} *linked_proc_desc_table = NULL;
+/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
+
+static int
+pc_is_mips16 (bfd_vma memaddr)
+{
+ struct minimal_symbol *sym;
+
+ /* If bit 0 of the address is set, assume this is a MIPS16 address. */
+ if (IS_MIPS16_ADDR (memaddr))
+ return 1;
+
+ /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
+ the high bit of the info field. Use this to decide if the function is
+ MIPS16 or normal MIPS. */
+ sym = lookup_minimal_symbol_by_pc (memaddr);
+ if (sym)
+ return MSYMBOL_IS_SPECIAL (sym);
+ else
+ return 0;
+}
+
+
/* This returns the PC of the first inst after the prologue. If we can't
find the prologue, then return 0. */
int instlen;
int status;
- if (IS_MIPS16_ADDR (addr))
+ if (pc_is_mips16 (addr))
{
instlen = MIPS16_INSTLEN;
addr = UNMAKE_MIPS16_ADDR (addr);
/* If the address is odd, assume this is MIPS16 code. */
addr = PROC_LOW_ADDR (proc_desc);
- instlen = IS_MIPS16_ADDR (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
+ instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
/* Scan through this function's instructions preceding the current
PC, and look for those that save registers. */
while (addr < fci->pc)
{
inst = mips_fetch_instruction (addr);
- if (IS_MIPS16_ADDR (addr))
+ if (pc_is_mips16 (addr))
mips16_decode_reg_save (inst, &gen_save_found);
else
mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
of that normally used by gcc. Therefore, we have to fetch the first
instruction of the function, and if it's an entry instruction that
saves $s0 or $s1, correct their saved addresses. */
- if (IS_MIPS16_ADDR (PROC_LOW_ADDR (proc_desc)))
+ if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
{
inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
|| fence < VM_MIN_ADDRESS)
fence = VM_MIN_ADDRESS;
- instlen = IS_MIPS16_ADDR (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
+ instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
/* search back for previous return */
for (start_pc -= instlen; ; start_pc -= instlen)
return 0;
}
- else if (IS_MIPS16_ADDR (start_pc))
+ else if (pc_is_mips16 (start_pc))
{
unsigned short inst;
if (start_pc + 200 < limit_pc)
limit_pc = start_pc + 200;
- if (IS_MIPS16_ADDR (start_pc))
+ if (pc_is_mips16 (start_pc))
mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
else
mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
}
/* If an even floating point register, also print as double. */
- if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM+MIPS_NUMREGS
+ if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
&& !((regnum-FP0_REGNUM) & 1))
- {
- char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
+ if (REGISTER_RAW_SIZE(regnum) == 4) /* this would be silly on MIPS64 */
+ {
+ char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
- read_relative_register_raw_bytes (regnum, dbuffer);
- read_relative_register_raw_bytes (regnum+1, dbuffer+MIPS_REGSIZE);
- REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
+ read_relative_register_raw_bytes (regnum, dbuffer);
+ read_relative_register_raw_bytes (regnum+1, dbuffer+MIPS_REGSIZE);
+ REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
- printf_filtered ("(d%d: ", regnum-FP0_REGNUM);
- val_print (builtin_type_double, dbuffer, 0,
- gdb_stdout, 0, 1, 0, Val_pretty_default);
- printf_filtered ("); ");
- }
+ printf_filtered ("(d%d: ", regnum-FP0_REGNUM);
+ val_print (builtin_type_double, dbuffer, 0,
+ gdb_stdout, 0, 1, 0, Val_pretty_default);
+ printf_filtered ("); ");
+ }
fputs_filtered (reg_names[regnum], gdb_stdout);
/* The problem with printing numeric register names (r26, etc.) is that
/* If virtual format is floating, print it that way. */
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
- val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0,
- gdb_stdout, 0, 1, 0, Val_pretty_default);
+ if (REGISTER_RAW_SIZE(regnum) == 8)
+ { /* show 8-byte floats as float AND double: */
+ int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
+
+ printf_filtered (" (float) ");
+ val_print (builtin_type_float, raw_buffer + offset, 0,
+ gdb_stdout, 0, 1, 0, Val_pretty_default);
+ printf_filtered (", (double) ");
+ val_print (builtin_type_double, raw_buffer, 0,
+ gdb_stdout, 0, 1, 0, Val_pretty_default);
+ }
+ else
+ val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0,
+ gdb_stdout, 0, 1, 0, Val_pretty_default);
/* Else print as integer in hex. */
else
print_scalar_formatted (raw_buffer, REGISTER_VIRTUAL_TYPE (regnum),
'x', 0, gdb_stdout);
}
-/* Replacement for generic do_registers_info. */
+/* Replacement for generic do_registers_info.
+ Print regs in pretty columns. */
+
+static int
+do_fp_register_row (regnum)
+ int regnum;
+{ /* do values for FP (float) regs */
+ char raw_buffer[2] [REGISTER_RAW_SIZE(FP0_REGNUM)];
+ char dbl_buffer[2 * REGISTER_RAW_SIZE(FP0_REGNUM)];
+ /* use HI and LO to control the order of combining two flt regs */
+ int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN);
+ int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN);
+ double doub, flt1, flt2; /* doubles extracted from raw hex data */
+ int inv1, inv2, inv3;
+
+ /* Get the data in raw format. */
+ if (read_relative_register_raw_bytes (regnum, raw_buffer[HI]))
+ error ("can't read register %d (%s)", regnum, reg_names[regnum]);
+ if (REGISTER_RAW_SIZE(regnum) == 4)
+ {
+ /* 4-byte registers: we can fit two registers per row. */
+ /* Also print every pair of 4-byte regs as an 8-byte double. */
+ if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO]))
+ error ("can't read register %d (%s)",
+ regnum + 1, reg_names[regnum + 1]);
+
+ /* copy the two floats into one double, and unpack both */
+ memcpy (dbl_buffer, raw_buffer, sizeof(dbl_buffer));
+ flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1);
+ flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2);
+ doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
+
+ printf_filtered (inv1 ? " %-5s: <invalid float>" :
+ " %-5s%-17.9g", reg_names[regnum], flt1);
+ printf_filtered (inv2 ? " %-5s: <invalid float>" :
+ " %-5s%-17.9g", reg_names[regnum + 1], flt2);
+ printf_filtered (inv3 ? " dbl: <invalid double>\n" :
+ " dbl: %-24.17g\n", doub);
+ /* may want to do hex display here (future enhancement) */
+ regnum +=2;
+ }
+ else
+ { /* eight byte registers: print each one as float AND as double. */
+ int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
+
+ memcpy (dbl_buffer, raw_buffer[HI], sizeof(dbl_buffer));
+ flt1 = unpack_double (builtin_type_float,
+ &raw_buffer[HI][offset], &inv1);
+ doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
+
+ printf_filtered (inv1 ? " %-5s: <invalid float>" :
+ " %-5s flt: %-17.9g", reg_names[regnum], flt1);
+ printf_filtered (inv3 ? " dbl: <invalid double>\n" :
+ " dbl: %-24.17g\n", doub);
+ /* may want to do hex display here (future enhancement) */
+ regnum++;
+ }
+ return regnum;
+}
+
+/* Print a row's worth of GP (int) registers, with name labels above */
+
+static int
+do_gp_register_row (regnum)
+ int regnum;
+{ /* do values for GP (int) regs */
+ char raw_buffer[REGISTER_RAW_SIZE(0)];
+ int ncols = MIPS_REGSIZE == 8 ? 4 : 8; /* display cols per row */
+ int col, byte, start_regnum = regnum;
+
+ /* For GP registers, we print a separate row of names above the vals */
+ printf_filtered (" ");
+ for (col = 0; col < ncols && regnum < NUM_REGS; regnum++)
+ {
+ if (*reg_names[regnum] == '\0')
+ continue; /* unused register */
+ if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
+ break; /* end the row: reached FP register */
+ printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
+ reg_names[regnum]);
+ col++;
+ }
+ printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
+ start_regnum); /* print the R0 to R31 names */
+
+ regnum = start_regnum; /* go back to start of row */
+ /* now print the values in hex, 4 or 8 to the row */
+ for (col = 0; col < ncols && regnum < NUM_REGS; regnum++)
+ {
+ if (*reg_names[regnum] == '\0')
+ continue; /* unused register */
+ if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
+ break; /* end row: reached FP register */
+ /* OK: get the data in raw format. */
+ if (read_relative_register_raw_bytes (regnum, raw_buffer))
+ error ("can't read register %d (%s)", regnum, reg_names[regnum]);
+ /* Now print the register value in hex, endian order. */
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ for (byte = 0; byte < REGISTER_RAW_SIZE (regnum); byte++)
+ printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
+ else
+ for (byte = REGISTER_RAW_SIZE (regnum) - 1; byte >= 0; byte--)
+ printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
+ printf_filtered (" ");
+ col++;
+ }
+ if (col > 0) /* ie. if we actually printed anything... */
+ printf_filtered ("\n");
+
+ return regnum;
+}
+
+/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
void
mips_do_registers_info (regnum, fpregs)
int regnum;
int fpregs;
{
- if (regnum != -1)
+ if (regnum != -1) /* do one specified register */
{
if (*(reg_names[regnum]) == '\0')
error ("Not a valid register for the current processor type");
mips_print_register (regnum, 0);
printf_filtered ("\n");
}
- else
+ else /* do all (or most) registers */
{
- int did_newline = 0;
-
- for (regnum = 0; regnum < NUM_REGS; )
- {
- if (((!fpregs) && regnum >= FP0_REGNUM && regnum <= FCRIR_REGNUM)
- || *(reg_names[regnum]) == '\0')
- {
- regnum++;
- continue;
- }
- mips_print_register (regnum, 1);
- regnum++;
- printf_filtered ("; ");
- did_newline = 0;
- if ((regnum & 3) == 0)
- {
- printf_filtered ("\n");
- did_newline = 1;
- }
- }
- if (!did_newline)
- printf_filtered ("\n");
+ regnum = 0;
+ while (regnum < NUM_REGS)
+ if (TYPE_CODE(REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
+ if (fpregs) /* true for "INFO ALL-REGISTERS" command */
+ regnum = do_fp_register_row (regnum); /* FP regs */
+ else
+ regnum += MIPS_NUMREGS; /* skip floating point regs */
+ else
+ regnum = do_gp_register_row (regnum); /* GP (int) regs */
}
}
char buf[MIPS_INSTLEN];
/* There is no branch delay slot on MIPS16. */
- if (IS_MIPS16_ADDR (pc))
+ if (pc_is_mips16 (pc))
return 0;
if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
/* Can't determine prologue from the symbol table, need to examine
instructions. */
- if (IS_MIPS16_ADDR (pc))
+ if (pc_is_mips16 (pc))
return mips16_skip_prologue (pc, lenient);
else
return mips32_skip_prologue (pc, lenient);
it's definitely a 16-bit function. Otherwise, we have to just
guess that if the address passed in is odd, it's 16-bits. */
if (proc_desc)
- info->mach = IS_MIPS16_ADDR (PROC_LOW_ADDR (proc_desc)) ? 16 : 0;
+ info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ? 16 : 0;
else
- info->mach = IS_MIPS16_ADDR (memaddr) ? 16 : 0;
+ info->mach = pc_is_mips16 (memaddr) ? 16 : 0;
/* Round down the instruction address to the appropriate boundary. */
memaddr &= (info->mach == 16 ? ~1 : ~3);
{
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
{
- if (IS_MIPS16_ADDR (*pcptr))
+ if (pc_is_mips16 (*pcptr))
{
static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT;
*pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
}
else
{
- if (IS_MIPS16_ADDR (*pcptr))
+ if (pc_is_mips16 (*pcptr))
{
static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT;
*pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
mips_about_to_return (pc)
CORE_ADDR pc;
{
- if (IS_MIPS16_ADDR (pc))
+ if (pc_is_mips16 (pc))
/* This mips16 case isn't necessarily reliable. Sometimes the compiler
generates a "jr $ra"; other times it generates code to load
the return address from the stack to an accessible register (such