, input1, input2, output, act_info);
 }
 
-void CLElementwiseMin::configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output)
+void CLElementwiseMin::configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, const ActivationLayerInfo &act_info)
 {
     auto k = arm_compute::support::cpp14::make_unique<CLArithmeticOperationKernel>();
-    k->configure(ArithmeticOperation::MIN, input1, input2, output);
+    k->configure(ArithmeticOperation::MIN, input1, input2, output, act_info);
     _kernel = std::move(k);
     configure_border_handler(_border_handler, _kernel->border_size(), input1, input2, output);
 }
 
-Status CLElementwiseMin::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+Status CLElementwiseMin::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
 {
-    return CLArithmeticOperationKernel::validate(ArithmeticOperation::MIN, input1, input2, output);
+    return CLArithmeticOperationKernel::validate(ArithmeticOperation::MIN, input1, input2, output, act_info);
 }
 
-void CLElementwiseSquaredDiff::configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output)
+void CLElementwiseSquaredDiff::configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, const ActivationLayerInfo &act_info)
 {
     auto k = arm_compute::support::cpp14::make_unique<CLArithmeticOperationKernel>();
-    k->configure(ArithmeticOperation::SQUARED_DIFF, input1, input2, output);
+    k->configure(ArithmeticOperation::SQUARED_DIFF, input1, input2, output, act_info);
     _kernel = std::move(k);
     configure_border_handler(_border_handler, _kernel->border_size(), input1, input2, output);
 }
 
-Status CLElementwiseSquaredDiff::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+Status CLElementwiseSquaredDiff::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
 {
-    return CLArithmeticOperationKernel::validate(ArithmeticOperation::SQUARED_DIFF, input1, input2, output);
+    return CLArithmeticOperationKernel::validate(ArithmeticOperation::SQUARED_DIFF, input1, input2, output, act_info);
 }
 
-void CLElementwisePower::configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output)
+void CLElementwisePower::configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, const ActivationLayerInfo &act_info)
 {
     auto k = arm_compute::support::cpp14::make_unique<CLArithmeticOperationKernel>();
-    k->configure(ArithmeticOperation::POWER, input1, input2, output);
+    k->configure(ArithmeticOperation::POWER, input1, input2, output, act_info);
     _kernel = std::move(k);
     configure_border_handler(_border_handler, _kernel->border_size(), input1, input2, output);
 }
 
-Status CLElementwisePower::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+Status CLElementwisePower::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
 {
-    return CLArithmeticOperationKernel::validate(ArithmeticOperation::POWER, input1, input2, output);
+    return CLArithmeticOperationKernel::validate(ArithmeticOperation::POWER, input1, input2, output, act_info);
 }
 
 } // namespace arm_compute
index c1c971816c98238b0dafd35c984aec69b63f1f5a..b527922d2b409767d294c87b9e2340af775148e7 100644 (file)
 namespace arm_compute
 {
 void CLPixelWiseMultiplication::configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, float scale,
-                                          ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
+                                          ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info)
 {
     auto k = arm_compute::support::cpp14::make_unique<CLPixelWiseMultiplicationKernel>();
-    k->configure(input1, input2, output, scale, overflow_policy, rounding_policy);
+    k->configure(input1, input2, output, scale, overflow_policy, rounding_policy, act_info);
     _kernel = std::move(k);
 
     if(output->info()->dimension(0) > 1)
@@ -50,15 +50,15 @@ void CLPixelWiseMultiplication::configure(ICLTensor *input1, ICLTensor *input2,
 }
 
 Status CLPixelWiseMultiplication::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale,
-                                           ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
+                                           ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info)
 {
-    return CLPixelWiseMultiplicationKernel::validate(input1, input2, output, scale, overflow_policy, rounding_policy);
+    return CLPixelWiseMultiplicationKernel::validate(input1, input2, output, scale, overflow_policy, rounding_policy, act_info);
 }
 
-void CLComplexPixelWiseMultiplication::configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output)
+void CLComplexPixelWiseMultiplication::configure(ICLTensor *input1, ICLTensor *input2, ICLTensor *output, const ActivationLayerInfo &act_info)
 {
     auto k = arm_compute::support::cpp14::make_unique<CLComplexPixelWiseMultiplicationKernel>();
-    k->configure(input1, input2, output);
+    k->configure(input1, input2, output, act_info);
     _kernel = std::move(k);
 
     if(output->info()->dimension(0) > 1)
@@ -72,8 +72,8 @@ void CLComplexPixelWiseMultiplication::configure(ICLTensor *input1, ICLTensor *i
     }
 }
 
-Status CLComplexPixelWiseMultiplication::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+Status CLComplexPixelWiseMultiplication::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
 {
-    return CLComplexPixelWiseMultiplicationKernel::validate(input1, input2, output);
+    return CLComplexPixelWiseMultiplicationKernel::validate(input1, input2, output, act_info);
 }
 } // namespace arm_compute
index cd9c8ddad21826a1d4960a05d82b5fe5ceebf8fb..b0d8a3cf9f8522a16a013230301248e66c2433f4 100755 (executable)
 
 using namespace arm_compute;
 
-void GCArithmeticAddition::configure(const IGCTensor *input1, const IGCTensor *input2, IGCTensor *output, ConvertPolicy policy)
+void GCArithmeticAddition::configure(const IGCTensor *input1, const IGCTensor *input2, IGCTensor *output, ConvertPolicy policy, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_UNUSED(act_info);
     auto k = arm_compute::support::cpp14::make_unique<GCArithmeticAdditionKernel>();
     k->configure(input1, input2, output, policy);
     _kernel = std::move(k);
 }
 
-Status GCArithmeticAddition::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy)
+Status GCArithmeticAddition::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled());
     return GCArithmeticAdditionKernel::validate(input1, input2, output, policy);
 }
index 126476d2a98e459429ad480d7a1ddfe4c0492cc0..1075f0b5bed61e280842947a1b0eadc599187c94 100755 (executable)
@@ -30,8 +30,9 @@
 
 using namespace arm_compute;
 
-void GCPixelWiseMultiplication::configure(const IGCTensor *input1, const IGCTensor *input2, IGCTensor *output, float scale)
+void GCPixelWiseMultiplication::configure(const IGCTensor *input1, const IGCTensor *input2, IGCTensor *output, float scale, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_UNUSED(act_info);
     auto k = arm_compute::support::cpp14::make_unique<GCPixelWiseMultiplicationKernel>();
     k->configure(input1, input2, output, scale);
     _kernel = std::move(k);
index 6d0b207cf103bb486070a1663008f6e263f9c3f6..06c71db1bdf7da1bc691c6ef3264b2f61edd5ca0 100644 (file)
 
 namespace arm_compute
 {
-void NEArithmeticAddition::configure(ITensor *input1, ITensor *input2, ITensor *output, ConvertPolicy policy)
+void NEArithmeticAddition::configure(ITensor *input1, ITensor *input2, ITensor *output, ConvertPolicy policy, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_UNUSED(act_info);
     auto k = arm_compute::support::cpp14::make_unique<NEArithmeticAdditionKernel>();
     k->configure(input1, input2, output, policy);
     _kernel = std::move(k);
 }
-Status NEArithmeticAddition::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy)
+Status NEArithmeticAddition::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled());
     return NEArithmeticAdditionKernel::validate(input1, input2, output, policy);
 }
 } // namespace arm_compute
index 0ad87383ce3bb2918a95a5b9867fb8734e8c6076..454adc336bf31372c770b6dcfa9b20194fe1ab66 100644 (file)
@@ -31,8 +31,9 @@
 
 namespace arm_compute
 {
-void NEArithmeticSubtraction::configure(ITensor *input1, ITensor *input2, ITensor *output, ConvertPolicy policy)
+void NEArithmeticSubtraction::configure(ITensor *input1, ITensor *input2, ITensor *output, ConvertPolicy policy, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_UNUSED(act_info);
     auto k = arm_compute::support::cpp14::make_unique<NEArithmeticSubtractionKernel>();
     k->configure(input1, input2, output, policy);
     _kernel = std::move(k);
@@ -48,8 +49,9 @@ void NEArithmeticSubtraction::configure(ITensor *input1, ITensor *input2, ITenso
     }
 }
 
-Status NEArithmeticSubtraction::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy)
+Status NEArithmeticSubtraction::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled());
     return NEArithmeticSubtractionKernel::validate(input1, input2, output, policy);
 }
 } // namespace arm_compute
index 0ba0ddbe3a3e342b08a5358a820a28e459f1adde..7451c6ff2b367f05a2fc000eba119e4d971dcdc1 100644 (file)
 
 namespace arm_compute
 {
-void NEElementwiseMax::configure(ITensor *input1, ITensor *input2, ITensor *output)
+void NEElementwiseMax::configure(ITensor *input1, ITensor *input2, ITensor *output, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_UNUSED(act_info);
     auto k = arm_compute::support::cpp14::make_unique<NEArithmeticOperationKernel>();
     k->configure(ArithmeticOperation::MAX, input1, input2, output);
     _kernel = std::move(k);
 }
 
-Status NEElementwiseMax::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+Status NEElementwiseMax::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled());
     if(input1->data_type() == DataType::QASYMM8_SIGNED)
     {
         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, output);
@@ -49,15 +51,17 @@ Status NEElementwiseMax::validate(const ITensorInfo *input1, const ITensorInfo *
     return NEArithmeticOperationKernel::validate(ArithmeticOperation::MAX, input1, input2, output);
 }
 
-void NEElementwiseMin::configure(ITensor *input1, ITensor *input2, ITensor *output)
+void NEElementwiseMin::configure(ITensor *input1, ITensor *input2, ITensor *output, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_UNUSED(act_info);
     auto k = arm_compute::support::cpp14::make_unique<NEArithmeticOperationKernel>();
     k->configure(ArithmeticOperation::MIN, input1, input2, output);
     _kernel = std::move(k);
 }
 
-Status NEElementwiseMin::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+Status NEElementwiseMin::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled());
     if(input1->data_type() == DataType::QASYMM8_SIGNED)
     {
         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, output);
@@ -66,39 +70,45 @@ Status NEElementwiseMin::validate(const ITensorInfo *input1, const ITensorInfo *
     return NEArithmeticOperationKernel::validate(ArithmeticOperation::MIN, input1, input2, output);
 }
 
-void NEElementwiseSquaredDiff::configure(ITensor *input1, ITensor *input2, ITensor *output)
+void NEElementwiseSquaredDiff::configure(ITensor *input1, ITensor *input2, ITensor *output, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_UNUSED(act_info);
     auto k = arm_compute::support::cpp14::make_unique<NEArithmeticOperationKernel>();
     k->configure(ArithmeticOperation::SQUARED_DIFF, input1, input2, output);
     _kernel = std::move(k);
 }
 
-Status NEElementwiseSquaredDiff::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+Status NEElementwiseSquaredDiff::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled());
     return NEArithmeticOperationKernel::validate(ArithmeticOperation::SQUARED_DIFF, input1, input2, output);
 }
 
-void NEElementwiseDivision::configure(ITensor *input1, ITensor *input2, ITensor *output)
+void NEElementwiseDivision::configure(ITensor *input1, ITensor *input2, ITensor *output, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_UNUSED(act_info);
     auto k = arm_compute::support::cpp14::make_unique<NEDivisionOperationKernel>();
     k->configure(input1, input2, output);
     _kernel = std::move(k);
 }
 
-Status NEElementwiseDivision::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+Status NEElementwiseDivision::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled());
     return NEDivisionOperationKernel::validate(input1, input2, output);
 }
 
-void NEElementwisePower::configure(ITensor *input1, ITensor *input2, ITensor *output)
+void NEElementwisePower::configure(ITensor *input1, ITensor *input2, ITensor *output, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_UNUSED(act_info);
     auto k = arm_compute::support::cpp14::make_unique<NEPowerOperationKernel>();
     k->configure(input1, input2, output);
     _kernel = std::move(k);
 }
 
-Status NEElementwisePower::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+Status NEElementwisePower::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled());
     return NEPowerOperationKernel::validate(input1, input2, output);
 }
 
index e2516e420cac03af2ecee59f52f09db7897237e4..eaf233b9edc27adc3642391c5b7ec4d2bd5d9667 100644 (file)
 
 namespace arm_compute
 {
-void NEPixelWiseMultiplication::configure(ITensor *input1, ITensor *input2, ITensor *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
+void NEPixelWiseMultiplication::configure(ITensor *input1, ITensor *input2, ITensor *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy,
+                                          const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_UNUSED(act_info);
     auto k = arm_compute::support::cpp14::make_unique<NEPixelWiseMultiplicationKernel>();
     k->configure(input1, input2, output, scale, overflow_policy, rounding_policy);
     _kernel = std::move(k);
@@ -47,13 +49,16 @@ void NEPixelWiseMultiplication::configure(ITensor *input1, ITensor *input2, ITen
         }
     }
 }
-Status NEPixelWiseMultiplication::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
+Status NEPixelWiseMultiplication::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy,
+                                           const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled());
     return NEPixelWiseMultiplicationKernel::validate(input1, input2, output, scale, overflow_policy, rounding_policy);
 }
 
-void NEComplexPixelWiseMultiplication::configure(ITensor *input1, ITensor *input2, ITensor *output)
+void NEComplexPixelWiseMultiplication::configure(ITensor *input1, ITensor *input2, ITensor *output, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_UNUSED(act_info);
     auto k = arm_compute::support::cpp14::make_unique<NEComplexPixelWiseMultiplicationKernel>();
     k->configure(input1, input2, output);
     _kernel = std::move(k);
@@ -69,8 +74,9 @@ void NEComplexPixelWiseMultiplication::configure(ITensor *input1, ITensor *input
     }
 }
 
-Status NEComplexPixelWiseMultiplication::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
+Status NEComplexPixelWiseMultiplication::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
 {
+    ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled());
     return NEComplexPixelWiseMultiplicationKernel::validate(input1, input2, output);
 }
 
index 2a2047480f079b184c7afa6bc0833a1154bd2e1d..087342d3b8b7cfa92c9c53f3bf1f1caffe815ff7 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2017-2019 ARM Limited.
+ * Copyright (c) 2017-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -156,7 +156,7 @@ public:
     }
 };
 
-/** Data set containing small tensor shapes. */
+/** Data set containing tiny tensor shapes. */
 class TinyShapes final : public ShapeDataset
 {
 public:
@@ -190,6 +190,25 @@ public:
     }
 };
 
+/** Data set containing pairs of tiny tensor shapes that are broadcast compatible. */
+class TinyShapesBroadcast final : public framework::dataset::ZipDataset<ShapeDataset, ShapeDataset>
+{
+public:
+    TinyShapesBroadcast()
+        : ZipDataset<ShapeDataset, ShapeDataset>(
+              ShapeDataset("Shape0",
+    {
+        TensorShape{ 9U, 9U },
+                     TensorShape{ 10U, 2U, 14U, 2U },
+    }),
+    ShapeDataset("Shape1",
+    {
+        TensorShape{ 9U, 1U, 9U },
+        TensorShape{ 10U },
+    }))
+    {
+    }
+};
 /** Data set containing pairs of small tensor shapes that are broadcast compatible. */
 class SmallShapesBroadcast final : public framework::dataset::ZipDataset<ShapeDataset, ShapeDataset>
 {
index 5702360e4590dca1e608484c33cd584a3f9145bc..41415ee481350bad48fe96913cdf186e8492ecd8 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2017-2019 ARM Limited.
+ * Copyright (c) 2017-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -51,8 +51,8 @@ const auto ArithmeticAdditionQASYMM8Dataset = combine(combine(framework::dataset
                                                       framework::dataset::make("DataType",
                                                                                DataType::QASYMM8));
 const auto ArithmeticAdditionQASYMM8SignedDataset = combine(combine(framework::dataset::make("DataType", DataType::QASYMM8_SIGNED), framework::dataset::make("DataType", DataType::QASYMM8_SIGNED)),
-                                                      framework::dataset::make("DataType",
-                                                                               DataType::QASYMM8_SIGNED));
+                                                            framework::dataset::make("DataType",
+                                                                                     DataType::QASYMM8_SIGNED));
 const auto ArithmeticAdditionQSYMM16Dataset = combine(combine(framework::dataset::make("DataType", DataType::QSYMM16), framework::dataset::make("DataType", DataType::QSYMM16)),
                                                       framework::dataset::make("DataType",
                                                                                DataType::QSYMM16));
@@ -62,6 +62,13 @@ const auto ArithmeticAdditionFP16Dataset = combine(combine(framework::dataset::m
                                                    framework::dataset::make("DataType", DataType::F16));
 const auto ArithmeticAdditionFP32Dataset = combine(combine(framework::dataset::make("DataType", DataType::F32), framework::dataset::make("DataType", DataType::F32)),
                                                    framework::dataset::make("DataType", DataType::F32));
+const auto EmptyActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
+{ ActivationLayerInfo() });
+const auto ActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
+{
+    ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 0.75f, 0.25f),
+    ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC, 0.75f, 0.25f)
+});
 } // namespace
 
 TEST_SUITE(CL)
@@ -284,10 +291,21 @@ FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticAdditionQuantizedFixture<int16_t>,
 TEST_SUITE_END() // QSYMM16
 TEST_SUITE_END() // Quantized
 
+template <typename T>
+using CLArithmeticAdditionFloatFixture = ArithmeticAdditionValidationFloatFixture<CLTensor, CLAccessor, CLArithmeticAddition, T>;
+
 TEST_SUITE(Float)
 TEST_SUITE(FP16)
-FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticAdditionFixture<half>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapes(), ArithmeticAdditionFP16Dataset),
-                                                                                                         framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })))
+FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticAdditionFloatFixture<half>, framework::DatasetMode::ALL, combine(combine(combine(datasets::SmallShapes(), ArithmeticAdditionFP16Dataset),
+                                                                                                                      framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })),
+                                                                                                              EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivation, CLArithmeticAdditionFloatFixture<half>, framework::DatasetMode::ALL, combine(combine(combine(datasets::TinyShapes(), ArithmeticAdditionFP16Dataset),
+                                                                                                                       framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })),
+                                                                                                                       ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference);
@@ -318,34 +336,53 @@ DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, combine(datasets::Sma
     validate(dst.info()->padding(), padding);
 }
 
-FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticAdditionFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallShapes(), ArithmeticAdditionFP32Dataset),
-                                                                                                                framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })))
+FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticAdditionFloatFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(datasets::SmallShapes(), ArithmeticAdditionFP32Dataset),
+                                                                                                                     framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })),
+                                                                                                                     EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivation, CLArithmeticAdditionFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(combine(datasets::TinyShapes(), ArithmeticAdditionFP32Dataset),
+                                                                                                                        framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })),
+                                                                                                                        ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference);
 }
 
-FIXTURE_DATA_TEST_CASE(RunLarge, CLArithmeticAdditionFixture<float>, framework::DatasetMode::NIGHTLY, combine(combine(datasets::LargeShapes(), ArithmeticAdditionFP32Dataset),
-                                                                                                              framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })))
+FIXTURE_DATA_TEST_CASE(RunLarge, CLArithmeticAdditionFloatFixture<float>, framework::DatasetMode::NIGHTLY, combine(combine(combine(datasets::LargeShapes(), ArithmeticAdditionFP32Dataset),
+                                                                                                                   framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })),
+                                                                                                                   EmptyActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference);
 }
 
 template <typename T>
-using CLArithmeticAdditionBroadcastFixture = ArithmeticAdditionBroadcastValidationFixture<CLTensor, CLAccessor, CLArithmeticAddition, T>;
+using CLArithmeticAdditionBroadcastFloatFixture = ArithmeticAdditionBroadcastValidationFloatFixture<CLTensor, CLAccessor, CLArithmeticAddition, T>;
 
-FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLArithmeticAdditionBroadcastFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallShapesBroadcast(),
+FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLArithmeticAdditionBroadcastFloatFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(datasets::SmallShapesBroadcast(),
+                       ArithmeticAdditionFP32Dataset),
+                       framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })),
+                       EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivationBroadcast, CLArithmeticAdditionBroadcastFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(combine(datasets::TinyShapesBroadcast(),
                        ArithmeticAdditionFP32Dataset),
-                       framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })))
+                       framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })),
+                       ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference);
 }
 
-FIXTURE_DATA_TEST_CASE(RunLargeBroadcast, CLArithmeticAdditionBroadcastFixture<float>, framework::DatasetMode::NIGHTLY, combine(combine(datasets::LargeShapesBroadcast(),
+FIXTURE_DATA_TEST_CASE(RunLargeBroadcast, CLArithmeticAdditionBroadcastFloatFixture<float>, framework::DatasetMode::NIGHTLY, combine(combine(combine(datasets::LargeShapesBroadcast(),
                        ArithmeticAdditionFP32Dataset),
-                       framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })))
+                       framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })),
+                       EmptyActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference);
index 8df770ab988f1724f53de28d031db4ff6765eaed..d970c31daa63336ce0a5aa3929e0f8603d427228 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018-2019 ARM Limited.
+ * Copyright (c) 2018-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -52,6 +52,13 @@ const auto ArithmeticDivisionFP16Dataset = combine(combine(framework::dataset::m
                                                    framework::dataset::make("DataType", DataType::F16));
 const auto ArithmeticDivisionFP32Dataset = combine(combine(framework::dataset::make("DataType", DataType::F32), framework::dataset::make("DataType", DataType::F32)),
                                                    framework::dataset::make("DataType", DataType::F32));
+const auto EmptyActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
+{ ActivationLayerInfo() });
+const auto ActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
+{
+    ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 0.75f, 0.25f),
+    ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC, 0.75f, 0.25f)
+});
 } // namespace
 
 TEST_SUITE(CL)
@@ -87,11 +94,18 @@ DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(
 // *INDENT-ON*
 
 template <typename T>
-using CLArithmeticDivisionFixture = ArithmeticDivisionValidationFixture<CLTensor, CLAccessor, CLArithmeticDivision, T>;
+using CLArithmeticDivisionFloatFixture = ArithmeticDivisionValidationFloatFixture<CLTensor, CLAccessor, CLArithmeticDivision, T>;
 
 TEST_SUITE(Float)
 TEST_SUITE(FP16)
-FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticDivisionFixture<half>, framework::DatasetMode::ALL, combine(datasets::SmallShapes(), ArithmeticDivisionFP16Dataset))
+FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticDivisionFloatFixture<half>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapes(), ArithmeticDivisionFP16Dataset),
+                                                                                                              EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp16, 0.01);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivation, CLArithmeticDivisionFloatFixture<half>, framework::DatasetMode::ALL, combine(combine(datasets::TinyShapes(), ArithmeticDivisionFP16Dataset),
+                                                                                                                       ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp16, 0.01);
@@ -122,30 +136,47 @@ DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, datasets::SmallShapes
     validate(dst.info()->padding(), padding);
 }
 
-FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticDivisionFixture<float>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), ArithmeticDivisionFP32Dataset))
+FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticDivisionFloatFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallShapes(), ArithmeticDivisionFP32Dataset),
+                                                                                                                     EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivation, CLArithmeticDivisionFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::TinyShapes(), ArithmeticDivisionFP32Dataset),
+                                                                                                                        ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp32);
 }
 
-FIXTURE_DATA_TEST_CASE(RunLarge, CLArithmeticDivisionFixture<float>, framework::DatasetMode::NIGHTLY, combine(datasets::LargeShapes(), ArithmeticDivisionFP32Dataset))
+FIXTURE_DATA_TEST_CASE(RunLarge, CLArithmeticDivisionFloatFixture<float>, framework::DatasetMode::NIGHTLY, combine(combine(datasets::LargeShapes(), ArithmeticDivisionFP32Dataset),
+                                                                                                                   EmptyActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp32);
 }
 
 template <typename T>
-using CLArithmeticDivisionBroadcastFixture = ArithmeticDivisionBroadcastValidationFixture<CLTensor, CLAccessor, CLArithmeticDivision, T>;
+using CLArithmeticDivisionBroadcastFloatFixture = ArithmeticDivisionBroadcastValidationFloatFixture<CLTensor, CLAccessor, CLArithmeticDivision, T>;
 
-FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLArithmeticDivisionBroadcastFixture<float>, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapesBroadcast(),
-                       ArithmeticDivisionFP32Dataset))
+FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLArithmeticDivisionBroadcastFloatFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallShapesBroadcast(),
+                       ArithmeticDivisionFP32Dataset),
+                       EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivationBroadcast, CLArithmeticDivisionBroadcastFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::TinyShapesBroadcast(),
+                       ArithmeticDivisionFP32Dataset),
+                       ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp32);
 }
 
-FIXTURE_DATA_TEST_CASE(RunLargeBroadcast, CLArithmeticDivisionBroadcastFixture<float>, framework::DatasetMode::NIGHTLY, combine(datasets::LargeShapesBroadcast(),
-                       ArithmeticDivisionFP32Dataset))
+FIXTURE_DATA_TEST_CASE(RunLargeBroadcast, CLArithmeticDivisionBroadcastFloatFixture<float>, framework::DatasetMode::NIGHTLY, combine(combine(datasets::LargeShapesBroadcast(),
+                       ArithmeticDivisionFP32Dataset),
+                       EmptyActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp32);
index 592a7ed1a4a39c6c5d1bbeec2bc4be8bf5c1725d..897ae1ab09a8505229f7c4ec027a34e3110c2152 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2017-2019 ARM Limited.
+ * Copyright (c) 2017-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -52,8 +52,8 @@ const auto ArithmeticSubtractionQASYMM8Dataset = combine(combine(framework::data
                                                          framework::dataset::make("DataType",
                                                                                   DataType::QASYMM8));
 const auto ArithmeticSubtractionQASYMM8SignedDataset = combine(combine(framework::dataset::make("DataType", DataType::QASYMM8_SIGNED), framework::dataset::make("DataType", DataType::QASYMM8_SIGNED)),
-                                                         framework::dataset::make("DataType",
-                                                                                  DataType::QASYMM8_SIGNED));
+                                                               framework::dataset::make("DataType",
+                                                                                        DataType::QASYMM8_SIGNED));
 const auto ArithmeticSubtractionQSYMM16Dataset = combine(combine(framework::dataset::make("DataType", DataType::QSYMM16), framework::dataset::make("DataType", DataType::QSYMM16)),
                                                          framework::dataset::make("DataType",
                                                                                   DataType::QSYMM16));
@@ -63,6 +63,13 @@ const auto ArithmeticSubtractionFP16Dataset = combine(combine(framework::dataset
                                                       framework::dataset::make("DataType", DataType::F16));
 const auto ArithmeticSubtractionFP32Dataset = combine(combine(framework::dataset::make("DataType", DataType::F32), framework::dataset::make("DataType", DataType::F32)),
                                                       framework::dataset::make("DataType", DataType::F32));
+const auto EmptyActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
+{ ActivationLayerInfo() });
+const auto ActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
+{
+    ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 0.75f, 0.25f),
+    ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC, 0.75f, 0.25f)
+});
 } // namespace
 
 TEST_SUITE(CL)
@@ -285,10 +292,21 @@ FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticSubtractionQuantizedFixture<int16_t
 TEST_SUITE_END() // QSYMM16
 TEST_SUITE_END() // Quantized
 
+template <typename T>
+using CLArithmeticSubtractionFloatFixture = ArithmeticSubtractionValidationFloatFixture<CLTensor, CLAccessor, CLArithmeticSubtraction, T>;
+
 TEST_SUITE(Float)
 TEST_SUITE(FP16)
-FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticSubtractionFixture<half>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapes(), ArithmeticSubtractionFP16Dataset),
-                                                                                                            framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })))
+FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticSubtractionFloatFixture<half>, framework::DatasetMode::ALL, combine(combine(combine(datasets::SmallShapes(), ArithmeticSubtractionFP16Dataset),
+                                                                                                                 framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })),
+                                                                                                                 EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivation, CLArithmeticSubtractionFloatFixture<half>, framework::DatasetMode::ALL, combine(combine(combine(datasets::TinyShapes(), ArithmeticSubtractionFP16Dataset),
+                       framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })),
+                       ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference);
@@ -319,34 +337,53 @@ DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, combine(datasets::Sma
     validate(dst.info()->padding(), padding);
 }
 
-FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticSubtractionFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallShapes(), ArithmeticSubtractionFP32Dataset),
-                                                                                                                   framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })))
+FIXTURE_DATA_TEST_CASE(RunSmall, CLArithmeticSubtractionFloatFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(datasets::SmallShapes(), ArithmeticSubtractionFP32Dataset),
+                                                                                                                        framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })),
+                                                                                                                        EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivation, CLArithmeticSubtractionFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(combine(datasets::TinyShapes(), ArithmeticSubtractionFP32Dataset),
+                       framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })),
+                       ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference);
 }
 
-FIXTURE_DATA_TEST_CASE(RunLarge, CLArithmeticSubtractionFixture<float>, framework::DatasetMode::NIGHTLY, combine(combine(datasets::LargeShapes(), ArithmeticSubtractionFP32Dataset),
-                                                                                                                 framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })))
+FIXTURE_DATA_TEST_CASE(RunLarge, CLArithmeticSubtractionFloatFixture<float>, framework::DatasetMode::NIGHTLY, combine(combine(combine(datasets::LargeShapes(), ArithmeticSubtractionFP32Dataset),
+                                                                                                                      framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })),
+                                                                                                                      EmptyActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference);
 }
 
 template <typename T>
-using CLArithmeticSubtractionBroadcastFixture = ArithmeticSubtractionBroadcastValidationFixture<CLTensor, CLAccessor, CLArithmeticSubtraction, T>;
+using CLArithmeticSubtractionBroadcastFloatFixture = ArithmeticSubtractionBroadcastValidationFloatFixture<CLTensor, CLAccessor, CLArithmeticSubtraction, T>;
 
-FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLArithmeticSubtractionBroadcastFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallShapesBroadcast(),
+FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLArithmeticSubtractionBroadcastFloatFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(datasets::SmallShapesBroadcast(),
+                       ArithmeticSubtractionFP32Dataset),
+                       framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })),
+                       EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivationBroadcast, CLArithmeticSubtractionBroadcastFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(combine(datasets::TinyShapesBroadcast(),
                        ArithmeticSubtractionFP32Dataset),
-                       framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })))
+                       framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })),
+                       ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference);
 }
 
-FIXTURE_DATA_TEST_CASE(RunLargeBroadcast, CLArithmeticSubtractionBroadcastFixture<float>, framework::DatasetMode::NIGHTLY, combine(combine(datasets::LargeShapesBroadcast(),
+FIXTURE_DATA_TEST_CASE(RunLargeBroadcast, CLArithmeticSubtractionBroadcastFloatFixture<float>, framework::DatasetMode::NIGHTLY, combine(combine(combine(datasets::LargeShapesBroadcast(),
                        ArithmeticSubtractionFP32Dataset),
-                       framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })))
+                       framework::dataset::make("ConvertPolicy", { ConvertPolicy::SATURATE, ConvertPolicy::WRAP })),
+                       EmptyActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference);
index c7b4284e199a660a725cd7506b6b6bd70a76264d..879e732cb0e483e1c74f3455a59207e487a7a057 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018-2019 ARM Limited.
+ * Copyright (c) 2018-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -54,8 +54,8 @@ const auto ElementwiseMaxQASYMM8Dataset = combine(combine(framework::dataset::ma
                                                   framework::dataset::make("DataType",
                                                                            DataType::QASYMM8));
 const auto ElementwiseMaxQASYMM8SignedDataset = combine(combine(framework::dataset::make("DataType", DataType::QASYMM8_SIGNED), framework::dataset::make("DataType", DataType::QASYMM8_SIGNED)),
-                                                  framework::dataset::make("DataType",
-                                                                           DataType::QASYMM8_SIGNED));
+                                                        framework::dataset::make("DataType",
+                                                                                 DataType::QASYMM8_SIGNED));
 const auto ElementwiseMaxQSYMM16Dataset = combine(combine(framework::dataset::make("DataType", DataType::QSYMM16), framework::dataset::make("DataType", DataType::QSYMM16)),
                                                   framework::dataset::make("DataType",
                                                                            DataType::QSYMM16));
@@ -65,6 +65,13 @@ const auto ElementwiseMaxFP16Dataset = combine(combine(framework::dataset::make(
                                                framework::dataset::make("DataType", DataType::F16));
 const auto ElementwiseMaxFP32Dataset = combine(combine(framework::dataset::make("DataType", DataType::F32), framework::dataset::make("DataType", DataType::F32)),
                                                framework::dataset::make("DataType", DataType::F32));
+const auto EmptyActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
+{ ActivationLayerInfo() });
+const auto ActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
+{
+    ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 0.75f, 0.25f),
+    ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC, 0.75f, 0.25f)
+});
 } // namespace
 
 TEST_SUITE(CL)
@@ -229,10 +236,10 @@ DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, datasets::SmallShapes
 }
 
 FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMaxQuantizedFixture<int8_t>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(combine(datasets::SmallShapes(),
-                                                                                                                       ElementwiseMaxQASYMM8SignedDataset),
-                                                                                                                       framework::dataset::make("Src0QInfo", { QuantizationInfo(5.f / 255.f, 20) })),
-                                                                                                                       framework::dataset::make("Src1QInfo", { QuantizationInfo(2.f / 255.f, 10) })),
-                                                                                                                       framework::dataset::make("OutQInfo", { QuantizationInfo(1.f / 255.f, 5) })))
+                                                                                                                      ElementwiseMaxQASYMM8SignedDataset),
+                                                                                                                      framework::dataset::make("Src0QInfo", { QuantizationInfo(5.f / 255.f, 20) })),
+                                                                                                                      framework::dataset::make("Src1QInfo", { QuantizationInfo(2.f / 255.f, 10) })),
+                                                                                                                      framework::dataset::make("OutQInfo", { QuantizationInfo(1.f / 255.f, 5) })))
 {
     // Validate output
     validate(CLAccessor(_target), _reference);
@@ -274,9 +281,18 @@ FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMaxQuantizedFixture<int16_t>, fram
 TEST_SUITE_END()
 TEST_SUITE_END()
 
+template <typename T>
+using CLElementwiseMaxFloatFixture = ElementwiseMaxValidationFloatFixture<CLTensor, CLAccessor, CLElementwiseMax, T>;
+
 TEST_SUITE(Float)
 TEST_SUITE(FP16)
-FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMaxFixture<half>, framework::DatasetMode::ALL, combine(datasets::SmallShapes(), ElementwiseMaxFP16Dataset))
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMaxFloatFixture<half>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapes(), ElementwiseMaxFP16Dataset), EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp16, 0.01);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivation, CLElementwiseMaxFloatFixture<half>, framework::DatasetMode::ALL, combine(combine(datasets::TinyShapes(), ElementwiseMaxFP16Dataset),
+                                                                                                                   ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp16, 0.01);
@@ -307,17 +323,32 @@ DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, datasets::SmallShapes
     validate(dst.info()->padding(), padding);
 }
 
-FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMaxFixture<float>, framework::DatasetMode::ALL, combine(datasets::SmallShapes(), ElementwiseMaxFP32Dataset))
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMaxFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapes(), ElementwiseMaxFP32Dataset),
+                                                                                                           EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivation, CLElementwiseMaxFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::TinyShapes(), ElementwiseMaxFP32Dataset),
+                                                                                                                    ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp32);
 }
 
 template <typename T>
-using CLElementwiseMaxBroadcastFixture = ElementwiseMaxBroadcastValidationFixture<CLTensor, CLAccessor, CLElementwiseMax, T>;
+using CLElementwiseMaxBroadcastFloatFixture = ElementwiseMaxBroadcastValidationFloatFixture<CLTensor, CLAccessor, CLElementwiseMax, T>;
 
-FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLElementwiseMaxBroadcastFixture<float>, framework::DatasetMode::ALL, combine(datasets::SmallShapesBroadcast(),
-                                                                                                                        ElementwiseMaxFP32Dataset))
+FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLElementwiseMaxBroadcastFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapesBroadcast(),
+                       ElementwiseMaxFP32Dataset),
+                       EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivationBroadcast, CLElementwiseMaxBroadcastFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::TinyShapesBroadcast(),
+                       ElementwiseMaxFP32Dataset),
+                       ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp32);
index 3d6bde1c98b387addb47ffc9bef24c7cb4a05be6..332fa80d722caf1bcc694cdcae816baefc1ed2b7 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018-2019 ARM Limited.
+ * Copyright (c) 2018-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -54,8 +54,8 @@ const auto ElementwiseMinQASYMM8Dataset = combine(combine(framework::dataset::ma
                                                   framework::dataset::make("DataType",
                                                                            DataType::QASYMM8));
 const auto ElementwiseMinQASYMM8SignedDataset = combine(combine(framework::dataset::make("DataType", DataType::QASYMM8_SIGNED), framework::dataset::make("DataType", DataType::QASYMM8_SIGNED)),
-                                                  framework::dataset::make("DataType",
-                                                                           DataType::QASYMM8_SIGNED));
+                                                        framework::dataset::make("DataType",
+                                                                                 DataType::QASYMM8_SIGNED));
 const auto ElementwiseMinQSYMM16Dataset = combine(combine(framework::dataset::make("DataType", DataType::QSYMM16), framework::dataset::make("DataType", DataType::QSYMM16)),
                                                   framework::dataset::make("DataType",
                                                                            DataType::QSYMM16));
@@ -65,6 +65,13 @@ const auto ElementwiseMinFP16Dataset = combine(combine(framework::dataset::make(
                                                framework::dataset::make("DataType", DataType::F16));
 const auto ElementwiseMinFP32Dataset = combine(combine(framework::dataset::make("DataType", DataType::F32), framework::dataset::make("DataType", DataType::F32)),
                                                framework::dataset::make("DataType", DataType::F32));
+const auto EmptyActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
+{ ActivationLayerInfo() });
+const auto ActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
+{
+    ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 0.75f, 0.25f),
+    ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC, 0.75f, 0.25f)
+});
 } // namespace
 
 TEST_SUITE(CL)
@@ -229,10 +236,10 @@ DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, datasets::SmallShapes
 }
 
 FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMinQuantizedFixture<int8_t>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(combine(datasets::SmallShapes(),
-                                                                                                                       ElementwiseMinQASYMM8SignedDataset),
-                                                                                                                       framework::dataset::make("Src0QInfo", { QuantizationInfo(5.f / 255.f, 20) })),
-                                                                                                                       framework::dataset::make("Src1QInfo", { QuantizationInfo(2.f / 255.f, 10) })),
-                                                                                                                       framework::dataset::make("OutQInfo", { QuantizationInfo(1.f / 255.f, 5) })))
+                                                                                                                      ElementwiseMinQASYMM8SignedDataset),
+                                                                                                                      framework::dataset::make("Src0QInfo", { QuantizationInfo(5.f / 255.f, 20) })),
+                                                                                                                      framework::dataset::make("Src1QInfo", { QuantizationInfo(2.f / 255.f, 10) })),
+                                                                                                                      framework::dataset::make("OutQInfo", { QuantizationInfo(1.f / 255.f, 5) })))
 {
     // Validate output
     validate(CLAccessor(_target), _reference);
@@ -274,9 +281,18 @@ FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMinQuantizedFixture<int16_t>, fram
 TEST_SUITE_END()
 TEST_SUITE_END()
 
+template <typename T>
+using CLElementwiseMinFloatFixture = ElementwiseMinValidationFloatFixture<CLTensor, CLAccessor, CLElementwiseMin, T>;
+
 TEST_SUITE(Float)
 TEST_SUITE(FP16)
-FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMinFixture<half>, framework::DatasetMode::ALL, combine(datasets::SmallShapes(), ElementwiseMinFP16Dataset))
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMinFloatFixture<half>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapes(), ElementwiseMinFP16Dataset), EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp16, 0.01);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivation, CLElementwiseMinFloatFixture<half>, framework::DatasetMode::ALL, combine(combine(datasets::TinyShapes(), ElementwiseMinFP16Dataset),
+                                                                                                                   ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp16, 0.01);
@@ -307,16 +323,31 @@ DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, datasets::SmallShapes
     validate(dst.info()->padding(), padding);
 }
 
-FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMinFixture<float>, framework::DatasetMode::ALL, combine(datasets::SmallShapes(), ElementwiseMinFP32Dataset))
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseMinFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapes(), ElementwiseMinFP32Dataset),
+                                                                                                           EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivation, CLElementwiseMinFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::TinyShapes(), ElementwiseMinFP32Dataset),
+                                                                                                                    ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp32);
 }
 template <typename T>
-using CLElementwiseMinBroadcastFixture = ElementwiseMinBroadcastValidationFixture<CLTensor, CLAccessor, CLElementwiseMin, T>;
+using CLElementwiseMinBroadcastFloatFixture = ElementwiseMinBroadcastValidationFloatFixture<CLTensor, CLAccessor, CLElementwiseMin, T>;
 
-FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLElementwiseMinBroadcastFixture<float>, framework::DatasetMode::ALL, combine(datasets::SmallShapesBroadcast(),
-                                                                                                                        ElementwiseMinFP32Dataset))
+FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLElementwiseMinBroadcastFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapesBroadcast(),
+                       ElementwiseMinFP32Dataset),
+                       EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivationBroadcast, CLElementwiseMinBroadcastFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::TinyShapesBroadcast(),
+                       ElementwiseMinFP32Dataset),
+                       ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp32);
index 46509a28704b6e297ab5174f46de1fb628d36849..ce4fc80bb024598caecf59aa14dca886f00707c7 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2019 ARM Limited.
+ * Copyright (c) 2019-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -50,6 +50,13 @@ const auto ElementwisePowerFP16Dataset = combine(combine(framework::dataset::mak
                                                  framework::dataset::make("DataType", DataType::F16));
 const auto ElementwisePowerFP32Dataset = combine(combine(framework::dataset::make("DataType", DataType::F32), framework::dataset::make("DataType", DataType::F32)),
                                                  framework::dataset::make("DataType", DataType::F32));
+const auto EmptyActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
+{ ActivationLayerInfo() });
+const auto ActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
+{
+    ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 0.75f, 0.25f),
+    ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC, 0.75f, 0.25f)
+});
 } // namespace
 
 TEST_SUITE(CL)
@@ -85,21 +92,36 @@ DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(
 // *INDENT-ON*
 
 template <typename T>
-using CLElementwisePowerFixture = ElementwisePowerValidationFixture<CLTensor, CLAccessor, CLElementwisePower, T>;
+using CLElementwisePowerFloatFixture = ElementwisePowerValidationFloatFixture<CLTensor, CLAccessor, CLElementwisePower, T>;
 
 template <typename T>
-using CLElementwisePowerBroadcastFixture = ElementwisePowerBroadcastValidationFixture<CLTensor, CLAccessor, CLElementwisePower, T>;
+using CLElementwisePowerBroadcastFloatFixture = ElementwisePowerBroadcastValidationFloatFixture<CLTensor, CLAccessor, CLElementwisePower, T>;
 
 TEST_SUITE(Float)
 TEST_SUITE(FP16)
-FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwisePowerFixture<half>, framework::DatasetMode::ALL, combine(datasets::SmallShapes(), ElementwisePowerFP16Dataset))
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwisePowerFloatFixture<half>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapes(), ElementwisePowerFP16Dataset),
+                                                                                                            EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp16, 0.01);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivation, CLElementwisePowerFloatFixture<half>, framework::DatasetMode::ALL, combine(combine(datasets::TinyShapes(), ElementwisePowerFP16Dataset),
+                                                                                                                     ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp16, 0.01);
 }
 
-FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLElementwisePowerBroadcastFixture<half>, framework::DatasetMode::ALL, combine(datasets::SmallShapesBroadcast(),
-                       ElementwisePowerFP16Dataset))
+FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLElementwisePowerBroadcastFloatFixture<half>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapesBroadcast(),
+                       ElementwisePowerFP16Dataset),
+                       EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp16, 0.01);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivationBroadcast, CLElementwisePowerBroadcastFloatFixture<half>, framework::DatasetMode::ALL, combine(combine(datasets::TinyShapesBroadcast(),
+                       ElementwisePowerFP16Dataset),
+                       ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp16, 0.01);
@@ -107,14 +129,29 @@ FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLElementwisePowerBroadcastFixture<hal
 TEST_SUITE_END() //FP16
 
 TEST_SUITE(FP32)
-FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwisePowerFixture<float>, framework::DatasetMode::ALL, combine(datasets::SmallShapes(), ElementwisePowerFP32Dataset))
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwisePowerFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapes(), ElementwisePowerFP32Dataset),
+                                                                                                             EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivation, CLElementwisePowerFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::TinyShapes(), ElementwisePowerFP32Dataset),
+                                                                                                                      ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp32);
 }
 
-FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLElementwisePowerBroadcastFixture<float>, framework::DatasetMode::ALL, combine(datasets::SmallShapesBroadcast(),
-                       ElementwisePowerFP32Dataset))
+FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLElementwisePowerBroadcastFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapesBroadcast(),
+                       ElementwisePowerFP32Dataset),
+                       EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivationBroadcast, CLElementwisePowerBroadcastFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::TinyShapesBroadcast(),
+                       ElementwisePowerFP32Dataset),
+                       ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp32);
index edc150109ece9e1b6eef145ffe5199ff6e6a31f4..86fdc21d6daef6e741cf8858a7d6c7b38b5f5f8c 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018-2019 ARM Limited.
+ * Copyright (c) 2018-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -64,6 +64,13 @@ const auto ElementwiseSquaredDiffFP16Dataset = combine(combine(framework::datase
                                                        framework::dataset::make("DataType", DataType::F16));
 const auto ElementwiseSquaredDiffFP32Dataset = combine(combine(framework::dataset::make("DataType", DataType::F32), framework::dataset::make("DataType", DataType::F32)),
                                                        framework::dataset::make("DataType", DataType::F32));
+const auto EmptyActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
+{ ActivationLayerInfo() });
+const auto ActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
+{
+    ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 0.75f, 0.25f),
+    ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC, 0.75f, 0.25f)
+});
 } // namespace
 
 TEST_SUITE(CL)
@@ -239,9 +246,19 @@ FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseSquaredDiffQuantizedFixture<int16_
 TEST_SUITE_END()
 TEST_SUITE_END()
 
+template <typename T>
+using CLElementwiseSquaredDiffFloatFixture = ElementwiseSquaredDiffValidationFloatFixture<CLTensor, CLAccessor, CLElementwiseSquaredDiff, T>;
+
 TEST_SUITE(Float)
 TEST_SUITE(FP16)
-FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseSquaredDiffFixture<half>, framework::DatasetMode::ALL, combine(datasets::SmallShapes(), ElementwiseSquaredDiffFP16Dataset))
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseSquaredDiffFloatFixture<half>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapes(), ElementwiseSquaredDiffFP16Dataset),
+                                                                                                                  EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp16, 0.01);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivation, CLElementwiseSquaredDiffFloatFixture<half>, framework::DatasetMode::ALL, combine(combine(datasets::TinyShapes(), ElementwiseSquaredDiffFP16Dataset),
+                       ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp16, 0.01);
@@ -272,16 +289,31 @@ DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, datasets::SmallShapes
     validate(dst.info()->padding(), padding);
 }
 
-FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseSquaredDiffFixture<float>, framework::DatasetMode::ALL, combine(datasets::SmallShapes(), ElementwiseSquaredDiffFP32Dataset))
+FIXTURE_DATA_TEST_CASE(RunSmall, CLElementwiseSquaredDiffFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapes(), ElementwiseSquaredDiffFP32Dataset),
+                                                                                                                   EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivation, CLElementwiseSquaredDiffFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::TinyShapes(), ElementwiseSquaredDiffFP32Dataset),
+                       ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp32);
 }
 template <typename T>
-using CLElementwiseSquaredDiffBroadcastFixture = ElementwiseSquaredDiffBroadcastValidationFixture<CLTensor, CLAccessor, CLElementwiseSquaredDiff, T>;
+using CLElementwiseSquaredDiffBroadcastFloatFixture = ElementwiseSquaredDiffBroadcastValidationFloatFixture<CLTensor, CLAccessor, CLElementwiseSquaredDiff, T>;
 
-FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLElementwiseSquaredDiffBroadcastFixture<float>, framework::DatasetMode::ALL, combine(datasets::SmallShapesBroadcast(),
-                       ElementwiseSquaredDiffFP32Dataset))
+FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, CLElementwiseSquaredDiffBroadcastFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapesBroadcast(),
+                       ElementwiseSquaredDiffFP32Dataset),
+                       EmptyActivationFunctionsDataset))
+{
+    // Validate output
+    validate(CLAccessor(_target), _reference, tolerance_fp32);
+}
+FIXTURE_DATA_TEST_CASE(RunWithActivationBroadcast, CLElementwiseSquaredDiffBroadcastFloatFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::TinyShapesBroadcast(),
+                       ElementwiseSquaredDiffFP32Dataset),
+                       ActivationFunctionsDataset))
 {
     // Validate output
     validate(CLAccessor(_target), _reference, tolerance_fp32);
index ff9101a997f59f5bff64135808f1dc5d2df6015c..310828c48d66ce306bc8198ec07c37d6a76500b6 100644 (file)
@@ -43,20 +43,27 @@ namespace
 const float                        scale_255 = 1.f / 255.f;
 constexpr AbsoluteTolerance<float> tolerance_qasymm8(1); /**< Tolerance value for comparing reference's output against implementation's output for 8-bit quantized asymmetric data types */
 constexpr AbsoluteTolerance<float> tolerance_qsymm16(1); /**< Tolerance value for comparing reference's output against implementation's output for 16-bit quantized symmetric data types */
+const auto                         EmptyActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
+{ ActivationLayerInfo() });
+const auto ActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
+{
+    ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 0.75f, 0.25f),
+    ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC, 0.75f, 0.25f)
+});
 } //namespace
 // *INDENT-OFF*
 // clang-format off
 #define VALIDATE(TYPE, TOLERANCE) validate(CLAccessor(_target), _reference, AbsoluteTolerance<TYPE>(TOLERANCE), 0.f);
 
-#define PIXEL_WISE_MULTIPLICATION_FIXTURE_DATA_TEST_CASE(TEST_NAME, FIXTURE, MODE, SHAPES, DT1, DT2, SCALE, RP, VALIDATE) \
+#define PIXEL_WISE_MULTIPLICATION_FIXTURE_DATA_TEST_CASE(TEST_NAME, FIXTURE, MODE, SHAPES, DT1, DT2, SCALE, RP, ACT, VALIDATE) \
     FIXTURE_DATA_TEST_CASE(TEST_NAME, CLPixelWiseMultiplication##FIXTURE, framework::DatasetMode::MODE,                   \
-                           combine(combine(combine(combine(combine(                                                       \
+                           combine(combine(combine(combine(combine(combine(                                                       \
                            datasets::SHAPES,                                                                              \
                            framework::dataset::make("DataType1", DataType::DT1)),                                         \
                            framework::dataset::make("DataType2", DataType::DT2)),                                         \
                            framework::dataset::make("Scale", std::move(SCALE))),                                          \
                            datasets::ConvertPolicies()),                                                                  \
-                           framework::dataset::make("RoundingPolicy", RoundingPolicy::RP)))                               \
+                           framework::dataset::make("RoundingPolicy", RoundingPolicy::RP)), ACT))  \
     {                                                                                                                     \
         VALIDATE                                                                                                          \
     }
@@ -65,11 +72,11 @@ constexpr AbsoluteTolerance<float> tolerance_qsymm16(1); /**< Tolerance value fo
 } // namespace
 
 template <typename T>
-using CLPixelWiseMultiplicationToF16Fixture = PixelWiseMultiplicationValidationFixture<CLTensor, CLAccessor, CLPixelWiseMultiplication, T, half_float::half>;
+using CLPixelWiseMultiplicationToF16Fixture = PixelWiseMultiplicationValidationFloatFixture<CLTensor, CLAccessor, CLPixelWiseMultiplication, T, half_float::half>;
 template <typename T>
-using CLPixelWiseMultiplicationToF32Fixture = PixelWiseMultiplicationValidationFixture<CLTensor, CLAccessor, CLPixelWiseMultiplication, T, float>;
+using CLPixelWiseMultiplicationToF32Fixture = PixelWiseMultiplicationValidationFloatFixture<CLTensor, CLAccessor, CLPixelWiseMultiplication, T, float>;
 template <typename T>
-using CLPixelWiseMultiplicationBroadcastFixture = PixelWiseMultiplicationBroadcastValidationFixture<CLTensor, CLAccessor, CLPixelWiseMultiplication, T, float>;
+using CLPixelWiseMultiplicationBroadcastFixture = PixelWiseMultiplicationBroadcastValidationFloatFixture<CLTensor, CLAccessor, CLPixelWiseMultiplication, T, float>;
 
 TEST_SUITE(CL)
 TEST_SUITE(PixelWiseMultiplication)
@@ -110,17 +117,24 @@ DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(zip(
 
 TEST_SUITE(F16toF16)
 TEST_SUITE(Scale255)
-PIXEL_WISE_MULTIPLICATION_FIXTURE_DATA_TEST_CASE(RunSmall, ToF16Fixture<half_float::half>, PRECOMMIT, SmallShapes(), F16, F16, scale_255, TO_NEAREST_UP, VALIDATE(float, 1.f))
+PIXEL_WISE_MULTIPLICATION_FIXTURE_DATA_TEST_CASE(RunSmall, ToF16Fixture<half_float::half>, PRECOMMIT, SmallShapes(), F16, F16, scale_255, TO_NEAREST_UP, EmptyActivationFunctionsDataset,
+                                                 VALIDATE(float, 1.f))
+PIXEL_WISE_MULTIPLICATION_FIXTURE_DATA_TEST_CASE(RunWithActivation, ToF16Fixture<half_float::half>, ALL, TinyShapes(), F16, F16, scale_255, TO_NEAREST_UP, ActivationFunctionsDataset, VALIDATE(float,
+                                                 1.f))
 TEST_SUITE_END() // Scale255
 TEST_SUITE_END() // F16toF16
 
 TEST_SUITE(F32toF32)
 TEST_SUITE(Scale255)
-PIXEL_WISE_MULTIPLICATION_FIXTURE_DATA_TEST_CASE(RunSmall, ToF32Fixture<float>, PRECOMMIT, SmallShapes(), F32, F32, scale_255, TO_NEAREST_UP, VALIDATE(float, 1.f))
+PIXEL_WISE_MULTIPLICATION_FIXTURE_DATA_TEST_CASE(RunSmall, ToF32Fixture<float>, PRECOMMIT, SmallShapes(), F32, F32, scale_255, TO_NEAREST_UP, EmptyActivationFunctionsDataset, VALIDATE(float, 1.f))
+PIXEL_WISE_MULTIPLICATION_FIXTURE_DATA_TEST_CASE(RunWithActivation, ToF32Fixture<float>, ALL, TinyShapes(), F32, F32, scale_255, TO_NEAREST_UP, ActivationFunctionsDataset, VALIDATE(float, 1.f))
 TEST_SUITE_END() // Scale255
 TEST_SUITE_END() // F32toF32
 
-PIXEL_WISE_MULTIPLICATION_FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, BroadcastFixture<float>, PRECOMMIT, SmallShapesBroadcast(), F32, F32, scale_255, TO_NEAREST_UP, VALIDATE(float, 1.f))
+PIXEL_WISE_MULTIPLICATION_FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, BroadcastFixture<float>, PRECOMMIT, SmallShapesBroadcast(), F32, F32, scale_255, TO_NEAREST_UP, EmptyActivationFunctionsDataset,
+                                                 VALIDATE(float, 1.f))
+PIXEL_WISE_MULTIPLICATION_FIXTURE_DATA_TEST_CASE(RunWithActivationSmallBroadcast, BroadcastFixture<float>, ALL, TinyShapesBroadcast(), F32, F32, scale_255, TO_NEAREST_UP, ActivationFunctionsDataset,
+                                                 VALIDATE(float, 1.f))
 
 template <typename T>
 using CLPixelWiseMultiplicationQuantizedFixture = PixelWiseMultiplicationValidationQuantizedFixture<CLTensor, CLAccessor, CLPixelWiseMultiplication, T, T>;
index e68ce19eedb65d6e5252d5960971880a31c7a6b6..f5e1f86dbc918d6b19968e056c98f5b200330ca8 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2019 ARM Limited.
+ * Copyright (c) 2019-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -57,7 +57,7 @@ TEST_SUITE(NEON)
 TEST_SUITE(ElementwiseDivision)
 
 template <typename T>
-using NEElementwiseDivisionFixture = ElementwiseDivisionValidationFixture<Tensor, Accessor, NEElementwiseDivision, T>;
+using NEElementwiseDivisionFixture = ArithmeticDivisionValidationFixture<Tensor, Accessor, NEElementwiseDivision, T>;
 
 // *INDENT-OFF*
 // clang-format off
@@ -124,7 +124,7 @@ FIXTURE_DATA_TEST_CASE(RunSmall, NEElementwiseDivisionFixture<float>, framework:
 }
 
 template <typename T>
-using NEElementwiseDivisionBroadcastFixture = ElementwiseDivisionBroadcastValidationFixture<Tensor, Accessor, NEElementwiseDivision, T>;
+using NEElementwiseDivisionBroadcastFixture = ArithmeticDivisionBroadcastValidationFixture<Tensor, Accessor, NEElementwiseDivision, T>;
 
 FIXTURE_DATA_TEST_CASE(RunSmallBroadcast, NEElementwiseDivisionBroadcastFixture<float>, framework::DatasetMode::ALL, combine(datasets::SmallShapesBroadcast(),
                        ElementwiseDivisionFP32Dataset))
index d495ab1049b99647a41b6e711d797100bfa77c5f..4a6b0bd3f3f53968b0c621398aab6ba79ef9dbf7 100644 (file)
@@ -32,6 +32,7 @@
 #include "tests/framework/Asserts.h"
 #include "tests/framework/Fixture.h"
 #include "tests/validation/Helpers.h"
+#include "tests/validation/reference/ActivationLayer.h"
 #include "tests/validation/reference/ArithmeticOperations.h"
 
 namespace arm_compute
@@ -47,9 +48,10 @@ public:
     template <typename...>
     void setup(reference::ArithmeticOperation op, const TensorShape &shape0, const TensorShape &shape1,
                DataType data_type0, DataType data_type1, DataType output_data_type, ConvertPolicy convert_policy,
-               QuantizationInfo qinfo0, QuantizationInfo qinfo1, QuantizationInfo qinfo_out)
+               QuantizationInfo qinfo0, QuantizationInfo qinfo1, QuantizationInfo qinfo_out, ActivationLayerInfo act_info)
     {
         _op        = op;
+        _act_info  = act_info;
         _target    = compute_target(shape0, shape1, data_type0, data_type1, output_data_type, convert_policy, qinfo0, qinfo1, qinfo_out);
         _reference = compute_reference(shape0, shape1, data_type0, data_type1, output_data_type, convert_policy, qinfo0, qinfo1, qinfo_out);
     }
@@ -71,7 +73,7 @@ protected:
 
         // Create and configure function
         FunctionType arith_op;
-        arith_op.configure(&ref_src1, &ref_src2, &dst, convert_policy);
+        arith_op.configure(&ref_src1, &ref_src2, &dst, convert_policy, _act_info);
 
         ARM_COMPUTE_EXPECT(ref_src1.info()->is_resizable(), framework::LogLevel::ERRORS);
         ARM_COMPUTE_EXPECT(ref_src2.info()->is_resizable(), framework::LogLevel::ERRORS);
@@ -109,12 +111,14 @@ protected:
         fill(ref_src1, 0);
         fill(ref_src2, 1);
 
-        return reference::arithmetic_operation<T>(_op, ref_src1, ref_src2, ref_dst, convert_policy);
+        auto result = reference::arithmetic_operation<T>(_op, ref_src1, ref_src2, ref_dst, convert_policy);
+        return _act_info.enabled() ? reference::activation_layer(result, _act_info, qinfo_out) : result;
     }
 
     TensorType                     _target{};
     SimpleTensor<T>                _reference{};
     reference::ArithmeticOperation _op{ reference::ArithmeticOperation::ADD };
+    ActivationLayerInfo            _act_info{};
 };
 
 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
@@ -125,7 +129,7 @@ public:
     void setup(const TensorShape &shape0, const TensorShape &shape1, DataType data_type0, DataType data_type1, DataType output_data_type, ConvertPolicy convert_policy)
     {
         ArithmeticOperationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(reference::ArithmeticOperation::ADD, shape0, shape1, data_type0, data_type1,
-                                                                                            output_data_type, convert_policy, QuantizationInfo(), QuantizationInfo(), QuantizationInfo());
+                                                                                            output_data_type, convert_policy, QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), ActivationLayerInfo());
     }
 };
 
@@ -137,7 +141,31 @@ public:
     void setup(const TensorShape &shape, DataType data_type0, DataType data_type1, DataType output_data_type, ConvertPolicy convert_policy)
     {
         ArithmeticOperationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(reference::ArithmeticOperation::ADD, shape, shape, data_type0, data_type1,
-                                                                                            output_data_type, convert_policy, QuantizationInfo(), QuantizationInfo(), QuantizationInfo());
+                                                                                            output_data_type, convert_policy, QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), ActivationLayerInfo());
+    }
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
+class ArithmeticAdditionBroadcastValidationFloatFixture : public ArithmeticOperationGenericFixture<TensorType, AccessorType, FunctionType, T>
+{
+public:
+    template <typename...>
+    void setup(const TensorShape &shape0, const TensorShape &shape1, DataType data_type0, DataType data_type1, DataType output_data_type, ConvertPolicy convert_policy, ActivationLayerInfo act_info)
+    {
+        ArithmeticOperationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(reference::ArithmeticOperation::ADD, shape0, shape1, data_type0, data_type1,
+                                                                                            output_data_type, convert_policy, QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), act_info);
+    }
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
+class ArithmeticAdditionValidationFloatFixture : public ArithmeticOperationGenericFixture<TensorType, AccessorType, FunctionType, T>
+{
+public:
+    template <typename...>
+    void setup(const TensorShape &shape, DataType data_type0, DataType data_type1, DataType output_data_type, ConvertPolicy convert_policy, ActivationLayerInfo act_info)
+    {
+        ArithmeticOperationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(reference::ArithmeticOperation::ADD, shape, shape, data_type0, data_type1,
+                                                                                            output_data_type, convert_policy, QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), act_info);
     }
 };
 
@@ -151,7 +179,7 @@ public:
 
     {
         ArithmeticOperationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(reference::ArithmeticOperation::ADD, shape, shape, data_type0, data_type1,
-                                                                                            output_data_type, convert_policy, qinfo0, qinfo1, qinfo_out);
+                                                                                            output_data_type, convert_policy, qinfo0, qinfo1, qinfo_out, ActivationLayerInfo());
     }
 };
 
@@ -164,7 +192,20 @@ public:
     {
         ArithmeticOperationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(reference::ArithmeticOperation::SUB, shape0, shape1,
                                                                                             data_type0, data_type1, output_data_type, convert_policy,
-                                                                                            QuantizationInfo(), QuantizationInfo(), QuantizationInfo());
+                                                                                            QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), ActivationLayerInfo());
+    }
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
+class ArithmeticSubtractionBroadcastValidationFloatFixture : public ArithmeticOperationGenericFixture<TensorType, AccessorType, FunctionType, T>
+{
+public:
+    template <typename...>
+    void setup(const TensorShape &shape0, const TensorShape &shape1, DataType data_type0, DataType data_type1, DataType output_data_type, ConvertPolicy convert_policy, ActivationLayerInfo act_info)
+    {
+        ArithmeticOperationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(reference::ArithmeticOperation::SUB, shape0, shape1,
+                                                                                            data_type0, data_type1, output_data_type, convert_policy,
+                                                                                            QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), act_info);
     }
 };
 
@@ -177,7 +218,20 @@ public:
     {
         ArithmeticOperationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(reference::ArithmeticOperation::SUB, shape, shape,
                                                                                             data_type0, data_type1, output_data_type, convert_policy,
-                                                                                            QuantizationInfo(), QuantizationInfo(), QuantizationInfo());
+                                                                                            QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), ActivationLayerInfo());
+    }
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
+class ArithmeticSubtractionValidationFloatFixture : public ArithmeticOperationGenericFixture<TensorType, AccessorType, FunctionType, T>
+{
+public:
+    template <typename...>
+    void setup(const TensorShape &shape, DataType data_type0, DataType data_type1, DataType output_data_type, ConvertPolicy convert_policy, ActivationLayerInfo act_info)
+    {
+        ArithmeticOperationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(reference::ArithmeticOperation::SUB, shape, shape,
+                                                                                            data_type0, data_type1, output_data_type, convert_policy,
+                                                                                            QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), act_info);
     }
 };
 
@@ -192,7 +246,7 @@ public:
     {
         ArithmeticOperationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(reference::ArithmeticOperation::SUB, shape, shape,
                                                                                             data_type0, data_type1, output_data_type,
-                                                                                            convert_policy, qinfo0, qinfo1, qinfo_out);
+                                                                                            convert_policy, qinfo0, qinfo1, qinfo_out, ActivationLayerInfo());
     }
 };
 } // namespace validation
index de61c487e6d70c5a637494fcd4a69e14f40f4834..44c096c52125fc271e194093a5a13afc7c587c2b 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018-2019 ARM Limited.
+ * Copyright (c) 2018-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -32,6 +32,7 @@
 #include "tests/framework/Asserts.h"
 #include "tests/framework/Fixture.h"
 #include "tests/validation/Helpers.h"
+#include "tests/validation/reference/ActivationLayer.h"
 #include "tests/validation/reference/ElementwiseOperations.h"
 
 namespace arm_compute
@@ -127,6 +128,70 @@ protected:
     ArithmeticOperation _op{ ArithmeticOperation::ADD };
 };
 
+// Arithmetic operation fused with activation function
+template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
+class ArithmeticOperationsFuseActivationFixture : public ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>
+{
+public:
+    template <typename...>
+    void setup(ArithmeticOperation op, const TensorShape &shape0, const TensorShape &shape1,
+               DataType data_type0, DataType data_type1, DataType output_data_type,
+               QuantizationInfo qinfo0, QuantizationInfo qinfo1, QuantizationInfo qinfo_out, ActivationLayerInfo act_info)
+    {
+        ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(op, shape0, shape1,
+                                                                                             data_type0, data_type1, output_data_type,
+                                                                                             qinfo0, qinfo1, qinfo_out);
+        _act_info = act_info;
+    }
+
+protected:
+    TensorType compute_target(const TensorShape &shape0, const TensorShape &shape1, DataType data_type0, DataType data_type1, DataType output_data_type,
+                              QuantizationInfo qinfo0, QuantizationInfo qinfo1, QuantizationInfo qinfo_out)
+    {
+        // Create tensors
+        TensorType ref_src1 = create_tensor<TensorType>(shape0, data_type0, 1, qinfo0);
+        TensorType ref_src2 = create_tensor<TensorType>(shape1, data_type1, 1, qinfo1);
+        TensorType dst      = create_tensor<TensorType>(TensorShape::broadcast_shape(shape0, shape1), output_data_type, 1, qinfo_out);
+
+        // Create and configure function
+        FunctionType elem_op;
+        elem_op.configure(&ref_src1, &ref_src2, &dst, _act_info);
+
+        ARM_COMPUTE_EXPECT(ref_src1.info()->is_resizable(), framework::LogLevel::ERRORS);
+        ARM_COMPUTE_EXPECT(ref_src2.info()->is_resizable(), framework::LogLevel::ERRORS);
+        ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
+
+        // Allocate tensors
+        ref_src1.allocator()->allocate();
+        ref_src2.allocator()->allocate();
+        dst.allocator()->allocate();
+
+        ARM_COMPUTE_EXPECT(!ref_src1.info()->is_resizable(), framework::LogLevel::ERRORS);
+        ARM_COMPUTE_EXPECT(!ref_src2.info()->is_resizable(), framework::LogLevel::ERRORS);
+        ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
+
+        // Fill tensors
+        fill(AccessorType(ref_src1), 0);
+        fill(AccessorType(ref_src2), 1);
+
+        // Compute function
+        elem_op.run();
+
+        return dst;
+    }
+
+    SimpleTensor<T> compute_reference(const TensorShape &shape0, const TensorShape &shape1,
+                                      DataType data_type0, DataType data_type1, DataType output_data_type,
+                                      QuantizationInfo qinfo0, QuantizationInfo qinfo1, QuantizationInfo qinfo_out)
+    {
+        auto result = ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>::compute_reference(shape0, shape1, data_type0,
+                                                                                                                       data_type1, output_data_type, qinfo0, qinfo1, qinfo_out);
+        return _act_info.enabled() ? reference::activation_layer(result, _act_info, qinfo_out) : result;
+    }
+
+    ActivationLayerInfo _act_info{};
+};
+
 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
 class ArithmeticDivisionBroadcastValidationFixture : public ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>
 {
@@ -153,6 +218,32 @@ public:
     }
 };
 
+template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
+class ArithmeticDivisionBroadcastValidationFloatFixture : public ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>
+{
+public:
+    template <typename...>
+    void setup(const TensorShape &shape0, const TensorShape &shape1, DataType data_type0, DataType data_type1, DataType output_data_type, ActivationLayerInfo act_info)
+    {
+        ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>::setup(ArithmeticOperation::DIV, shape0, shape1,
+                                                                                                    data_type0, data_type1, output_data_type,
+                                                                                                    QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), act_info);
+    }
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
+class ArithmeticDivisionValidationFloatFixture : public ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>
+{
+public:
+    template <typename...>
+    void setup(const TensorShape &shape, DataType data_type0, DataType data_type1, DataType output_data_type, ActivationLayerInfo act_info)
+    {
+        ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>::setup(ArithmeticOperation::DIV, shape, shape,
+                                                                                                    data_type0, data_type1, output_data_type,
+                                                                                                    QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), act_info);
+    }
+};
+
 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
 class ArithmeticDivisionValidationQuantizedFixture : public ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>
 {
@@ -194,6 +285,32 @@ public:
     }
 };
 
+template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
+class ElementwiseMaxBroadcastValidationFloatFixture : public ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>
+{
+public:
+    template <typename...>
+    void setup(const TensorShape &shape0, const TensorShape &shape1, DataType data_type0, DataType data_type1, DataType output_data_type, ActivationLayerInfo act_info)
+    {
+        ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>::setup(ArithmeticOperation::MAX, shape0, shape1,
+                                                                                                    data_type0, data_type1, output_data_type,
+                                                                                                    QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), act_info);
+    }
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
+class ElementwiseMaxValidationFloatFixture : public ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>
+{
+public:
+    template <typename...>
+    void setup(const TensorShape &shape, DataType data_type0, DataType data_type1, DataType output_data_type, ActivationLayerInfo act_info)
+    {
+        ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>::setup(ArithmeticOperation::MAX, shape, shape,
+                                                                                                    data_type0, data_type1, output_data_type,
+                                                                                                    QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), act_info);
+    }
+};
+
 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
 class ElementwiseMaxValidationQuantizedFixture : public ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>
 {
@@ -250,6 +367,32 @@ public:
     }
 };
 
+template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
+class ElementwiseMinBroadcastValidationFloatFixture : public ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>
+{
+public:
+    template <typename...>
+    void setup(const TensorShape &shape0, const TensorShape &shape1, DataType data_type0, DataType data_type1, DataType output_data_type, ActivationLayerInfo act_info)
+    {
+        ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>::setup(ArithmeticOperation::MIN, shape0, shape1,
+                                                                                                    data_type0, data_type1, output_data_type,
+                                                                                                    QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), act_info);
+    }
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
+class ElementwiseMinValidationFloatFixture : public ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>
+{
+public:
+    template <typename...>
+    void setup(const TensorShape &shape, DataType data_type0, DataType data_type1, DataType output_data_type, ActivationLayerInfo act_info)
+    {
+        ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>::setup(ArithmeticOperation::MIN, shape, shape,
+                                                                                                    data_type0, data_type1, output_data_type,
+                                                                                                    QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), act_info);
+    }
+};
+
 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
 class ElementwiseMinValidationQuantizedFixture : public ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>
 {
@@ -306,6 +449,32 @@ public:
     }
 };
 
+template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
+class ElementwiseSquaredDiffBroadcastValidationFloatFixture : public ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>
+{
+public:
+    template <typename...>
+    void setup(const TensorShape &shape0, const TensorShape &shape1, DataType data_type0, DataType data_type1, DataType output_data_type, ActivationLayerInfo act_info)
+    {
+        ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>::setup(ArithmeticOperation::SQUARED_DIFF, shape0, shape1,
+                                                                                                    data_type0, data_type1, output_data_type,
+                                                                                                    QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), act_info);
+    }
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
+class ElementwiseSquaredDiffValidationFloatFixture : public ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>
+{
+public:
+    template <typename...>
+    void setup(const TensorShape &shape, DataType data_type0, DataType data_type1, DataType output_data_type, ActivationLayerInfo act_info)
+    {
+        ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>::setup(ArithmeticOperation::SQUARED_DIFF, shape, shape,
+                                                                                                    data_type0, data_type1, output_data_type,
+                                                                                                    QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), act_info);
+    }
+};
+
 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
 class ElementwiseSquaredDiffValidationQuantizedFixture : public ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>
 {
@@ -393,84 +562,54 @@ public:
 };
 
 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
-class ElementwiseDivisionBroadcastValidationFixture : public ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>
+class ElementwisePowerBroadcastValidationFixture : public ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>
 {
 public:
     template <typename...>
     void setup(const TensorShape &shape0, const TensorShape &shape1, DataType data_type0, DataType data_type1, DataType output_data_type)
     {
-        ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(ArithmeticOperation::DIV, shape0, shape1,
+        ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(ArithmeticOperation::POWER, shape0, shape1,
                                                                                              data_type0, data_type1, output_data_type,
                                                                                              QuantizationInfo(), QuantizationInfo(), QuantizationInfo());
     }
 };
 
 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
-class ElementwiseDivisionValidationFixture : public ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>
+class ElementwisePowerValidationFixture : public ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>
 {
 public:
     template <typename...>
     void setup(const TensorShape &shape, DataType data_type0, DataType data_type1, DataType output_data_type)
     {
-        ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(ArithmeticOperation::DIV, shape, shape,
+        ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(ArithmeticOperation::POWER, shape, shape,
                                                                                              data_type0, data_type1, output_data_type,
                                                                                              QuantizationInfo(), QuantizationInfo(), QuantizationInfo());
     }
 };
 
 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
-class ElementwiseDivisionValidationQuantizedFixture : public ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>
-{
-public:
-    template <typename...>
-    void setup(const TensorShape &shape, DataType data_type0, DataType data_type1, DataType output_data_type,
-               QuantizationInfo qinfo0, QuantizationInfo qinfo1, QuantizationInfo qinfo_out)
-
-    {
-        ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(ArithmeticOperation::DIV, shape, shape,
-                                                                                             data_type0, data_type1, output_data_type,
-                                                                                             qinfo0, qinfo1, qinfo_out);
-    }
-};
-
-template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
-class ElementwiseDivisionQuantizedBroadcastValidationFixture : public ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>
-{
-public:
-    template <typename...>
-    void setup(const TensorShape &shape0, const TensorShape &shape1, DataType data_type0, DataType data_type1, DataType output_data_type,
-               QuantizationInfo qinfo0, QuantizationInfo qinfo1, QuantizationInfo qinfo_out)
-
-    {
-        ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(ArithmeticOperation::DIV, shape0, shape1,
-                                                                                             data_type0, data_type1, output_data_type,
-                                                                                             qinfo0, qinfo1, qinfo_out);
-    }
-};
-
-template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
-class ElementwisePowerBroadcastValidationFixture : public ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>
+class ElementwisePowerBroadcastValidationFloatFixture : public ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>
 {
 public:
     template <typename...>
-    void setup(const TensorShape &shape0, const TensorShape &shape1, DataType data_type0, DataType data_type1, DataType output_data_type)
+    void setup(const TensorShape &shape0, const TensorShape &shape1, DataType data_type0, DataType data_type1, DataType output_data_type, ActivationLayerInfo act_info)
     {
-        ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(ArithmeticOperation::POWER, shape0, shape1,
-                                                                                             data_type0, data_type1, output_data_type,
-                                                                                             QuantizationInfo(), QuantizationInfo(), QuantizationInfo());
+        ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>::setup(ArithmeticOperation::POWER, shape0, shape1,
+                                                                                                    data_type0, data_type1, output_data_type,
+                                                                                                    QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), act_info);
     }
 };
 
 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
-class ElementwisePowerValidationFixture : public ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>
+class ElementwisePowerValidationFloatFixture : public ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>
 {
 public:
     template <typename...>
-    void setup(const TensorShape &shape, DataType data_type0, DataType data_type1, DataType output_data_type)
+    void setup(const TensorShape &shape, DataType data_type0, DataType data_type1, DataType output_data_type, ActivationLayerInfo act_info)
     {
-        ArithmeticOperationsGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(ArithmeticOperation::POWER, shape, shape,
-                                                                                             data_type0, data_type1, output_data_type,
-                                                                                             QuantizationInfo(), QuantizationInfo(), QuantizationInfo());
+        ArithmeticOperationsFuseActivationFixture<TensorType, AccessorType, FunctionType, T>::setup(ArithmeticOperation::POWER, shape, shape,
+                                                                                                    data_type0, data_type1, output_data_type,
+                                                                                                    QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), act_info);
     }
 };
 
index 37359f421b455f8e1ec26e045cc46d63b1b2034c..f561a37a71643e069cce0238e781bc7c81f89c21 100644 (file)
@@ -31,6 +31,7 @@
 #include "tests/IAccessor.h"
 #include "tests/framework/Asserts.h"
 #include "tests/framework/Fixture.h"
+#include "tests/validation/reference/ActivationLayer.h"
 #include "tests/validation/reference/PixelWiseMultiplication.h"
 
 namespace arm_compute
@@ -46,18 +47,19 @@ public:
     template <typename...>
     void setup(const TensorShape &shape0,
                const TensorShape &shape1,
-               DataType           dt_in1,
-               DataType           dt_in2,
-               DataType           dt_out,
-               float              scale,
-               ConvertPolicy      convert_policy,
-               RoundingPolicy     rounding_policy,
-               QuantizationInfo   qinfo0,
-               QuantizationInfo   qinfo1,
-               QuantizationInfo   qinfo_out)
+               DataType            dt_in1,
+               DataType            dt_in2,
+               DataType            dt_out,
+               float               scale,
+               ConvertPolicy       convert_policy,
+               RoundingPolicy      rounding_policy,
+               QuantizationInfo    qinfo0,
+               QuantizationInfo    qinfo1,
+               QuantizationInfo    qinfo_out,
+               ActivationLayerInfo act_info)
     {
-        _target    = compute_target(shape0, shape1, dt_in1, dt_in2, dt_out, scale, convert_policy, rounding_policy, qinfo0, qinfo1, qinfo_out);
-        _reference = compute_reference(shape0, shape1, dt_in1, dt_in2, dt_out, scale, convert_policy, rounding_policy, qinfo0, qinfo1, qinfo_out);
+        _target    = compute_target(shape0, shape1, dt_in1, dt_in2, dt_out, scale, convert_policy, rounding_policy, qinfo0, qinfo1, qinfo_out, act_info);
+        _reference = compute_reference(shape0, shape1, dt_in1, dt_in2, dt_out, scale, convert_policy, rounding_policy, qinfo0, qinfo1, qinfo_out, act_info);
     }
 
 protected:
@@ -69,7 +71,7 @@ protected:
 
     TensorType compute_target(const TensorShape &shape0, const TensorShape &shape1, DataType dt_in1, DataType dt_in2, DataType dt_out,
                               float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
-                              QuantizationInfo qinfo0, QuantizationInfo qinfo1, QuantizationInfo qinfo_out)
+                              QuantizationInfo qinfo0, QuantizationInfo qinfo1, QuantizationInfo qinfo_out, ActivationLayerInfo act_info)
     {
         // Create tensors
         TensorType src1 = create_tensor<TensorType>(shape0, dt_in1, 1, qinfo0);
@@ -78,7 +80,7 @@ protected:
 
         // Create and configure function
         FunctionType multiply;
-        multiply.configure(&src1, &src2, &dst, scale, convert_policy, rounding_policy);
+        multiply.configure(&src1, &src2, &dst, scale, convert_policy, rounding_policy, act_info);
 
         ARM_COMPUTE_EXPECT(src1.info()->is_resizable(), framework::LogLevel::ERRORS);
         ARM_COMPUTE_EXPECT(src2.info()->is_resizable(), framework::LogLevel::ERRORS);
@@ -105,7 +107,7 @@ protected:
 
     SimpleTensor<T3> compute_reference(const TensorShape &shape0, const TensorShape &shape1, DataType dt_in1, DataType dt_in2, DataType dt_out,
                                        float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
-                                       QuantizationInfo qinfo0, QuantizationInfo qinfo1, QuantizationInfo qinfo_out)
+                                       QuantizationInfo qinfo0, QuantizationInfo qinfo1, QuantizationInfo qinfo_out, ActivationLayerInfo act_info)
     {
         // Create reference
         SimpleTensor<T1> src1{ shape0, dt_in1, 1, qinfo0 };
@@ -115,7 +117,8 @@ protected:
         fill(src1, 0);
         fill(src2, 1);
 
-        return reference::pixel_wise_multiplication<T1, T2, T3>(src1, src2, scale, convert_policy, rounding_policy, dt_out, qinfo_out);
+        auto result = reference::pixel_wise_multiplication<T1, T2, T3>(src1, src2, scale, convert_policy, rounding_policy, dt_out, qinfo_out);
+        return act_info.enabled() ? reference::activation_layer(result, act_info, qinfo_out) : result;
     }
 
     TensorType       _target{};
@@ -130,7 +133,7 @@ public:
     void setup(const TensorShape &shape, DataType dt_in1, DataType dt_in2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy)
     {
         PixelWiseMultiplicationGenericValidationFixture<TensorType, AccessorType, FunctionType, T1, T2>::setup(shape, shape, dt_in1, dt_in2, dt_in2, scale, convert_policy, rounding_policy,
-                                                                                                               QuantizationInfo(), QuantizationInfo(), QuantizationInfo());
+                                                                                                               QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), ActivationLayerInfo());
     }
 };
 
@@ -142,7 +145,32 @@ public:
     void setup(const TensorShape &shape0, const TensorShape &shape1, DataType dt_in1, DataType dt_in2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy)
     {
         PixelWiseMultiplicationGenericValidationFixture<TensorType, AccessorType, FunctionType, T1, T2>::setup(shape0, shape1, dt_in1, dt_in2, dt_in2, scale, convert_policy, rounding_policy,
-                                                                                                               QuantizationInfo(), QuantizationInfo(), QuantizationInfo());
+                                                                                                               QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), ActivationLayerInfo());
+    }
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, typename T1, typename T2>
+class PixelWiseMultiplicationValidationFloatFixture : public PixelWiseMultiplicationGenericValidationFixture<TensorType, AccessorType, FunctionType, T1, T2>
+{
+public:
+    template <typename...>
+    void setup(const TensorShape &shape, DataType dt_in1, DataType dt_in2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy, ActivationLayerInfo act_info)
+    {
+        PixelWiseMultiplicationGenericValidationFixture<TensorType, AccessorType, FunctionType, T1, T2>::setup(shape, shape, dt_in1, dt_in2, dt_in2, scale, convert_policy, rounding_policy,
+                                                                                                               QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), act_info);
+    }
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, typename T1, typename T2>
+class PixelWiseMultiplicationBroadcastValidationFloatFixture : public PixelWiseMultiplicationGenericValidationFixture<TensorType, AccessorType, FunctionType, T1, T2>
+{
+public:
+    template <typename...>
+    void setup(const TensorShape &shape0, const TensorShape &shape1, DataType dt_in1, DataType dt_in2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
+               ActivationLayerInfo act_info)
+    {
+        PixelWiseMultiplicationGenericValidationFixture<TensorType, AccessorType, FunctionType, T1, T2>::setup(shape0, shape1, dt_in1, dt_in2, dt_in2, scale, convert_policy, rounding_policy,
+                                                                                                               QuantizationInfo(), QuantizationInfo(), QuantizationInfo(), act_info);
     }
 };
 
@@ -154,8 +182,8 @@ public:
     void setup(const TensorShape &shape, DataType dt_in1, DataType dt_in2, DataType dt_out, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
                QuantizationInfo qinfo0, QuantizationInfo qinfo1, QuantizationInfo qinfo_out)
     {
-        PixelWiseMultiplicationGenericValidationFixture<TensorType, AccessorType, FunctionType, T1, T2, T3>::setup(shape, shape, dt_in1, dt_in2, dt_out, scale, convert_policy,
-                                                                                                                   rounding_policy, qinfo0, qinfo1, qinfo_out);
+        PixelWiseMultiplicationGenericValidationFixture<TensorType, AccessorType, FunctionType, T1, T2, T3>::setup(shape, shape, dt_in1, dt_in2, dt_out, scale, convert_policy, rounding_policy,
+                                                                                                                   qinfo0, qinfo1, qinfo_out, ActivationLayerInfo());
     }
 };
 } // namespace validation
index 7a699c5f866c6fb91de66c480a036b3d97f01adf..4aa0f880dac7aade784dbd666fb902743acb38ba 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2017-2019 ARM Limited.
+ * Copyright (c) 2017-2020 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -87,6 +87,7 @@ SimpleTensor<int16_t> activation_layer<int16_t>(const SimpleTensor<int16_t> &src
     return dst;
 }
 
+template SimpleTensor<int32_t> activation_layer(const SimpleTensor<int32_t> &src, ActivationLayerInfo info, const QuantizationInfo &oq_info);
 template SimpleTensor<float> activation_layer(const SimpleTensor<float> &src, ActivationLayerInfo info, const QuantizationInfo &oq_info);
 template SimpleTensor<half> activation_layer(const SimpleTensor<half> &src, ActivationLayerInfo info, const QuantizationInfo &oq_info);
 } // namespace reference
index f41e87123e2a9ef99830080050ddb84294fb10a4..4585a9db10d46f9117c14987e22fdf6592252aa5 100644 (file)
@@ -82,7 +82,7 @@ inline T activate_float(T x, T a, T b, ActivationLayerInfo::ActivationFunction a
             ret = x;
             break;
         case ActivationLayerInfo::ActivationFunction::HARD_SWISH:
-            ret = x * ((std::min(std::max((x + 3), 0.0f), 6.0f)) * 0.166666667f);
+            ret = x * ((std::min(std::max(static_cast<T>(x + 3), static_cast<T>(0.0f)), static_cast<T>(6.0f))) * 0.166666667f);
             break;
         default:
             ARM_COMPUTE_ERROR("Unsupported activation function");