* hv_pcibus_device contains the hypercall arguments for retargeting in
* hv_irq_unmask(). Those must not cross a page boundary.
*/
- BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
+ BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
- hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
+ /*
+ * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
+ * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
+ * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
+ * alignment of hbus is important because hbus's field
+ * retarget_msi_interrupt_params must not cross a 4KB page boundary.
+ *
+ * Here we prefer kzalloc to get_zeroed_page(), because a buffer
+ * allocated by the latter is not tracked and scanned by kmemleak, and
+ * hence kmemleak reports the pointer contained in the hbus buffer
+ * (i.e. the hpdev struct, which is created in new_pcichild_device() and
+ * is tracked by hbus->children) as memory leak (false positive).
+ *
+ * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
+ * used to allocate the hbus buffer and we can avoid the kmemleak false
+ * positive by using kmemleak_alloc() and kmemleak_free() to ask
+ * kmemleak to track and scan the hbus buffer.
+ */
+ hbus = (struct hv_pcibus_device *)kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
if (!hbus)
return -ENOMEM;
hbus->state = hv_pcibus_init;
hv_put_dom_num(hbus->sysdata.domain);
- free_page((unsigned long)hbus);
+ kfree(hbus);
return ret;
}