sched/fair: Add lag based placement
authorPeter Zijlstra <peterz@infradead.org>
Wed, 31 May 2023 11:58:42 +0000 (13:58 +0200)
committerIngo Molnar <mingo@kernel.org>
Wed, 19 Jul 2023 07:43:58 +0000 (09:43 +0200)
With the introduction of avg_vruntime, it is possible to approximate
lag (the entire purpose of introducing it in fact). Use this to do lag
based placement over sleep+wake.

Specifically, the FAIR_SLEEPERS thing places things too far to the
left and messes up the deadline aspect of EEVDF.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.794929315@infradead.org
include/linux/sched.h
kernel/sched/core.c
kernel/sched/fair.c
kernel/sched/features.h

index 2aab7be..ba1828b 100644 (file)
@@ -554,8 +554,9 @@ struct sched_entity {
 
        u64                             exec_start;
        u64                             sum_exec_runtime;
-       u64                             vruntime;
        u64                             prev_sum_exec_runtime;
+       u64                             vruntime;
+       s64                             vlag;
 
        u64                             nr_migrations;
 
index 83e3654..84b0d47 100644 (file)
@@ -4501,6 +4501,7 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
        p->se.prev_sum_exec_runtime     = 0;
        p->se.nr_migrations             = 0;
        p->se.vruntime                  = 0;
+       p->se.vlag                      = 0;
        INIT_LIST_HEAD(&p->se.group_node);
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
index fc43482..dd12ada 100644 (file)
@@ -715,6 +715,15 @@ u64 avg_vruntime(struct cfs_rq *cfs_rq)
        return cfs_rq->min_vruntime + avg;
 }
 
+/*
+ * lag_i = S - s_i = w_i * (V - v_i)
+ */
+void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+       SCHED_WARN_ON(!se->on_rq);
+       se->vlag = avg_vruntime(cfs_rq) - se->vruntime;
+}
+
 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
 {
        u64 min_vruntime = cfs_rq->min_vruntime;
@@ -3492,6 +3501,8 @@ dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
                            unsigned long weight)
 {
+       unsigned long old_weight = se->load.weight;
+
        if (se->on_rq) {
                /* commit outstanding execution time */
                if (cfs_rq->curr == se)
@@ -3504,6 +3515,14 @@ static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
 
        update_load_set(&se->load, weight);
 
+       if (!se->on_rq) {
+               /*
+                * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
+                * we need to scale se->vlag when w_i changes.
+                */
+               se->vlag = div_s64(se->vlag * old_weight, weight);
+       }
+
 #ifdef CONFIG_SMP
        do {
                u32 divider = get_pelt_divider(&se->avg);
@@ -4853,49 +4872,119 @@ static void
 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
 {
        u64 vruntime = avg_vruntime(cfs_rq);
+       s64 lag = 0;
 
-       /* sleeps up to a single latency don't count. */
-       if (!initial) {
-               unsigned long thresh;
+       /*
+        * Due to how V is constructed as the weighted average of entities,
+        * adding tasks with positive lag, or removing tasks with negative lag
+        * will move 'time' backwards, this can screw around with the lag of
+        * other tasks.
+        *
+        * EEVDF: placement strategy #1 / #2
+        */
+       if (sched_feat(PLACE_LAG) && cfs_rq->nr_running > 1) {
+               struct sched_entity *curr = cfs_rq->curr;
+               unsigned long load;
 
-               if (se_is_idle(se))
-                       thresh = sysctl_sched_min_granularity;
-               else
-                       thresh = sysctl_sched_latency;
+               lag = se->vlag;
 
                /*
-                * Halve their sleep time's effect, to allow
-                * for a gentler effect of sleepers:
+                * If we want to place a task and preserve lag, we have to
+                * consider the effect of the new entity on the weighted
+                * average and compensate for this, otherwise lag can quickly
+                * evaporate.
+                *
+                * Lag is defined as:
+                *
+                *   lag_i = S - s_i = w_i * (V - v_i)
+                *
+                * To avoid the 'w_i' term all over the place, we only track
+                * the virtual lag:
+                *
+                *   vl_i = V - v_i <=> v_i = V - vl_i
+                *
+                * And we take V to be the weighted average of all v:
+                *
+                *   V = (\Sum w_j*v_j) / W
+                *
+                * Where W is: \Sum w_j
+                *
+                * Then, the weighted average after adding an entity with lag
+                * vl_i is given by:
+                *
+                *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
+                *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
+                *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
+                *      = (V*(W + w_i) - w_i*l) / (W + w_i)
+                *      = V - w_i*vl_i / (W + w_i)
+                *
+                * And the actual lag after adding an entity with vl_i is:
+                *
+                *   vl'_i = V' - v_i
+                *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
+                *         = vl_i - w_i*vl_i / (W + w_i)
+                *
+                * Which is strictly less than vl_i. So in order to preserve lag
+                * we should inflate the lag before placement such that the
+                * effective lag after placement comes out right.
+                *
+                * As such, invert the above relation for vl'_i to get the vl_i
+                * we need to use such that the lag after placement is the lag
+                * we computed before dequeue.
+                *
+                *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
+                *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
+                *
+                *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
+                *                   = W*vl_i
+                *
+                *   vl_i = (W + w_i)*vl'_i / W
                 */
-               if (sched_feat(GENTLE_FAIR_SLEEPERS))
-                       thresh >>= 1;
-
-               vruntime -= thresh;
-       }
-
-       /*
-        * Pull vruntime of the entity being placed to the base level of
-        * cfs_rq, to prevent boosting it if placed backwards.
-        * However, min_vruntime can advance much faster than real time, with
-        * the extreme being when an entity with the minimal weight always runs
-        * on the cfs_rq. If the waking entity slept for a long time, its
-        * vruntime difference from min_vruntime may overflow s64 and their
-        * comparison may get inversed, so ignore the entity's original
-        * vruntime in that case.
-        * The maximal vruntime speedup is given by the ratio of normal to
-        * minimal weight: scale_load_down(NICE_0_LOAD) / MIN_SHARES.
-        * When placing a migrated waking entity, its exec_start has been set
-        * from a different rq. In order to take into account a possible
-        * divergence between new and prev rq's clocks task because of irq and
-        * stolen time, we take an additional margin.
-        * So, cutting off on the sleep time of
-        *     2^63 / scale_load_down(NICE_0_LOAD) ~ 104 days
-        * should be safe.
-        */
-       if (entity_is_long_sleeper(se))
-               se->vruntime = vruntime;
-       else
-               se->vruntime = max_vruntime(se->vruntime, vruntime);
+               load = cfs_rq->avg_load;
+               if (curr && curr->on_rq)
+                       load += curr->load.weight;
+
+               lag *= load + se->load.weight;
+               if (WARN_ON_ONCE(!load))
+                       load = 1;
+               lag = div_s64(lag, load);
+
+               vruntime -= lag;
+       }
+
+       if (sched_feat(FAIR_SLEEPERS)) {
+
+               /* sleeps up to a single latency don't count. */
+               if (!initial) {
+                       unsigned long thresh;
+
+                       if (se_is_idle(se))
+                               thresh = sysctl_sched_min_granularity;
+                       else
+                               thresh = sysctl_sched_latency;
+
+                       /*
+                        * Halve their sleep time's effect, to allow
+                        * for a gentler effect of sleepers:
+                        */
+                       if (sched_feat(GENTLE_FAIR_SLEEPERS))
+                               thresh >>= 1;
+
+                       vruntime -= thresh;
+               }
+
+               /*
+                * Pull vruntime of the entity being placed to the base level of
+                * cfs_rq, to prevent boosting it if placed backwards.  If the entity
+                * slept for a long time, don't even try to compare its vruntime with
+                * the base as it may be too far off and the comparison may get
+                * inversed due to s64 overflow.
+                */
+               if (!entity_is_long_sleeper(se))
+                       vruntime = max_vruntime(se->vruntime, vruntime);
+       }
+
+       se->vruntime = vruntime;
 }
 
 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
@@ -5077,6 +5166,9 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 
        clear_buddies(cfs_rq, se);
 
+       if (flags & DEQUEUE_SLEEP)
+               update_entity_lag(cfs_rq, se);
+
        if (se != cfs_rq->curr)
                __dequeue_entity(cfs_rq, se);
        se->on_rq = 0;
index fa828b3..7958a10 100644 (file)
@@ -1,12 +1,20 @@
 /* SPDX-License-Identifier: GPL-2.0 */
+
 /*
  * Only give sleepers 50% of their service deficit. This allows
  * them to run sooner, but does not allow tons of sleepers to
  * rip the spread apart.
  */
+SCHED_FEAT(FAIR_SLEEPERS, false)
 SCHED_FEAT(GENTLE_FAIR_SLEEPERS, true)
 
 /*
+ * Using the avg_vruntime, do the right thing and preserve lag across
+ * sleep+wake cycles. EEVDF placement strategy #1, #2 if disabled.
+ */
+SCHED_FEAT(PLACE_LAG, true)
+
+/*
  * Prefer to schedule the task we woke last (assuming it failed
  * wakeup-preemption), since its likely going to consume data we
  * touched, increases cache locality.