Conversion via CNNNetworkImpl ctor (#1222)
authorIlya Lavrenov <ilya.lavrenov@intel.com>
Wed, 8 Jul 2020 14:26:37 +0000 (17:26 +0300)
committerGitHub <noreply@github.com>
Wed, 8 Jul 2020 14:26:37 +0000 (17:26 +0300)
* Added ctor for CNNNetworkImpl to convert from ngraphImpl

* Re-use in all places instead of manual conversion

* Hide convertToCNNNetworkImpl usage

* Remove useless test

* Fixed Gleb's comments

15 files changed:
inference-engine/src/hetero_plugin/hetero_plugin.cpp
inference-engine/src/inference_engine/cnn_network_ngraph_impl.cpp
inference-engine/src/inference_engine/cnn_network_ngraph_impl.hpp
inference-engine/src/legacy_api/include/cnn_network_impl.hpp
inference-engine/src/legacy_api/include/convert_function_to_cnn_network.hpp
inference-engine/src/legacy_api/include/graph_transformer.h
inference-engine/src/legacy_api/src/cnn_network_impl.cpp
inference-engine/src/legacy_api/src/convert_function_to_cnn_network.cpp
inference-engine/src/legacy_api/src/graph_transformer.cpp
inference-engine/src/readers/ir_reader_v7/ie_cnn_net_reader_impl.cpp
inference-engine/src/vpu/graph_transformer/src/frontend/remove_const_layers.cpp
inference-engine/tests/functional/inference_engine/cnn_network/cnn_ngraph_impl_tests.cpp
inference-engine/tests/functional/inference_engine/cnn_network/convert_ngraph_to_cnn_network_tests.cpp
inference-engine/tests/functional/inference_engine/transformations/primitives_priority_test.cpp
inference-engine/tests_deprecated/functional/shared_tests/network_tests/network_i8.hpp

index 43e6112b648f4ce8278e0d0af117e9ddfe9e8f41..1cda0240e1dad583f7328fd8694ea7b843f72688 100644 (file)
 #include "hetero/hetero_plugin_config.hpp"
 #include <cpp_interfaces/base/ie_plugin_base.hpp>
 #include "hetero_executable_network.hpp"
-#include "convert_function_to_cnn_network.hpp"
-#include <generic_ie.hpp>
-#include <transformations/common_optimizations/common_optimizations.hpp>
-#include <transformations/convert_opset1_to_legacy/convert_opset1_to_legacy.hpp>
-#include <transformations/convert_opset2_to_opset1/convert_opset2_to_opset1.hpp>
-#include <transformations/convert_opset3_to_opset2/convert_opset3_to_opset2.hpp>
 
 using namespace InferenceEngine;
 using namespace InferenceEngine::PluginConfigParams;
@@ -63,8 +57,7 @@ InferenceEngine::ExecutableNetworkInternal::Ptr Engine::LoadExeNetworkImpl(const
     }
     DeviceMetaInformationMap metaDevices = GetDevicePlugins(it->second, tconfig);
 
-    auto function = network.getFunction();
-    if (function != nullptr) {
+    if (auto function = network.getFunction()) {
         auto anyDeviceDoNotSupportNgraph =
         std::any_of(std::begin(metaDevices), std::end(metaDevices),
                     [&] (const DeviceMetaInformationMap::value_type& metaDevice) {
@@ -74,15 +67,9 @@ InferenceEngine::ExecutableNetworkInternal::Ptr Engine::LoadExeNetworkImpl(const
                         return (clonedNetwork->getFunction() == nullptr);
                     });
         if (anyDeviceDoNotSupportNgraph) {
-            auto clonedNetwork = cloneNetwork(network);
-            auto function = clonedNetwork->getFunction();
-            ::ngraph::op::GenericIE::DisableReshape noReshape(function);
-            ::ngraph::pass::CommonOptimizations().run_on_function(function);
-            ::ngraph::pass::ConvertOpSet3ToOpSet2().run_on_function(function);
-            ::ngraph::pass::ConvertOpSet2ToOpSet1().run_on_function(function);
-            ::ngraph::pass::ConvertOpSet1ToLegacy().run_on_function(function);
+            auto cnnNetworkImpl = std::make_shared<details::CNNNetworkImpl>(network);
             return std::make_shared<HeteroExecutableNetwork>(
-                *InferenceEngine::details::convertFunctionToICNNNetwork(function, *clonedNetwork),
+                *cnnNetworkImpl,
                 mergeConfigs(_config, config), this);
         } else {
             return std::make_shared<HeteroExecutableNetwork>(*cloneNetwork(network), mergeConfigs(_config, config), this);
index 11b8f9284e03a779719df087b5e898ede930ef59..86481bf93072f8338291bfc16b7a3018f4ff8bb8 100644 (file)
 #include <ngraph/ngraph.hpp>
 #include <ngraph/pass/get_output_element_elimination.hpp>
 #include <set>
-// #include <shape_infer/ie_reshaper.hpp>
 #include <string>
 
-#include <transformations/common_optimizations/common_optimizations.hpp>
-#include <transformations/convert_opset1_to_legacy/convert_opset1_to_legacy.hpp>
-#include <transformations/convert_opset2_to_opset1/convert_opset2_to_opset1.hpp>
-#include <transformations/convert_opset3_to_opset2/convert_opset3_to_opset2.hpp>
 #include <transformations/convert_opset1_to_legacy/convert_one_hot_to_one_hot_ie.hpp>
 
 #include "ngraph_ops/eltwise.hpp"
@@ -35,7 +30,6 @@
 #include "ie_profiling.hpp"
 #include "network_serializer.h"
 #include "generic_ie.hpp"
-#include "convert_function_to_cnn_network.hpp"
 #include <shape_infer/built-in/ie_built_in_holder.hpp>
 
 using namespace std;
@@ -110,12 +104,6 @@ void CNNNetworkNGraphImpl::createDataForResult(const ::ngraph::Output<::ngraph::
     }
 }
 
-std::shared_ptr<ICNNNetwork> CNNNetworkNGraphImpl::getCNNNetwork() {
-    if (!cnnNetwork)
-        convertToCNNNetworkImpl();
-    return cnnNetwork;
-}
-
 CNNNetworkNGraphImpl::CNNNetworkNGraphImpl(const std::shared_ptr<Function>& nGraph)
     : _ngraph_function(nGraph) {
     // Restore usual attributes for ICNNNetwork
@@ -325,9 +313,7 @@ CNNNetworkNGraphImpl::reshape(const std::map<std::string, std::vector<size_t>>&
         }
         _ngraph_function->validate_nodes_and_infer_types();
 
-        if (cnnNetwork) {
-            convertToCNNNetworkImpl();
-        } else {
+        {
             auto specialized_ngraph_function = cloneFunction(true, inputShapes);
             // Call this transformation because OneHot IE and nGraph have different output precisions
             {
@@ -430,15 +416,7 @@ StatusCode CNNNetworkNGraphImpl::serialize(const std::string& xmlPath, const std
             return DescriptionBuffer(UNEXPECTED, resp);
         }
 
-        auto graph = cloneFunction();
-        // Disable shape inference (WA for generic operations)
-        ::ngraph::op::GenericIE::DisableReshape noReshape(graph);
-
-        ::ngraph::pass::CommonOptimizations().run_on_function(graph);
-        ::ngraph::pass::ConvertOpSet3ToOpSet2().run_on_function(graph);
-        ::ngraph::pass::ConvertOpSet2ToOpSet1().run_on_function(graph);
-        ::ngraph::pass::ConvertOpSet1ToLegacy().run_on_function(graph);
-        network = InferenceEngine::details::convertFunctionToICNNNetwork(graph, *this);
+        network = std::make_shared<details::CNNNetworkImpl>(*this);
     }
     if (!network) return GENERAL_ERROR;
     return network->serialize(xmlPath, binPath, resp);
@@ -492,15 +470,6 @@ StatusCode CNNNetworkNGraphImpl::setBatchSizeReshape(size_t size, ResponseDesc*
 
 void CNNNetworkNGraphImpl::convertToCNNNetworkImpl() {
     IE_PROFILING_AUTO_SCOPE(convertToCNNNetworkImpl)
-    if (cnnNetwork)
-        return;
-    auto graph = cloneFunction();
-    // Disable shape inference (WA for generic operations)
-    ::ngraph::op::GenericIE::DisableReshape noReshape(graph);
-
-    ::ngraph::pass::CommonOptimizations().run_on_function(graph);
-    ::ngraph::pass::ConvertOpSet3ToOpSet2().run_on_function(graph);
-    ::ngraph::pass::ConvertOpSet2ToOpSet1().run_on_function(graph);
-    ::ngraph::pass::ConvertOpSet1ToLegacy().run_on_function(graph);
-    cnnNetwork = InferenceEngine::details::convertFunctionToICNNNetwork(graph, *this);
+    if (!cnnNetwork)
+        cnnNetwork = std::make_shared<details::CNNNetworkImpl>(*this);
 }
index 4152b7a715dcb1f324fd88ddb63ceba59273ec06..95a1aca11fff6f69fc33b1b88107b1ac6477780c 100644 (file)
@@ -56,8 +56,6 @@ public:
 
     void setInputInfo(InputInfo::Ptr data);
 
-    std::shared_ptr<ICNNNetwork> getCNNNetwork();
-
     void addLayer(const CNNLayerPtr& layer) noexcept;
 
     // public version
@@ -91,11 +89,11 @@ public:
     StatusCode serialize(const std::string& xmlPath, const std::string& binPath, ResponseDesc* resp) const
         noexcept override;
 
-    void convertToCNNNetworkImpl();
-protected:
-    std::shared_ptr<::ngraph::Function> _ngraph_function;
     virtual std::shared_ptr<::ngraph::Function> cloneFunction(bool constFolding = false, const std::map<std::string,
             std::vector<size_t>>& inputShapes = {}) const;
+protected:
+    std::shared_ptr<::ngraph::Function> _ngraph_function;
+
 private:
     std::map<std::string, DataPtr> _data;
     InferenceEngine::InputsDataMap _inputData;
@@ -111,10 +109,18 @@ private:
      */
     void createDataForResult(const ::ngraph::Output<::ngraph::Node>& output, const std::string& outName, DataPtr& ptr);
 
-    friend INFERENCE_ENGINE_API_CPP(std::shared_ptr<CNNNetworkImpl>)
+    /**
+     * @brief Converts ngraph::Function to old CNNNetworkImpl representation
+     */
+    void convertToCNNNetworkImpl();
+
+    friend INFERENCE_ENGINE_API_CPP(void)
     convertFunctionToICNNNetwork(const std::shared_ptr<const ::ngraph::Function>& graph,
-                                 const ICNNNetwork& nGraphImpl, bool keep_constant_inputs);
+                                 const ICNNNetwork& nGraphImpl,
+                                 CNNNetworkImpl* cnnNetworkImpl,
+                                 bool keep_constant_inputs);
 
+    friend class NGraphData;
 
     /**
      * @brief Reshape on the same shape
@@ -126,7 +132,6 @@ class TINGraphBody : public CNNNetworkNGraphImpl {
 public:
     explicit TINGraphBody(const std::shared_ptr<::ngraph::Function>& func): CNNNetworkNGraphImpl(func) {}
 
-protected:
     std::shared_ptr<::ngraph::Function> cloneFunction(bool constFolding, const std::map<std::string, std::vector<size_t>>& inputShapes) const override {
         return _ngraph_function;
     }
index 5ce5b44cb3990d643771f4f0d5ea4bdb586847aa..8aeaaa3a9c1f021038d3bf03c0c4e70d381bfe9e 100644 (file)
@@ -30,6 +30,7 @@ namespace details {
 class INFERENCE_ENGINE_API_CLASS(CNNNetworkImpl): public ICNNNetwork {
 public:
     CNNNetworkImpl();
+    explicit CNNNetworkImpl(const ICNNNetwork & ngraphImpl); 
     ~CNNNetworkImpl() override;
 
     std::shared_ptr<::ngraph::Function> getFunction() noexcept override {
index 39f40a8231220736ea9d78bb1711b7ddc1972486..e31af1375cceb680b662edc4c32349a12c9b0933 100644 (file)
@@ -18,6 +18,12 @@ INFERENCE_ENGINE_API_CPP(std::shared_ptr<CNNNetworkImpl>)
 convertFunctionToICNNNetwork(const std::shared_ptr<const ::ngraph::Function>& graph,
                              const ICNNNetwork &network, bool keep_constant_inputs = false);
 
+INFERENCE_ENGINE_API_CPP(void)
+convertFunctionToICNNNetwork(const std::shared_ptr<const ::ngraph::Function>& graph,
+                             const ICNNNetwork &ngraphNetwork, 
+                             CNNNetworkImpl* cnnNetworkImpl,
+                             bool keep_constant_inputs = false);
+
 
 }  // namespace details
 }  // namespace InferenceEngine
index d3f6f598888bbe6fde64ae19d8304696eb79403b..929ba4becdcb1689bf5f24a884b30e39a7d7d943 100644 (file)
@@ -24,11 +24,7 @@ namespace InferenceEngine {
  */
 class INFERENCE_ENGINE_API_CLASS(ConstTransformer) {
 public:
-    explicit ConstTransformer(ICNNNetwork* _network);
     explicit ConstTransformer(details::CNNNetworkImpl* _network);
-    explicit ConstTransformer(std::vector<DataPtr> &_inputs, std::vector<DataPtr> &_outputs);
-
-    virtual ~ConstTransformer() = default;
 
     /**
      * @brief calculates const layers, combines const subgraph into a single const layers
@@ -41,6 +37,8 @@ public:
     void fullTrim();
 
 protected:
+    ConstTransformer(std::vector<DataPtr> &_inputs, std::vector<DataPtr> &_outputs);
+
     /**
      * @brief collect all const layers with marking if it defines shape (1 - for shape, 0 - otherwise)
      */
index 71af17a6faf4f59e4642ed62c9076d5c6d445808..e77978d299eeca245509c31628ff79d5513707bb 100644 (file)
 #include "network_serializer.h"
 #include "details/ie_cnn_network_tools.h"
 
+#include "generic_ie.hpp"
+#include "cnn_network_ngraph_impl.hpp"
+#include <transformations/common_optimizations/common_optimizations.hpp>
+#include <transformations/convert_opset1_to_legacy/convert_opset1_to_legacy.hpp>
+#include <transformations/convert_opset2_to_opset1/convert_opset2_to_opset1.hpp>
+#include <transformations/convert_opset3_to_opset2/convert_opset3_to_opset2.hpp>
+#include "convert_function_to_cnn_network.hpp"
+
 using namespace std;
 using namespace InferenceEngine;
 using namespace InferenceEngine::details;
@@ -78,6 +86,21 @@ ICNNNetwork::~ICNNNetwork() {}
 
 CNNNetworkImpl::CNNNetworkImpl() {}
 
+CNNNetworkImpl::CNNNetworkImpl(const ICNNNetwork & ngraphImpl) {
+    auto ngraphImplPtr = dynamic_cast<const details::CNNNetworkNGraphImpl*>(&ngraphImpl);
+    IE_ASSERT(ngraphImplPtr != nullptr);
+    IE_ASSERT(ngraphImplPtr->getFunction() != nullptr);
+    auto graph = ngraphImplPtr->cloneFunction();
+    // Disable shape inference (WA for generic operations)
+    ::ngraph::op::GenericIE::DisableReshape noReshape(graph);
+
+    ::ngraph::pass::CommonOptimizations().run_on_function(graph);
+    ::ngraph::pass::ConvertOpSet3ToOpSet2().run_on_function(graph);
+    ::ngraph::pass::ConvertOpSet2ToOpSet1().run_on_function(graph);
+    ::ngraph::pass::ConvertOpSet1ToLegacy().run_on_function(graph);
+    InferenceEngine::details::convertFunctionToICNNNetwork(graph, ngraphImpl, this, false);
+}
+
 CNNNetworkImpl::~CNNNetworkImpl() {
     // In case of cycles, memory leaks occur: Layer holds shared_ptr<Data>, and vice versa.
     // Added additional check on cycles.
index d6186a7aec02a1aa78a4f8dfad287d572ee4e9e3..d334c8a5063bf9684531980371a94b5502746222 100644 (file)
@@ -42,7 +42,6 @@
 
 #include <debug.h>
 #include <ngraph/opsets/opset1.hpp>
-#include "transformations/convert_opset1_to_legacy/convert_opset1_to_legacy.hpp"
 #include "transformations/utils/utils.hpp"
 #include "transformations/rt_info/fused_names_attribute.hpp"
 #include "transformations/rt_info/primitives_priority_attribute.hpp"
@@ -508,9 +507,10 @@ CNNLayerPtr InferenceEngine::details::CNNLayerCreator::create() {
     return res;
 }
 
-std::shared_ptr<CNNNetworkImpl> convertFunctionToICNNNetwork(const std::shared_ptr<const ::ngraph::Function> &graph,
-                                                             const ICNNNetwork &network,
-                                                             bool keep_constant_inputs) {
+void convertFunctionToICNNNetwork(const std::shared_ptr<const ::ngraph::Function> &graph,
+                                 const ICNNNetwork &network,
+                                 CNNNetworkImpl* cnnNetworkImpl,
+                                 bool keep_constant_inputs) {
     IE_PROFILING_AUTO_SCOPE(convertFunctionToICNNNetwork)
     const auto createCNNLayer = [](const std::shared_ptr<::ngraph::Node> &node) -> CNNLayerPtr {
         class NGraphCNNLayer: public CNNLayer {
@@ -698,7 +698,7 @@ std::shared_ptr<CNNNetworkImpl> convertFunctionToICNNNetwork(const std::shared_p
         return ::ngraph::as_type_ptr<::ngraph::op::Result>(node) != nullptr;
     };
 
-    const auto keep_input_info = [](std::shared_ptr<details::CNNNetworkImpl> &network, const DataPtr &inData) {
+    const auto keep_input_info = [](CNNNetworkImpl *network, const DataPtr &inData) {
         InputInfo::Ptr info(new InputInfo());
         info->setInputData(inData);
         network->setInputInfo(info);
@@ -709,8 +709,7 @@ std::shared_ptr<CNNNetworkImpl> convertFunctionToICNNNetwork(const std::shared_p
     InputsDataMap thisInputDataMap;
     network.getInputsInfo(thisInputDataMap);
 
-    // Create network
-    auto cnnNetworkImpl = std::make_shared<details::CNNNetworkImpl>();
+    // Construct network
     cnnNetworkImpl->setName(graph->get_friendly_name());
 
     // Collect all names from current graph
@@ -913,7 +912,15 @@ std::shared_ptr<CNNNetworkImpl> convertFunctionToICNNNetwork(const std::shared_p
     for (const auto &ext : ::ngraph::op::GenericIE::getExtensions(graph)) {
         cnnNetworkImpl->AddExtension(ext, nullptr);
     }
+}
+
+std::shared_ptr<CNNNetworkImpl> convertFunctionToICNNNetwork(const std::shared_ptr<const ::ngraph::Function> &graph,
+                                                             const ICNNNetwork &network,
+                                                             bool keep_constant_inputs) {
+    auto cnnNetworkImpl = std::make_shared<details::CNNNetworkImpl>();
+    convertFunctionToICNNNetwork(graph, network, cnnNetworkImpl.get(), keep_constant_inputs);
     return cnnNetworkImpl;
 }
+
 }  // namespace details
 }  // namespace InferenceEngine
index 8704bb4abba7ac990b96f7b6211e944ec8481727..355f68a52c4718fffabda65cc044b3a22d66203b 100644 (file)
@@ -17,7 +17,6 @@
 #include <mutex>
 #include <algorithm>
 
-#include <cnn_network_ngraph_impl.hpp>
 #include "blob_factory.hpp"
 #include "cnn_network_impl.hpp"
 #include "graph_tools.hpp"
@@ -71,19 +70,6 @@ ConstTransformer::ConstTransformer(details::CNNNetworkImpl* _network)
         THROW_IE_EXCEPTION << "[ERROR]: Failed to init ConstTransformer with null pointer of network";
 }
 
-ConstTransformer::ConstTransformer(ICNNNetwork* _network) {
-    if (auto cnnNet = dynamic_cast<InferenceEngine::details::CNNNetworkImpl *>(_network)) {
-        network = cnnNet;
-    } else if (auto nGraphNet = dynamic_cast<InferenceEngine::details::CNNNetworkNGraphImpl *>(_network)) {
-        if (auto cnnNet = dynamic_cast<InferenceEngine::details::CNNNetworkImpl *>(nGraphNet->getCNNNetwork().get()))
-            network = cnnNet;
-    }
-    if (!network)
-        THROW_IE_EXCEPTION << "[ERROR]: Failed to init ConstTransformer with unsupported network type";
-    inputs = get_inputs(network);
-    outputs = get_outputs(network);
-}
-
 ConstTransformer::ConstTransformer(std::vector<DataPtr> &_inputs, std::vector<DataPtr> &_outputs)
         : network(nullptr), inputs(_inputs), outputs(_outputs) {
     if (inputs.empty() || outputs.empty())
index 852d21b5a31607fb17eae307352864449ab755a2..7e3095e031452f0aefd1f663f4e390de00c248a6 100644 (file)
@@ -14,7 +14,6 @@
 #include <utility>
 #include <vector>
 
-#include "cnn_network_ngraph_impl.hpp"
 #include "details/os/os_filesystem.hpp"
 #include "ie_format_parser.h"
 #include "ie_profiling.hpp"
index 15b95fa91e5982638957eb00b175c06528909d71..99a14a1c75cae3560ec8681500286e390e22bc2b 100644 (file)
@@ -18,7 +18,10 @@ void FrontEnd::removeConstLayers(ie::ICNNNetwork& network) {
     env.log->trace("Remove const layers");
     VPU_LOGGER_SECTION(env.log);
 
-    ie::ConstTransformer(&network).fullTrim();
+    auto implNetwork = dynamic_cast<ie::details::CNNNetworkImpl *>(&network);
+    VPU_THROW_UNLESS(implNetwork != nullptr, "FrontEnd::removeConstLayers expects CNNNetworkImpl");
+
+    ie::ConstTransformer(implNetwork).fullTrim();
 }
 
 }  // namespace vpu
index c42ce1d8ef235334be12eae2d559b0a909223db2..a4f85313cf10854ad4f70d492521e4f3dce065ef 100644 (file)
@@ -39,28 +39,6 @@ using namespace InferenceEngine;
 
 IE_SUPPRESS_DEPRECATED_START
 
-TEST(CNNNGraphImplTests, TestConvertNetwork) {
-    std::shared_ptr<ngraph::Function> ngraph;
-    {
-        ngraph::PartialShape shape({1, 3, 22, 22});
-        ngraph::element::Type type(ngraph::element::Type_t::f32);
-        auto param = std::make_shared<ngraph::op::Parameter>(type, shape);
-        auto relu = std::make_shared<ngraph::op::Relu>(param);
-        auto result = std::make_shared<ngraph::op::Result>(relu);
-
-        ngraph::ParameterVector params = {param};
-        ngraph::ResultVector results = {result};
-
-        ngraph = std::make_shared<ngraph::Function>(results, params);
-    }
-
-    InferenceEngine::details::CNNNetworkNGraphImpl cnnNet(ngraph);
-    auto cnnRefNet = cnnNet.getCNNNetwork();
-    cnnNet.convertToCNNNetworkImpl();
-
-    ASSERT_EQ(cnnRefNet, cnnNet.getCNNNetwork());
-}
-
 TEST(CNNNGraphImplTests, TestConvertWithRemoveLastLayerNetwork) {
     std::shared_ptr<ngraph::Function> ngraph;
     {
@@ -81,10 +59,10 @@ TEST(CNNNGraphImplTests, TestConvertWithRemoveLastLayerNetwork) {
     }
 
     InferenceEngine::details::CNNNetworkNGraphImpl cnnNet(ngraph);
-    InferenceEngine::ICNNNetwork& cnnRefNet = *cnnNet.getCNNNetwork();
+    auto convertedNet = std::make_shared<details::CNNNetworkImpl>(cnnNet);
     // Remove convert layer
-    InferenceEngine::NetPass::ConvertPrecision(cnnRefNet, Precision::I64, Precision::I32);
-    ASSERT_NO_THROW(cloneNet(cnnRefNet));
+    InferenceEngine::NetPass::ConvertPrecision(*convertedNet, Precision::I64, Precision::I32);
+    ASSERT_NO_THROW(cloneNet(*convertedNet));
 }
 
 TEST(CNNNGraphImplTests, TestResultWithNotEqualName) {
@@ -105,7 +83,7 @@ TEST(CNNNGraphImplTests, TestResultWithNotEqualName) {
     }
 
     InferenceEngine::details::CNNNetworkNGraphImpl cnnNet(ngraph);
-    ASSERT_NO_THROW(cnnNet.getCNNNetwork());
+    ASSERT_NO_THROW(auto convertedNet = std::make_shared<details::CNNNetworkImpl>(cnnNet));
 }
 
 TEST(CNNNGraphImplTests, TestGetOutputAfterConvertNetwork) {
@@ -175,15 +153,9 @@ TEST(CNNNGraphImplTests, TestSetBatch) {
 
     InferenceEngine::details::CNNNetworkNGraphImpl cnnNet(ngraph);
     ASSERT_EQ(1, cnnNet.getBatchSize());
-    ASSERT_EQ(OK, cnnNet.setBatchSize(2, nullptr));
+    ASSERT_EQ(OK, cnnNet.setBatchSize(2, nullptr));  // triggers conversion
     ASSERT_EQ(2, cnnNet.getBatchSize());
     ASSERT_EQ(nullptr, cnnNet.getFunction());
-    auto cnnRefNet = cnnNet.getCNNNetwork();
-
-    cnnNet.convertToCNNNetworkImpl();
-
-    ASSERT_EQ(2, cnnNet.getBatchSize());
-    ASSERT_EQ(2, cnnNet.getCNNNetwork()->getBatchSize());
 }
 
 TEST(CNNNGraphImplTests, TestSaveAffinity) {
@@ -320,50 +292,16 @@ TEST(CNNNGraphImplTests, SaveInputInfoAfterConversion) {
     }
 
     InferenceEngine::details::CNNNetworkNGraphImpl cnnNet(ngraph);
-    cnnNet.convertToCNNNetworkImpl();
     auto inputInfo = cnnNet.getInput(name);
     ASSERT_EQ(inputInfo->getPreProcess().getResizeAlgorithm(), ResizeAlgorithm::NO_RESIZE);
     inputInfo->getPreProcess().setResizeAlgorithm(ResizeAlgorithm::RESIZE_AREA);
     ASSERT_EQ(inputInfo->getPreProcess().getResizeAlgorithm(), ResizeAlgorithm::RESIZE_AREA);
 
-    cnnNet.convertToCNNNetworkImpl();
-    inputInfo = cnnNet.getInput(name);
+    auto cnnNetImpl = std::make_shared<details::CNNNetworkImpl>(cnnNet);
+    inputInfo = cnnNetImpl->getInput(name);
     ASSERT_EQ(inputInfo->getPreProcess().getResizeAlgorithm(), ResizeAlgorithm::RESIZE_AREA);
 }
 
-TEST(CNNNGraphImplTests, SaveAttributesAfterConversion) {
-    std::string name = "prelu";
-    std::shared_ptr<ngraph::Function> ngraph;
-    {
-        ngraph::PartialShape shape({1, 3, 22, 22});
-        ngraph::element::Type type(ngraph::element::Type_t::f32);
-        auto param = std::make_shared<ngraph::op::Parameter>(type, shape);
-        auto constant = ngraph::op::Constant::create(ngraph::element::Type_t::f32, {1}, {2});
-        auto prelu = std::make_shared<ngraph::op::PRelu>(param, constant);
-        prelu->set_friendly_name(name);
-        auto add = std::make_shared<ngraph::op::v1::Maximum>(prelu, constant);
-        auto result = std::make_shared<ngraph::op::Result>(add);
-
-        ngraph::ParameterVector params = {param};
-        ngraph::ResultVector results = {result};
-
-        ngraph = std::make_shared<ngraph::Function>(results, params);
-    }
-
-    InferenceEngine::details::CNNNetworkNGraphImpl cnnNet(ngraph);
-    auto * icnnnetwork = static_cast<InferenceEngine::ICNNNetwork*>(&cnnNet);
-    CNNLayerPtr layer = CommonTestUtils::getLayerByName(icnnnetwork, name);
-    layer->params["test"] = "2";
-    layer = CommonTestUtils::getLayerByName(icnnnetwork, name);
-    ASSERT_TRUE(layer->params.find("test") != layer->params.end());
-    ASSERT_EQ(layer->params["test"], "2");
-
-    cnnNet.convertToCNNNetworkImpl();
-    layer = CommonTestUtils::getLayerByName(icnnnetwork, name);
-    ASSERT_TRUE(layer->params.find("test") != layer->params.end());
-    ASSERT_EQ(layer->params["test"], "2");
-}
-
 TEST(CNNNGraphImplTests, SavePrimitivesPriority) {
     std::string model = R"V0G0N(
 <net name="Activation" version="10">
@@ -704,7 +642,9 @@ TEST(CNNNGraphImplTests, CanSetBatchReadValue) {
     }
 
     InferenceEngine::details::CNNNetworkNGraphImpl cnnNet(ngraph);
-    auto status = cnnNet.getCNNNetwork()->setBatchSize(4, nullptr);
+    auto convertedNet = std::make_shared<details::CNNNetworkImpl>(cnnNet);
+    auto status = convertedNet->setBatchSize(4, nullptr);
     EXPECT_EQ(status, StatusCode::OK);
 }
+
 IE_SUPPRESS_DEPRECATED_END
index a38274a8c218f82ea61efe7bc7ebdf164e884102..c5bf817fdde9b003518b22d7b1157fc10b9d0d2d 100644 (file)
@@ -4,8 +4,8 @@
 
 #include <gtest/gtest.h>
 
-#include <convert_function_to_cnn_network.hpp>
 #include <cpp/ie_cnn_network.h>
+#include <cnn_network_impl.hpp>  // deprecated API
 
 #include <ngraph/function.hpp>
 #include <ngraph/opsets/opset1.hpp>
@@ -30,9 +30,9 @@ TEST(ConvertFunctionToCNNNetworkTests, ConvertPReLUNetwork) {
     }
 
     InferenceEngine::CNNNetwork nGraphImpl(f);
-    ASSERT_ANY_THROW(InferenceEngine::details::convertFunctionToICNNNetwork(f, nGraphImpl));
     try {
-        auto net = InferenceEngine::details::convertFunctionToICNNNetwork(f, nGraphImpl);
+        auto net = std::make_shared<InferenceEngine::details::CNNNetworkImpl>(
+            static_cast<const InferenceEngine::ICNNNetwork &>(nGraphImpl));
     } catch (InferenceEngine::details::InferenceEngineException &err) {
         const std::string ref_msg = "Error of validate layer: prelu with type: PReLU. Number of inputs (2) is not equal to expected ones: 1";
         const std::string resp_msg = err.what();
@@ -60,7 +60,8 @@ TEST(ConvertFunctionToCNNNetworkTests, ConvertConvolutionNetwork) {
 
     InferenceEngine::CNNNetwork nGraphImpl(f);
     try {
-        auto net = InferenceEngine::details::convertFunctionToICNNNetwork(f, nGraphImpl);
+        auto net = std::make_shared<InferenceEngine::details::CNNNetworkImpl>(
+            static_cast<const InferenceEngine::ICNNNetwork &>(nGraphImpl));
     } catch (InferenceEngine::details::InferenceEngineException &err) {
         FAIL();
     }
index 5102fbff574029e9317e4054b602d13e08d2d368..e1b4e5636c9dbba10481ea2d77cf3ac45fbff714 100644 (file)
 #include <ngraph/function.hpp>
 #include <ngraph/opsets/opset1.hpp>
 #include <ngraph/variant.hpp>
-#include <transformations/common_optimizations/common_optimizations.hpp>
-#include <transformations/convert_opset1_to_legacy/convert_opset1_to_legacy.hpp>
-#include <transformations/convert_opset2_to_opset1/convert_opset2_to_opset1.hpp>
 #include <transformations/utils/utils.hpp>
-#include <convert_function_to_cnn_network.hpp>
-#include <generic_ie.hpp>
 #include <cpp/ie_cnn_network.h>
+#include <cnn_network_impl.hpp>  // deprecated API
+#include <ie_layers.h>  // deprecated API
 
 #include "common_test_utils/ngraph_test_utils.hpp"
 
@@ -47,7 +44,7 @@ TEST(TransformationTests, ConvBiasFusion) {
 
     // Set PrimitivesPriority to all Convolutions
     auto nGraph = network.getFunction();
-    ASSERT_TRUE(nGraph);
+    ASSERT_NE(nullptr, nGraph);
     for (auto & op : nGraph->get_ops()) {
         if (auto conv = std::dynamic_pointer_cast<ngraph::opset1::Convolution>(op)) {
             auto & rtInfo = conv->get_rt_info();
@@ -55,16 +52,7 @@ TEST(TransformationTests, ConvBiasFusion) {
         }
     }
 
-
-    // Force conversion from nGraph to CNNNetwork
-    ngraph::pass::CommonOptimizations().run_on_function(nGraph);
-    ngraph::op::GenericIE::DisableReshape noReshape(f);
-
-    // Note: instead of running all Conversion Transformations you can make up your own transformation pipeline
-    ngraph::pass::CommonOptimizations().run_on_function(nGraph);
-    ngraph::pass::ConvertOpSet2ToOpSet1().run_on_function(nGraph);
-    ngraph::pass::ConvertOpSet1ToLegacy().run_on_function(nGraph);
-    auto clonedNetwork = InferenceEngine::details::convertFunctionToICNNNetwork(nGraph, network);
+    auto clonedNetwork = std::make_shared<InferenceEngine::details::CNNNetworkImpl>(network);
 
     IE_SUPPRESS_DEPRECATED_START
     InferenceEngine::CNNLayerPtr conv;
index a97528c48e93e19620c3b0f3458bcc5d2988f7c5..4521f44814e8c507b61958b15517d8ef63e0f773 100644 (file)
@@ -350,8 +350,8 @@ protected:
             ICNNNetwork& icnnnetwork = network;
             auto networkNGraph = dynamic_cast<CNNNetworkNGraphImpl*>(&icnnnetwork);
             if (networkNGraph) {
-                std::shared_ptr<ICNNNetwork> networkPtr = networkNGraph->getCNNNetwork();
-                network = CNNNetwork(networkPtr);
+                auto netPtr = std::make_shared<details::CNNNetworkImpl>(*networkNGraph);
+                network = CNNNetwork(netPtr);
             }
 
             auto originalLayersInfo = LowPrecisionTransformationValidation::getLayers(network);