temporarily reverted to FLANN 1.5 (FLANN 1.6 is put to a separate branch FLANN_1...
authorVadim Pisarevsky <no@email>
Mon, 20 Jun 2011 09:20:17 +0000 (09:20 +0000)
committerVadim Pisarevsky <no@email>
Mon, 20 Jun 2011 09:20:17 +0000 (09:20 +0000)
36 files changed:
modules/flann/include/opencv2/flann/all_indices.h
modules/flann/include/opencv2/flann/allocator.h
modules/flann/include/opencv2/flann/any.h [deleted file]
modules/flann/include/opencv2/flann/autotuned_index.h
modules/flann/include/opencv2/flann/composite_index.h
modules/flann/include/opencv2/flann/config.h [deleted file]
modules/flann/include/opencv2/flann/defines.h [deleted file]
modules/flann/include/opencv2/flann/dist.h
modules/flann/include/opencv2/flann/dynamic_bitset.h [deleted file]
modules/flann/include/opencv2/flann/flann.hpp
modules/flann/include/opencv2/flann/flann_base.hpp
modules/flann/include/opencv2/flann/general.h
modules/flann/include/opencv2/flann/ground_truth.h
modules/flann/include/opencv2/flann/hdf5.h
modules/flann/include/opencv2/flann/heap.h
modules/flann/include/opencv2/flann/hierarchical_clustering_index.h [deleted file]
modules/flann/include/opencv2/flann/index_testing.h
modules/flann/include/opencv2/flann/kdtree_index.h
modules/flann/include/opencv2/flann/kdtree_single_index.h [deleted file]
modules/flann/include/opencv2/flann/kmeans_index.h
modules/flann/include/opencv2/flann/linear_index.h
modules/flann/include/opencv2/flann/logger.h
modules/flann/include/opencv2/flann/lsh_index.h [deleted file]
modules/flann/include/opencv2/flann/lsh_table.h [deleted file]
modules/flann/include/opencv2/flann/matrix.h
modules/flann/include/opencv2/flann/nn_index.h
modules/flann/include/opencv2/flann/object_factory.h
modules/flann/include/opencv2/flann/params.h [deleted file]
modules/flann/include/opencv2/flann/random.h
modules/flann/include/opencv2/flann/result_set.h
modules/flann/include/opencv2/flann/sampling.h
modules/flann/include/opencv2/flann/saving.h
modules/flann/include/opencv2/flann/simplex_downhill.h
modules/flann/include/opencv2/flann/timer.h
modules/flann/src/flann.cpp
modules/flann/src/precomp.hpp

index ff53fd8..898ac09 100644 (file)
  *************************************************************************/
 
 
-#ifndef OPENCV_FLANN_ALL_INDICES_H_
-#define OPENCV_FLANN_ALL_INDICES_H_
+#ifndef _OPENCV_ALL_INDICES_H_
+#define _OPENCV_ALL_INDICES_H_
 
-#include "general.h"
+#include "opencv2/flann/general.h"
 
-#include "nn_index.h"
-#include "kdtree_index.h"
-#include "kdtree_single_index.h"
-#include "kmeans_index.h"
-#include "composite_index.h"
-#include "linear_index.h"
-#include "hierarchical_clustering_index.h"
-#include "lsh_index.h"
-#include "autotuned_index.h"
+#include "opencv2/flann/nn_index.h"
+#include "opencv2/flann/kdtree_index.h"
+#include "opencv2/flann/kmeans_index.h"
+#include "opencv2/flann/composite_index.h"
+#include "opencv2/flann/linear_index.h"
+#include "opencv2/flann/autotuned_index.h"
 
-
-namespace cvflann
-{
-
-template<typename KDTreeCapability, typename VectorSpace, typename Distance>
-struct index_creator
-{
-    static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
-    {
-        flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
-
-        NNIndex<Distance>* nnIndex;
-        switch (index_type) {
-        case FLANN_INDEX_LINEAR:
-            nnIndex = new LinearIndex<Distance>(dataset, params, distance);
-            break;
-        case FLANN_INDEX_KDTREE_SINGLE:
-            nnIndex = new KDTreeSingleIndex<Distance>(dataset, params, distance);
-            break;
-        case FLANN_INDEX_KDTREE:
-            nnIndex = new KDTreeIndex<Distance>(dataset, params, distance);
-            break;
-        case FLANN_INDEX_KMEANS:
-            nnIndex = new KMeansIndex<Distance>(dataset, params, distance);
-            break;
-        case FLANN_INDEX_COMPOSITE:
-            nnIndex = new CompositeIndex<Distance>(dataset, params, distance);
-            break;
-        case FLANN_INDEX_AUTOTUNED:
-            nnIndex = new AutotunedIndex<Distance>(dataset, params, distance);
-            break;
-        case FLANN_INDEX_HIERARCHICAL:
-            nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance);
-            break;
-        case FLANN_INDEX_LSH:
-            nnIndex = new LshIndex<Distance>(dataset, params, distance);
-            break;
-        default:
-            throw FLANNException("Unknown index type");
-        }
-
-        return nnIndex;
-    }
-};
-
-template<typename VectorSpace, typename Distance>
-struct index_creator<False,VectorSpace,Distance>
+namespace cvflann 
 {
-    static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
-    {
-        flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
 
-        NNIndex<Distance>* nnIndex;
-        switch (index_type) {
-        case FLANN_INDEX_LINEAR:
-            nnIndex = new LinearIndex<Distance>(dataset, params, distance);
-            break;
-        case FLANN_INDEX_KMEANS:
-            nnIndex = new KMeansIndex<Distance>(dataset, params, distance);
-            break;
-        case FLANN_INDEX_HIERARCHICAL:
-            nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance);
-            break;
-        case FLANN_INDEX_LSH:
-            nnIndex = new LshIndex<Distance>(dataset, params, distance);
-            break;
-        default:
-            throw FLANNException("Unknown index type");
-        }
-
-        return nnIndex;
-    }
-};
-
-template<typename Distance>
-struct index_creator<False,False,Distance>
+template<typename T>
+NNIndex<T>* create_index_by_type(const Matrix<T>& dataset, const IndexParams& params)
 {
-    static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
-    {
-        flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
-
-        NNIndex<Distance>* nnIndex;
-        switch (index_type) {
-        case FLANN_INDEX_LINEAR:
-            nnIndex = new LinearIndex<Distance>(dataset, params, distance);
-            break;
-        case FLANN_INDEX_HIERARCHICAL:
-            nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance);
-            break;
-        case FLANN_INDEX_LSH:
-            nnIndex = new LshIndex<Distance>(dataset, params, distance);
-            break;
-        default:
-            throw FLANNException("Unknown index type");
-        }
-
-        return nnIndex;
-    }
-};
-
-template<typename Distance>
-NNIndex<Distance>* create_index_by_type(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
-{
-    return index_creator<typename Distance::is_kdtree_distance,
-                         typename Distance::is_vector_space_distance,
-                         Distance>::create(dataset, params,distance);
+       flann_algorithm_t index_type = params.getIndexType();
+
+       NNIndex<T>* nnIndex;
+       switch (index_type) {
+       case FLANN_INDEX_LINEAR:
+               nnIndex = new LinearIndex<T>(dataset, (const LinearIndexParams&)params);
+               break;
+       case FLANN_INDEX_KDTREE:
+               nnIndex = new KDTreeIndex<T>(dataset, (const KDTreeIndexParams&)params);
+               break;
+       case FLANN_INDEX_KMEANS:
+               nnIndex = new KMeansIndex<T>(dataset, (const KMeansIndexParams&)params);
+               break;
+       case FLANN_INDEX_COMPOSITE:
+               nnIndex = new CompositeIndex<T>(dataset, (const CompositeIndexParams&) params);
+               break;
+       case FLANN_INDEX_AUTOTUNED:
+               nnIndex = new AutotunedIndex<T>(dataset, (const AutotunedIndexParams&) params);
+               break;
+       default:
+               throw FLANNException("Unknown index type");
+       }
+
+       return nnIndex;
 }
 
-}
+} //namespace cvflann
 
-#endif /* OPENCV_FLANN_ALL_INDICES_H_ */
+#endif /* _OPENCV_ALL_INDICES_H_ */
index 6ca44fc..0215ac6 100644 (file)
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef OPENCV_FLANN_ALLOCATOR_H_
-#define OPENCV_FLANN_ALLOCATOR_H_
+#ifndef _OPENCV_ALLOCATOR_H_
+#define _OPENCV_ALLOCATOR_H_
 
 #include <stdlib.h>
 #include <stdio.h>
 
-
 namespace cvflann
 {
 
@@ -48,8 +47,8 @@ namespace cvflann
 template <typename T>
 T* allocate(size_t count = 1)
 {
-    T* mem = (T*) ::malloc(sizeof(T)*count);
-    return mem;
+       T* mem = (T*) ::malloc(sizeof(T)*count);
+       return mem;
 }
 
 
@@ -71,118 +70,118 @@ T* allocate(size_t count = 1)
 const size_t     WORDSIZE=16;
 const  size_t     BLOCKSIZE=8192;
 
-class PooledAllocator
+class CV_EXPORTS PooledAllocator
 {
-    /* We maintain memory alignment to word boundaries by requiring that all
-        allocations be in multiples of the machine wordsize.  */
-    /* Size of machine word in bytes.  Must be power of 2. */
-    /* Minimum number of bytes requested at a time from        the system.  Must be multiple of WORDSIZE. */
+       /* We maintain memory alignment to word boundaries by requiring that all
+               allocations be in multiples of the machine wordsize.  */
+         /* Size of machine word in bytes.  Must be power of 2. */
+       /* Minimum number of bytes requested at a time from     the system.  Must be multiple of WORDSIZE. */
 
 
-    int     remaining;  /* Number of bytes left in current block of storage. */
-    void*   base;     /* Pointer to base of current block of storage. */
-    void*   loc;      /* Current location in block to next allocate memory. */
-    int     blocksize;
+       int     remaining;  /* Number of bytes left in current block of storage. */
+       void*   base;     /* Pointer to base of current block of storage. */
+       void*   loc;      /* Current location in block to next allocate memory. */
+       int     blocksize;
 
 
 public:
-    int     usedMemory;
-    int     wastedMemory;
-
-    /**
-        Default constructor. Initializes a new pool.
-     */
-    PooledAllocator(int blocksize = BLOCKSIZE)
-    {
-        this->blocksize = blocksize;
-        remaining = 0;
-        base = NULL;
-
-        usedMemory = 0;
-        wastedMemory = 0;
-    }
-
-    /**
-     * Destructor. Frees all the memory allocated in this pool.
-     */
-    ~PooledAllocator()
-    {
-        void* prev;
-
-        while (base != NULL) {
-            prev = *((void**) base); /* Get pointer to prev block. */
-            ::free(base);
-            base = prev;
-        }
-    }
-
-    /**
-     * Returns a pointer to a piece of new memory of the given size in bytes
-     * allocated from the pool.
-     */
-    void* allocateMemory(int size)
-    {
-        int blocksize;
-
-        /* Round size up to a multiple of wordsize.  The following expression
-            only works for WORDSIZE that is a power of 2, by masking last bits of
-            incremented size to zero.
-         */
-        size = (size + (WORDSIZE - 1)) & ~(WORDSIZE - 1);
-
-        /* Check whether a new block must be allocated.  Note that the first word
-            of a block is reserved for a pointer to the previous block.
-         */
-        if (size > remaining) {
-
-            wastedMemory += remaining;
-
-            /* Allocate new storage. */
-            blocksize = (size + sizeof(void*) + (WORDSIZE-1) > BLOCKSIZE) ?
-                        size + sizeof(void*) + (WORDSIZE-1) : BLOCKSIZE;
-
-            // use the standard C malloc to allocate memory
-            void* m = ::malloc(blocksize);
-            if (!m) {
+       int     usedMemory;
+       int     wastedMemory;
+
+       /**
+               Default constructor. Initializes a new pool.
+       */
+       PooledAllocator(int blocksize = BLOCKSIZE)
+       {
+       this->blocksize = blocksize;
+               remaining = 0;
+               base = NULL;
+
+               usedMemory = 0;
+               wastedMemory = 0;
+       }
+
+       /**
+        * Destructor. Frees all the memory allocated in this pool.
+        */
+       ~PooledAllocator()
+       {
+               void *prev;
+
+               while (base != NULL) {
+                       prev = *((void **) base);  /* Get pointer to prev block. */
+                       ::free(base);
+                       base = prev;
+               }
+       }
+
+       /**
+        * Returns a pointer to a piece of new memory of the given size in bytes
+        * allocated from the pool.
+        */
+       void* allocateBytes(int size)
+       {
+               int blocksize;
+
+               /* Round size up to a multiple of wordsize.  The following expression
+                       only works for WORDSIZE that is a power of 2, by masking last bits of
+                       incremented size to zero.
+               */
+               size = (size + (WORDSIZE - 1)) & ~(WORDSIZE - 1);
+
+               /* Check whether a new block must be allocated.  Note that the first word
+                       of a block is reserved for a pointer to the previous block.
+               */
+               if (size > remaining) {
+
+                       wastedMemory += remaining;
+
+               /* Allocate new storage. */
+                       blocksize = (size + sizeof(void*) + (WORDSIZE-1) > BLOCKSIZE) ?
+                                               size + sizeof(void*) + (WORDSIZE-1) : BLOCKSIZE;
+
+                       // use the standard C malloc to allocate memory
+                       void* m = ::malloc(blocksize);
+                       if (!m) {
                 fprintf(stderr,"Failed to allocate memory.\n");
-                return NULL;
-            }
-
-            /* Fill first word of new block with pointer to previous block. */
-            ((void**) m)[0] = base;
-            base = m;
-
-            int shift = 0;
-            //int shift = (WORDSIZE - ( (((size_t)m) + sizeof(void*)) & (WORDSIZE-1))) & (WORDSIZE-1);
-
-            remaining = blocksize - sizeof(void*) - shift;
-            loc = ((char*)m + sizeof(void*) + shift);
-        }
-        void* rloc = loc;
-        loc = (char*)loc + size;
-        remaining -= size;
-
-        usedMemory += size;
-
-        return rloc;
-    }
-
-    /**
-     * Allocates (using this pool) a generic type T.
-     *
-     * Params:
-     *     count = number of instances to allocate.
-     * Returns: pointer (of type T*) to memory buffer
-     */
+                exit(1);
+                       }
+
+                       /* Fill first word of new block with pointer to previous block. */
+                       ((void **) m)[0] = base;
+                       base = m;
+
+                       int shift = 0;
+                       //int shift = (WORDSIZE - ( (((size_t)m) + sizeof(void*)) & (WORDSIZE-1))) & (WORDSIZE-1);
+
+                       remaining = blocksize - sizeof(void*) - shift;
+                       loc = ((char*)m + sizeof(void*) + shift);
+               }
+               void* rloc = loc;
+               loc = (char*)loc + size;
+               remaining -= size;
+
+               usedMemory += size;
+
+               return rloc;
+       }
+
+       /**
+        * Allocates (using this pool) a generic type T.
+        *
+        * Params:
+        *     count = number of instances to allocate.
+        * Returns: pointer (of type T*) to memory buffer
+        */
     template <typename T>
-    T* allocate(size_t count = 1)
-    {
-        T* mem = (T*) this->allocateMemory((int)(sizeof(T)*count));
-        return mem;
-    }
+       T* allocate(size_t count = 1)
+       {
+               T* mem = (T*) this->allocateBytes((int)(sizeof(T)*count));
+               return mem;
+       }
 
 };
 
-}
+} // namespace cvflann
 
-#endif //OPENCV_FLANN_ALLOCATOR_H_
+#endif //_OPENCV_ALLOCATOR_H_
diff --git a/modules/flann/include/opencv2/flann/any.h b/modules/flann/include/opencv2/flann/any.h
deleted file mode 100644 (file)
index aaa87df..0000000
+++ /dev/null
@@ -1,277 +0,0 @@
-#ifndef OPENCV_FLANN_ANY_H_
-#define OPENCV_FLANN_ANY_H_
-/*
- * (C) Copyright Christopher Diggins 2005-2011
- * (C) Copyright Pablo Aguilar 2005
- * (C) Copyright Kevlin Henney 2001
- *
- * Distributed under the Boost Software License, Version 1.0. (See
- * accompanying file LICENSE_1_0.txt or copy at
- * http://www.boost.org/LICENSE_1_0.txt
- *
- * Adapted for FLANN by Marius Muja
- */
-
-
-
-#include <stdexcept>
-#include <ostream>
-
-namespace cdiggins
-{
-
-namespace anyimpl
-{
-
-struct bad_any_cast
-{
-};
-
-struct empty_any
-{
-};
-
-struct base_any_policy
-{
-    virtual void static_delete(void** x) = 0;
-    virtual void copy_from_value(void const* src, void** dest) = 0;
-    virtual void clone(void* const* src, void** dest) = 0;
-    virtual void move(void* const* src, void** dest) = 0;
-    virtual void* get_value(void** src) = 0;
-    virtual size_t get_size() = 0;
-    virtual void print(std::ostream& out, void* const* src) = 0;
-};
-
-template<typename T>
-struct typed_base_any_policy : base_any_policy
-{
-    virtual size_t get_size() { return sizeof(T); }
-
-};
-
-template<typename T>
-struct small_any_policy : typed_base_any_policy<T>
-{
-    virtual void static_delete(void**) { }
-    virtual void copy_from_value(void const* src, void** dest)
-    {
-        new (dest) T(* reinterpret_cast<T const*>(src));
-    }
-    virtual void clone(void* const* src, void** dest) { *dest = *src; }
-    virtual void move(void* const* src, void** dest) { *dest = *src; }
-    virtual void* get_value(void** src) { return reinterpret_cast<void*>(src); }
-    virtual void print(std::ostream& out, void* const* src) { out << *reinterpret_cast<T const*>(src); }
-};
-
-template<typename T>
-struct big_any_policy : typed_base_any_policy<T>
-{
-    virtual void static_delete(void** x)
-    {
-        if (* x) delete (* reinterpret_cast<T**>(x)); *x = NULL;
-    }
-    virtual void copy_from_value(void const* src, void** dest)
-    {
-        *dest = new T(*reinterpret_cast<T const*>(src));
-    }
-    virtual void clone(void* const* src, void** dest)
-    {
-        *dest = new T(**reinterpret_cast<T* const*>(src));
-    }
-    virtual void move(void* const* src, void** dest)
-    {
-        (*reinterpret_cast<T**>(dest))->~T();
-        **reinterpret_cast<T**>(dest) = **reinterpret_cast<T* const*>(src);
-    }
-    virtual void* get_value(void** src) { return *src; }
-    virtual void print(std::ostream& out, void* const* src) { out << *reinterpret_cast<T const*>(*src); }
-};
-
-template<typename T>
-struct choose_policy
-{
-    typedef big_any_policy<T> type;
-};
-
-template<typename T>
-struct choose_policy<T*>
-{
-    typedef small_any_policy<T*> type;
-};
-
-struct any;
-
-/// Choosing the policy for an any type is illegal, but should never happen.
-/// This is designed to throw a compiler error.
-template<>
-struct choose_policy<any>
-{
-    typedef void type;
-};
-
-/// Specializations for small types.
-#define SMALL_POLICY(TYPE) \
-    template<> \
-    struct choose_policy<TYPE> { typedef small_any_policy<TYPE> type; \
-    };
-
-SMALL_POLICY(signed char);
-SMALL_POLICY(unsigned char);
-SMALL_POLICY(signed short);
-SMALL_POLICY(unsigned short);
-SMALL_POLICY(signed int);
-SMALL_POLICY(unsigned int);
-SMALL_POLICY(signed long);
-SMALL_POLICY(unsigned long);
-SMALL_POLICY(float);
-SMALL_POLICY(bool);
-
-#undef SMALL_POLICY
-
-/// This function will return a different policy for each type.
-template<typename T>
-base_any_policy* get_policy()
-{
-    static typename choose_policy<T>::type policy;
-    return &policy;
-}
-} // namespace anyimpl
-
-struct any
-{
-private:
-    // fields
-    anyimpl::base_any_policy* policy;
-    void* object;
-
-public:
-    /// Initializing constructor.
-    template <typename T>
-    any(const T& x)
-        : policy(anyimpl::get_policy<anyimpl::empty_any>()), object(NULL)
-    {
-        assign(x);
-    }
-
-    /// Empty constructor.
-    any()
-        : policy(anyimpl::get_policy<anyimpl::empty_any>()), object(NULL)
-    { }
-
-    /// Special initializing constructor for string literals.
-    any(const char* x)
-        : policy(anyimpl::get_policy<anyimpl::empty_any>()), object(NULL)
-    {
-        assign(x);
-    }
-
-    /// Copy constructor.
-    any(const any& x)
-        : policy(anyimpl::get_policy<anyimpl::empty_any>()), object(NULL)
-    {
-        assign(x);
-    }
-
-    /// Destructor.
-    ~any()
-    {
-        policy->static_delete(&object);
-    }
-
-    /// Assignment function from another any.
-    any& assign(const any& x)
-    {
-        reset();
-        policy = x.policy;
-        policy->clone(&x.object, &object);
-        return *this;
-    }
-
-    /// Assignment function.
-    template <typename T>
-    any& assign(const T& x)
-    {
-        reset();
-        policy = anyimpl::get_policy<T>();
-        policy->copy_from_value(&x, &object);
-        return *this;
-    }
-
-    /// Assignment operator.
-    template<typename T>
-    any& operator=(const T& x)
-    {
-        return assign(x);
-    }
-
-    /// Assignment operator, specialed for literal strings.
-    /// They have types like const char [6] which don't work as expected.
-    any& operator=(const char* x)
-    {
-        return assign(x);
-    }
-
-    /// Utility functions
-    any& swap(any& x)
-    {
-        std::swap(policy, x.policy);
-        std::swap(object, x.object);
-        return *this;
-    }
-
-    /// Cast operator. You can only cast to the original type.
-    template<typename T>
-    T& cast()
-    {
-        if (policy != anyimpl::get_policy<T>()) throw anyimpl::bad_any_cast();
-        T* r = reinterpret_cast<T*>(policy->get_value(&object));
-        return *r;
-    }
-
-    /// Cast operator. You can only cast to the original type.
-    template<typename T>
-    const T& cast() const
-    {
-        if (policy != anyimpl::get_policy<T>()) throw anyimpl::bad_any_cast();
-        T* r = reinterpret_cast<T*>(policy->get_value((void**)&object));
-        return *r;
-    }
-
-    /// Returns true if the any contains no value.
-    bool empty() const
-    {
-        return policy == anyimpl::get_policy<anyimpl::empty_any>();
-    }
-
-    /// Frees any allocated memory, and sets the value to NULL.
-    void reset()
-    {
-        policy->static_delete(&object);
-        policy = anyimpl::get_policy<anyimpl::empty_any>();
-    }
-
-    /// Returns true if the two types are the same.
-    bool compatible(const any& x) const
-    {
-        return policy == x.policy;
-    }
-
-    /// Returns if the type is compatible with the policy
-    template<typename T>
-    bool has_type()
-    {
-        return policy == anyimpl::get_policy<T>();
-    }
-
-    friend std::ostream& operator <<(std::ostream& out, const any& any_val);
-};
-
-inline std::ostream& operator <<(std::ostream& out, const any& any_val)
-{
-    any_val.policy->print(out,&any_val.object);
-    return out;
-}
-
-}
-
-#endif // OPENCV_FLANN_ANY_H_
index 6be0fd2..0e19f1d 100644 (file)
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
-#ifndef OPENCV_FLANN_AUTOTUNED_INDEX_H_
-#define OPENCV_FLANN_AUTOTUNED_INDEX_H_
-
-#include "general.h"
-#include "nn_index.h"
-#include "ground_truth.h"
-#include "index_testing.h"
-#include "sampling.h"
-#include "kdtree_index.h"
-#include "kdtree_single_index.h"
-#include "kmeans_index.h"
-#include "composite_index.h"
-#include "linear_index.h"
-#include "logger.h"
 
-namespace cvflann
-{
+#ifndef _OPENCV_AUTOTUNEDINDEX_H_
+#define _OPENCV_AUTOTUNEDINDEX_H_
 
-template<typename Distance>
-NNIndex<Distance>* create_index_by_type(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance);
+#include "opencv2/flann/general.h"
+#include "opencv2/flann/nn_index.h"
+#include "opencv2/flann/ground_truth.h"
+#include "opencv2/flann/index_testing.h"
+#include "opencv2/flann/sampling.h"
+#include "opencv2/flann/all_indices.h"
 
-
-struct AutotunedIndexParams : public IndexParams
+namespace cvflann
 {
-    AutotunedIndexParams(float target_precision = 0.8, float build_weight = 0.01, float memory_weight = 0, float sample_fraction = 0.1)
-    {
-        (*this)["algorithm"] = FLANN_INDEX_AUTOTUNED;
-        // precision desired (used for autotuning, -1 otherwise)
-        (*this)["target_precision"] = target_precision;
-        // build tree time weighting factor
-        (*this)["build_weight"] = build_weight;
-        // index memory weighting factor
-        (*this)["memory_weight"] = memory_weight;
-        // what fraction of the dataset to use for autotuning
-        (*this)["sample_fraction"] = sample_fraction;
-    }
+
+struct AutotunedIndexParams : public IndexParams {
+       AutotunedIndexParams( float target_precision_ = 0.8, float build_weight_ = 0.01,
+                       float memory_weight_ = 0, float sample_fraction_ = 0.1) :
+               IndexParams(FLANN_INDEX_AUTOTUNED),
+               target_precision(target_precision_),
+               build_weight(build_weight_),
+               memory_weight(memory_weight_),
+               sample_fraction(sample_fraction_) {};
+
+       float target_precision;    // precision desired (used for autotuning, -1 otherwise)
+       float build_weight;        // build tree time weighting factor
+       float memory_weight;       // index memory weighting factor
+    float sample_fraction;     // what fraction of the dataset to use for autotuning
+
+       void print() const
+       {
+               logger().info("Index type: %d\n",(int)algorithm);
+               logger().info("logger(). precision: %g\n", target_precision);
+               logger().info("Build weight: %g\n", build_weight);
+               logger().info("Memory weight: %g\n", memory_weight);
+               logger().info("Sample fraction: %g\n", sample_fraction);
+       }
 };
 
 
-template <typename Distance>
-class AutotunedIndex : public NNIndex<Distance>
+template <typename ELEM_TYPE, typename DIST_TYPE = typename DistType<ELEM_TYPE>::type >
+class AutotunedIndex : public NNIndex<ELEM_TYPE>
 {
-public:
-    typedef typename Distance::ElementType ElementType;
-    typedef typename Distance::ResultType DistanceType;
-
-    AutotunedIndex(const Matrix<ElementType>& inputData, const IndexParams& params = AutotunedIndexParams(), Distance d = Distance()) :
-        dataset_(inputData), distance_(d)
-    {
-        target_precision_ = get_param(params, "target_precision",0.8f);
-        build_weight_ =  get_param(params,"build_weight", 0.01f);
-        memory_weight_ = get_param(params, "memory_weight", 0.0f);
-        sample_fraction_ = get_param(params,"sample_fraction", 0.1f);
-        bestIndex_ = NULL;
-    }
+       NNIndex<ELEM_TYPE>* bestIndex;
 
-    AutotunedIndex(const AutotunedIndex&);
-    AutotunedIndex& operator=(const AutotunedIndex&);
+       IndexParams* bestParams;
+       SearchParams bestSearchParams;
 
-    virtual ~AutotunedIndex()
-    {
-        if (bestIndex_ != NULL) {
-            delete bestIndex_;
-            bestIndex_ = NULL;
-        }
-    }
-
-    /**
-     *          Method responsible with building the index.
-     */
-    virtual void buildIndex()
-    {
-        bestParams_ = estimateBuildParams();
-        Logger::info("----------------------------------------------------\n");
-        Logger::info("Autotuned parameters:\n");
-        print_params(bestParams_);
-        Logger::info("----------------------------------------------------\n");
-
-        bestIndex_ = create_index_by_type(dataset_, bestParams_, distance_);
-        bestIndex_->buildIndex();
-        speedup_ = estimateSearchParams(bestSearchParams_);
-        Logger::info("----------------------------------------------------\n");
-        Logger::info("Search parameters:\n");
-        print_params(bestSearchParams_);
-        Logger::info("----------------------------------------------------\n");
-    }
-
-    /**
-     *  Saves the index to a stream
-     */
-    virtual void saveIndex(FILE* stream)
-    {
-        save_value(stream, (int)bestIndex_->getType());
-        bestIndex_->saveIndex(stream);
-        save_value(stream, get_param<int>(bestSearchParams_, "checks"));
-    }
+    Matrix<ELEM_TYPE> sampledDataset;
+    Matrix<ELEM_TYPE> testDataset;
+    Matrix<int> gt_matches;
 
-    /**
-     *  Loads the index from a stream
-     */
-    virtual void loadIndex(FILE* stream)
-    {
-        int index_type;
+    float speedup;
 
-        load_value(stream, index_type);
-        IndexParams params;
-        params["algorithm"] = (flann_algorithm_t)index_type;
-        bestIndex_ = create_index_by_type<Distance>(dataset_, params, distance_);
-        bestIndex_->loadIndex(stream);
-        int checks;
-        load_value(stream, checks);
-        bestSearchParams_["checks"] = checks;
-    }
+       /**
+        * The dataset used by this index
+        */
+    const Matrix<ELEM_TYPE> dataset;
 
     /**
-     *      Method that searches for nearest-neighbors
+     * Index parameters
      */
-    virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
-    {
-        int checks = get_param(searchParams,"checks",FLANN_CHECKS_AUTOTUNED);
-        if (checks == FLANN_CHECKS_AUTOTUNED) {
-            bestIndex_->findNeighbors(result, vec, bestSearchParams_);
-        }
-        else {
-            bestIndex_->findNeighbors(result, vec, searchParams);
-        }
-    }
+    const AutotunedIndexParams& index_params;
 
+       AutotunedIndex& operator=(const AutotunedIndex&);
+       AutotunedIndex(const AutotunedIndex&);
 
-    IndexParams getParameters() const
-    {
-        return bestIndex_->getParameters();
-    }
+public:
 
-    SearchParams getSearchParameters() const
-    {
-        return bestSearchParams_;
-    }
+    AutotunedIndex(const Matrix<ELEM_TYPE>& inputData, const AutotunedIndexParams& params = AutotunedIndexParams() ) :
+       dataset(inputData), index_params(params)
+       {
+        bestIndex = NULL;
+        bestParams = NULL;
+       }
 
-    float getSpeedup() const
+    virtual ~AutotunedIndex()
     {
-        return speedup_;
-    }
-
+       if (bestIndex!=NULL) {
+               delete bestIndex;
+       }
+       if (bestParams!=NULL) {
+               delete bestParams;
+       }
+    };
 
     /**
-     *      Number of features in this index.
-     */
-    virtual size_t size() const
-    {
-        return bestIndex_->size();
-    }
+               Method responsible with building the index.
+       */
+       virtual void buildIndex()
+       {
+               bestParams = estimateBuildParams();
+               logger().info("----------------------------------------------------\n");
+               logger().info("Autotuned parameters:\n");
+               bestParams->print();
+               logger().info("----------------------------------------------------\n");
+       flann_algorithm_t index_type = bestParams->getIndexType();
+       switch (index_type) {
+       case FLANN_INDEX_LINEAR:
+               bestIndex = new LinearIndex<ELEM_TYPE>(dataset, (const LinearIndexParams&)*bestParams);
+               break;
+       case FLANN_INDEX_KDTREE:
+               bestIndex = new KDTreeIndex<ELEM_TYPE>(dataset, (const KDTreeIndexParams&)*bestParams);
+               break;
+       case FLANN_INDEX_KMEANS:
+               bestIndex = new KMeansIndex<ELEM_TYPE>(dataset, (const KMeansIndexParams&)*bestParams);
+               break;
+       default:
+               throw FLANNException("Unknown algorithm choosen by the autotuning, most likely a bug.");
+       }
+               bestIndex->buildIndex();
+               speedup = estimateSearchParams(bestSearchParams);
+       }
 
     /**
-     *  The length of each vector in this index.
-     */
-    virtual size_t veclen() const
+        Saves the index to a stream
+    */
+    virtual void saveIndex(FILE* stream)
     {
-        return bestIndex_->veclen();
+       save_value(stream, (int)bestIndex->getType());
+       bestIndex->saveIndex(stream);
+       save_value(stream, bestSearchParams);
     }
 
     /**
-     * The amount of memory (in bytes) this index uses.
-     */
-    virtual int usedMemory() const
+        Loads the index from a stream
+    */
+    virtual void loadIndex(FILE* stream)
     {
-        return bestIndex_->usedMemory();
+       int index_type;
+       load_value(stream,index_type);
+       IndexParams* params = ParamsFactory_instance().create((flann_algorithm_t)index_type);
+       bestIndex = create_index_by_type(dataset, *params);
+       bestIndex->loadIndex(stream);
+       load_value(stream, bestSearchParams);
     }
 
+       /**
+               Method that searches for nearest-neighbors
+       */
+       virtual void findNeighbors(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec, const SearchParams& searchParams)
+       {
+               if (searchParams.checks==-2) {
+                       bestIndex->findNeighbors(result, vec, bestSearchParams);
+               }
+               else {
+                       bestIndex->findNeighbors(result, vec, searchParams);
+               }
+       }
+
+
+       const IndexParams* getParameters() const
+       {
+               return bestIndex->getParameters();
+       }
+
+
+       /**
+               Number of features in this index.
+       */
+       virtual size_t size() const
+       {
+               return bestIndex->size();
+       }
+
+       /**
+               The length of each vector in this index.
+       */
+       virtual size_t veclen() const
+       {
+               return bestIndex->veclen();
+       }
+
+       /**
+        The amount of memory (in bytes) this index uses.
+       */
+       virtual int usedMemory() const
+       {
+               return bestIndex->usedMemory();
+       }
+
     /**
-     * Algorithm name
-     */
+    * Algorithm name
+    */
     virtual flann_algorithm_t getType() const
     {
-        return FLANN_INDEX_AUTOTUNED;
+       return FLANN_INDEX_AUTOTUNED;
     }
 
 private:
 
-    struct CostData
-    {
+    struct CostData {
         float searchTimeCost;
         float buildTimeCost;
+        float timeCost;
         float memoryCost;
         float totalCost;
-        IndexParams params;
     };
 
-    void evaluate_kmeans(CostData& cost)
+    typedef std::pair<CostData, KDTreeIndexParams> KDTreeCostData;
+    typedef std::pair<CostData, KMeansIndexParams> KMeansCostData;
+
+
+    void evaluate_kmeans(CostData& cost, const KMeansIndexParams& kmeans_params)
     {
         StartStopTimer t;
         int checks;
         const int nn = 1;
 
-        Logger::info("KMeansTree using params: max_iterations=%d, branching=%d\n",
-                     get_param<int>(cost.params,"iterations"),
-                     get_param<int>(cost.params,"branching"));
-        KMeansIndex<Distance> kmeans(sampledDataset_, cost.params, distance_);
+        logger().info("KMeansTree using params: max_iterations=%d, branching=%d\n", kmeans_params.iterations, kmeans_params.branching);
+        KMeansIndex<ELEM_TYPE> kmeans(sampledDataset, kmeans_params);
         // measure index build time
         t.start();
         kmeans.buildIndex();
@@ -232,24 +244,25 @@ private:
         float buildTime = (float)t.value;
 
         // measure search time
-        float searchTime = test_index_precision(kmeans, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn);
+        float searchTime = test_index_precision(kmeans, sampledDataset, testDataset, gt_matches, index_params.target_precision, checks, nn);;
 
-        float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float));
-        cost.memoryCost = (kmeans.usedMemory() + datasetMemory) / datasetMemory;
+        float datasetMemory = (float)(sampledDataset.rows*sampledDataset.cols*sizeof(float));
+        cost.memoryCost = (kmeans.usedMemory()+datasetMemory)/datasetMemory;
         cost.searchTimeCost = searchTime;
         cost.buildTimeCost = buildTime;
-        Logger::info("KMeansTree buildTime=%g, searchTime=%g, build_weight=%g\n", buildTime, searchTime, build_weight_);
+        cost.timeCost = (buildTime*index_params.build_weight+searchTime);
+        logger().info("KMeansTree buildTime=%g, searchTime=%g, timeCost=%g, buildTimeFactor=%g\n",buildTime, searchTime, cost.timeCost, index_params.build_weight);
     }
 
 
-    void evaluate_kdtree(CostData& cost)
+     void evaluate_kdtree(CostData& cost, const KDTreeIndexParams& kdtree_params)
     {
         StartStopTimer t;
         int checks;
         const int nn = 1;
 
-        Logger::info("KDTree using params: trees=%d\n", get_param<int>(cost.params,"trees"));
-        KDTreeIndex<Distance> kdtree(sampledDataset_, cost.params, distance_);
+        logger().info("KDTree using params: trees=%d\n",kdtree_params.trees);
+        KDTreeIndex<ELEM_TYPE> kdtree(sampledDataset, kdtree_params);
 
         t.start();
         kdtree.buildIndex();
@@ -257,220 +270,267 @@ private:
         float buildTime = (float)t.value;
 
         //measure search time
-        float searchTime = test_index_precision(kdtree, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn);
+        float searchTime = test_index_precision(kdtree, sampledDataset, testDataset, gt_matches, index_params.target_precision, checks, nn);
 
-        float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float));
-        cost.memoryCost = (kdtree.usedMemory() + datasetMemory) / datasetMemory;
+        float datasetMemory = (float)(sampledDataset.rows*sampledDataset.cols*sizeof(float));
+        cost.memoryCost = (kdtree.usedMemory()+datasetMemory)/datasetMemory;
         cost.searchTimeCost = searchTime;
         cost.buildTimeCost = buildTime;
-        Logger::info("KDTree buildTime=%g, searchTime=%g\n", buildTime, searchTime);
+        cost.timeCost = (buildTime*index_params.build_weight+searchTime);
+        logger().info("KDTree buildTime=%g, searchTime=%g, timeCost=%g\n",buildTime, searchTime, cost.timeCost);
     }
 
 
-    //    struct KMeansSimpleDownhillFunctor {
-    //
-    //        Autotune& autotuner;
-    //        KMeansSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {};
-    //
-    //        float operator()(int* params) {
-    //
-    //            float maxFloat = numeric_limits<float>::max();
-    //
-    //            if (params[0]<2) return maxFloat;
-    //            if (params[1]<0) return maxFloat;
-    //
-    //            CostData c;
-    //            c.params["algorithm"] = KMEANS;
-    //            c.params["centers-init"] = CENTERS_RANDOM;
-    //            c.params["branching"] = params[0];
-    //            c.params["max-iterations"] = params[1];
-    //
-    //            autotuner.evaluate_kmeans(c);
-    //
-    //            return c.timeCost;
-    //
-    //        }
-    //    };
-    //
-    //    struct KDTreeSimpleDownhillFunctor {
-    //
-    //        Autotune& autotuner;
-    //        KDTreeSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {};
-    //
-    //        float operator()(int* params) {
-    //            float maxFloat = numeric_limits<float>::max();
-    //
-    //            if (params[0]<1) return maxFloat;
-    //
-    //            CostData c;
-    //            c.params["algorithm"] = KDTREE;
-    //            c.params["trees"] = params[0];
-    //
-    //            autotuner.evaluate_kdtree(c);
-    //
-    //            return c.timeCost;
-    //
-    //        }
-    //    };
-
-
-
-    void optimizeKMeans(std::vector<CostData>& costs)
+//    struct KMeansSimpleDownhillFunctor {
+//
+//        Autotune& autotuner;
+//        KMeansSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {};
+//
+//        float operator()(int* params) {
+//
+//            float maxFloat = numeric_limits<float>::max();
+//
+//            if (params[0]<2) return maxFloat;
+//            if (params[1]<0) return maxFloat;
+//
+//            CostData c;
+//            c.params["algorithm"] = KMEANS;
+//            c.params["centers-init"] = CENTERS_RANDOM;
+//            c.params["branching"] = params[0];
+//            c.params["max-iterations"] = params[1];
+//
+//            autotuner.evaluate_kmeans(c);
+//
+//            return c.timeCost;
+//
+//        }
+//    };
+//
+//    struct KDTreeSimpleDownhillFunctor {
+//
+//        Autotune& autotuner;
+//        KDTreeSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {};
+//
+//        float operator()(int* params) {
+//            float maxFloat = numeric_limits<float>::max();
+//
+//            if (params[0]<1) return maxFloat;
+//
+//            CostData c;
+//            c.params["algorithm"] = KDTREE;
+//            c.params["trees"] = params[0];
+//
+//            autotuner.evaluate_kdtree(c);
+//
+//            return c.timeCost;
+//
+//        }
+//    };
+
+
+
+    KMeansCostData optimizeKMeans()
     {
-        Logger::info("KMEANS, Step 1: Exploring parameter space\n");
+        logger().info("KMEANS, Step 1: Exploring parameter space\n");
 
         // explore kmeans parameters space using combinations of the parameters below
         int maxIterations[] = { 1, 5, 10, 15 };
         int branchingFactors[] = { 16, 32, 64, 128, 256 };
 
-        int kmeansParamSpaceSize = FLANN_ARRAY_LEN(maxIterations) * FLANN_ARRAY_LEN(branchingFactors);
-        costs.reserve(costs.size() + kmeansParamSpaceSize);
+        int kmeansParamSpaceSize = ARRAY_LEN(maxIterations)*ARRAY_LEN(branchingFactors);
+
+        std::vector<KMeansCostData> kmeansCosts(kmeansParamSpaceSize);
+
+//        CostData* kmeansCosts = new CostData[kmeansParamSpaceSize];
 
         // evaluate kmeans for all parameter combinations
-        for (size_t i = 0; i < FLANN_ARRAY_LEN(maxIterations); ++i) {
-            for (size_t j = 0; j < FLANN_ARRAY_LEN(branchingFactors); ++j) {
-                CostData cost;
-                cost.params["algorithm"] = FLANN_INDEX_KMEANS;
-                cost.params["centers_init"] = FLANN_CENTERS_RANDOM;
-                cost.params["iterations"] = maxIterations[i];
-                cost.params["branching"] = branchingFactors[j];
-
-                evaluate_kmeans(cost);
-                costs.push_back(cost);
+        int cnt = 0;
+        for (size_t i=0; i<ARRAY_LEN(maxIterations); ++i) {
+            for (size_t j=0; j<ARRAY_LEN(branchingFactors); ++j) {
+
+               kmeansCosts[cnt].second.centers_init = FLANN_CENTERS_RANDOM;
+               kmeansCosts[cnt].second.iterations = maxIterations[i];
+               kmeansCosts[cnt].second.branching = branchingFactors[j];
+
+                evaluate_kmeans(kmeansCosts[cnt].first, kmeansCosts[cnt].second);
+
+                int k = cnt;
+                // order by time cost
+                while (k>0 && kmeansCosts[k].first.timeCost < kmeansCosts[k-1].first.timeCost) {
+                    swap(kmeansCosts[k],kmeansCosts[k-1]);
+                    --k;
+                }
+                ++cnt;
+            }
+        }
+
+//         logger().info("KMEANS, Step 2: simplex-downhill optimization\n");
+//
+//         const int n = 2;
+//         // choose initial simplex points as the best parameters so far
+//         int kmeansNMPoints[n*(n+1)];
+//         float kmeansVals[n+1];
+//         for (int i=0;i<n+1;++i) {
+//             kmeansNMPoints[i*n] = (int)kmeansCosts[i].params["branching"];
+//             kmeansNMPoints[i*n+1] = (int)kmeansCosts[i].params["max-iterations"];
+//             kmeansVals[i] = kmeansCosts[i].timeCost;
+//         }
+//         KMeansSimpleDownhillFunctor kmeans_cost_func(*this);
+//         // run optimization
+//         optimizeSimplexDownhill(kmeansNMPoints,n,kmeans_cost_func,kmeansVals);
+//         // store results
+//         for (int i=0;i<n+1;++i) {
+//             kmeansCosts[i].params["branching"] = kmeansNMPoints[i*2];
+//             kmeansCosts[i].params["max-iterations"] = kmeansNMPoints[i*2+1];
+//             kmeansCosts[i].timeCost = kmeansVals[i];
+//         }
+
+        float optTimeCost = kmeansCosts[0].first.timeCost;
+        // recompute total costs factoring in the memory costs
+        for (int i=0;i<kmeansParamSpaceSize;++i) {
+            kmeansCosts[i].first.totalCost = (kmeansCosts[i].first.timeCost/optTimeCost + index_params.memory_weight * kmeansCosts[i].first.memoryCost);
+
+            int k = i;
+            while (k>0 && kmeansCosts[k].first.totalCost < kmeansCosts[k-1].first.totalCost) {
+                swap(kmeansCosts[k],kmeansCosts[k-1]);
+                k--;
             }
         }
+        // display the costs obtained
+        for (int i=0;i<kmeansParamSpaceSize;++i) {
+            logger().info("KMeans, branching=%d, iterations=%d, time_cost=%g[%g] (build=%g, search=%g), memory_cost=%g, cost=%g\n",
+                kmeansCosts[i].second.branching, kmeansCosts[i].second.iterations,
+            kmeansCosts[i].first.timeCost,kmeansCosts[i].first.timeCost/optTimeCost,
+            kmeansCosts[i].first.buildTimeCost, kmeansCosts[i].first.searchTimeCost,
+            kmeansCosts[i].first.memoryCost,kmeansCosts[i].first.totalCost);
+        }
 
-        //         Logger::info("KMEANS, Step 2: simplex-downhill optimization\n");
-        //
-        //         const int n = 2;
-        //         // choose initial simplex points as the best parameters so far
-        //         int kmeansNMPoints[n*(n+1)];
-        //         float kmeansVals[n+1];
-        //         for (int i=0;i<n+1;++i) {
-        //             kmeansNMPoints[i*n] = (int)kmeansCosts[i].params["branching"];
-        //             kmeansNMPoints[i*n+1] = (int)kmeansCosts[i].params["max-iterations"];
-        //             kmeansVals[i] = kmeansCosts[i].timeCost;
-        //         }
-        //         KMeansSimpleDownhillFunctor kmeans_cost_func(*this);
-        //         // run optimization
-        //         optimizeSimplexDownhill(kmeansNMPoints,n,kmeans_cost_func,kmeansVals);
-        //         // store results
-        //         for (int i=0;i<n+1;++i) {
-        //             kmeansCosts[i].params["branching"] = kmeansNMPoints[i*2];
-        //             kmeansCosts[i].params["max-iterations"] = kmeansNMPoints[i*2+1];
-        //             kmeansCosts[i].timeCost = kmeansVals[i];
-        //         }
+        return kmeansCosts[0];
     }
 
 
-    void optimizeKDTree(std::vector<CostData>& costs)
+    KDTreeCostData optimizeKDTree()
     {
-        Logger::info("KD-TREE, Step 1: Exploring parameter space\n");
+
+        logger().info("KD-TREE, Step 1: Exploring parameter space\n");
 
         // explore kd-tree parameters space using the parameters below
         int testTrees[] = { 1, 4, 8, 16, 32 };
 
+        size_t kdtreeParamSpaceSize = ARRAY_LEN(testTrees);
+        std::vector<KDTreeCostData> kdtreeCosts(kdtreeParamSpaceSize);
+
         // evaluate kdtree for all parameter combinations
-        for (size_t i = 0; i < FLANN_ARRAY_LEN(testTrees); ++i) {
-            CostData cost;
-            cost.params["trees"] = testTrees[i];
+        int cnt = 0;
+        for (size_t i=0; i<ARRAY_LEN(testTrees); ++i) {
+               kdtreeCosts[cnt].second.trees = testTrees[i];
+
+            evaluate_kdtree(kdtreeCosts[cnt].first, kdtreeCosts[cnt].second);
+
+            int k = cnt;
+            // order by time cost
+            while (k>0 && kdtreeCosts[k].first.timeCost < kdtreeCosts[k-1].first.timeCost) {
+                swap(kdtreeCosts[k],kdtreeCosts[k-1]);
+                --k;
+            }
+            ++cnt;
+        }
 
-            evaluate_kdtree(cost);
-            costs.push_back(cost);
+//         logger().info("KD-TREE, Step 2: simplex-downhill optimization\n");
+//
+//         const int n = 1;
+//         // choose initial simplex points as the best parameters so far
+//         int kdtreeNMPoints[n*(n+1)];
+//         float kdtreeVals[n+1];
+//         for (int i=0;i<n+1;++i) {
+//             kdtreeNMPoints[i] = (int)kdtreeCosts[i].params["trees"];
+//             kdtreeVals[i] = kdtreeCosts[i].timeCost;
+//         }
+//         KDTreeSimpleDownhillFunctor kdtree_cost_func(*this);
+//         // run optimization
+//         optimizeSimplexDownhill(kdtreeNMPoints,n,kdtree_cost_func,kdtreeVals);
+//         // store results
+//         for (int i=0;i<n+1;++i) {
+//             kdtreeCosts[i].params["trees"] = kdtreeNMPoints[i];
+//             kdtreeCosts[i].timeCost = kdtreeVals[i];
+//         }
+
+        float optTimeCost = kdtreeCosts[0].first.timeCost;
+        // recompute costs for kd-tree factoring in memory cost
+        for (size_t i=0;i<kdtreeParamSpaceSize;++i) {
+            kdtreeCosts[i].first.totalCost = (kdtreeCosts[i].first.timeCost/optTimeCost + index_params.memory_weight * kdtreeCosts[i].first.memoryCost);
+
+            int k = (int)i;
+            while (k>0 && kdtreeCosts[k].first.totalCost < kdtreeCosts[k-1].first.totalCost) {
+                swap(kdtreeCosts[k],kdtreeCosts[k-1]);
+                k--;
+            }
+        }
+        // display costs obtained
+        for (size_t i=0;i<kdtreeParamSpaceSize;++i) {
+            logger().info("kd-tree, trees=%d, time_cost=%g[%g] (build=%g, search=%g), memory_cost=%g, cost=%g\n",
+            kdtreeCosts[i].second.trees,kdtreeCosts[i].first.timeCost,kdtreeCosts[i].first.timeCost/optTimeCost,
+            kdtreeCosts[i].first.buildTimeCost, kdtreeCosts[i].first.searchTimeCost,
+            kdtreeCosts[i].first.memoryCost,kdtreeCosts[i].first.totalCost);
         }
 
-        //         Logger::info("KD-TREE, Step 2: simplex-downhill optimization\n");
-        //
-        //         const int n = 1;
-        //         // choose initial simplex points as the best parameters so far
-        //         int kdtreeNMPoints[n*(n+1)];
-        //         float kdtreeVals[n+1];
-        //         for (int i=0;i<n+1;++i) {
-        //             kdtreeNMPoints[i] = (int)kdtreeCosts[i].params["trees"];
-        //             kdtreeVals[i] = kdtreeCosts[i].timeCost;
-        //         }
-        //         KDTreeSimpleDownhillFunctor kdtree_cost_func(*this);
-        //         // run optimization
-        //         optimizeSimplexDownhill(kdtreeNMPoints,n,kdtree_cost_func,kdtreeVals);
-        //         // store results
-        //         for (int i=0;i<n+1;++i) {
-        //             kdtreeCosts[i].params["trees"] = kdtreeNMPoints[i];
-        //             kdtreeCosts[i].timeCost = kdtreeVals[i];
-        //         }
+        return kdtreeCosts[0];
     }
 
     /**
-     *  Chooses the best nearest-neighbor algorithm and estimates the optimal
-     *  parameters to use when building the index (for a given precision).
-     *  Returns a dictionary with the optimal parameters.
-     */
-    IndexParams estimateBuildParams()
+        Chooses the best nearest-neighbor algorithm and estimates the optimal
+        parameters to use when building the index (for a given precision).
+        Returns a dictionary with the optimal parameters.
+    */
+    IndexParams* estimateBuildParams()
     {
-        std::vector<CostData> costs;
+        int sampleSize = int(index_params.sample_fraction*dataset.rows);
+        int testSampleSize = std::min(sampleSize/10, 1000);
 
-        int sampleSize = int(sample_fraction_ * dataset_.rows);
-        int testSampleSize = std::min(sampleSize / 10, 1000);
-
-        Logger::info("Entering autotuning, dataset size: %d, sampleSize: %d, testSampleSize: %d, target precision: %g\n", dataset_.rows, sampleSize, testSampleSize, target_precision_);
+        logger().info("Entering autotuning, dataset size: %d, sampleSize: %d, testSampleSize: %d\n",dataset.rows, sampleSize, testSampleSize);
 
         // For a very small dataset, it makes no sense to build any fancy index, just
         // use linear search
-        if (testSampleSize < 10) {
-            Logger::info("Choosing linear, dataset too small\n");
-            return LinearIndexParams();
+        if (testSampleSize<10) {
+            logger().info("Choosing linear, dataset too small\n");
+            return new LinearIndexParams();
         }
 
         // We use a fraction of the original dataset to speedup the autotune algorithm
-        sampledDataset_ = random_sample(dataset_, sampleSize);
+        sampledDataset = random_sample(dataset,sampleSize);
         // We use a cross-validation approach, first we sample a testset from the dataset
-        testDataset_ = random_sample(sampledDataset_, testSampleSize, true);
+        testDataset = random_sample(sampledDataset,testSampleSize,true);
 
         // We compute the ground truth using linear search
-        Logger::info("Computing ground truth... \n");
-        gt_matches_ = Matrix<int>(new int[testDataset_.rows], testDataset_.rows, 1);
+        logger().info("Computing ground truth... \n");
+        gt_matches = Matrix<int>(new int[testDataset.rows],(long)testDataset.rows, 1);
         StartStopTimer t;
         t.start();
-        compute_ground_truth<Distance>(sampledDataset_, testDataset_, gt_matches_, 0, distance_);
+        compute_ground_truth(sampledDataset, testDataset, gt_matches, 0);
         t.stop();
-
-        CostData linear_cost;
-        linear_cost.searchTimeCost = (float)t.value;
-        linear_cost.buildTimeCost = 0;
-        linear_cost.memoryCost = 0;
-        linear_cost.params["algorithm"] = FLANN_INDEX_LINEAR;
-
-        costs.push_back(linear_cost);
+        float bestCost = (float)t.value;
+        IndexParams* bestParams = new LinearIndexParams();
 
         // Start parameter autotune process
-        Logger::info("Autotuning parameters...\n");
+        logger().info("Autotuning parameters...\n");
 
-        optimizeKMeans(costs);
-        optimizeKDTree(costs);
 
-        float bestTimeCost = costs[0].searchTimeCost;
-        for (size_t i = 0; i < costs.size(); ++i) {
-            float timeCost = costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost;
-            if (timeCost < bestTimeCost) {
-                bestTimeCost = timeCost;
-            }
+        KMeansCostData kmeansCost = optimizeKMeans();
+        if (kmeansCost.first.totalCost<bestCost) {
+            bestParams = new KMeansIndexParams(kmeansCost.second);
+            bestCost = kmeansCost.first.totalCost;
         }
 
-        float bestCost = costs[0].searchTimeCost / bestTimeCost;
-        IndexParams bestParams = costs[0].params;
-        if (bestTimeCost > 0) {
-            for (size_t i = 0; i < costs.size(); ++i) {
-                float crtCost = (costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost) / bestTimeCost +
-                                memory_weight_ * costs[i].memoryCost;
-                if (crtCost < bestCost) {
-                    bestCost = crtCost;
-                    bestParams = costs[i].params;
-                }
-            }
+        KDTreeCostData kdtreeCost = optimizeKDTree();
+
+        if (kdtreeCost.first.totalCost<bestCost) {
+            bestParams = new KDTreeIndexParams(kdtreeCost.second);
+            bestCost = kdtreeCost.first.totalCost;
         }
 
-        delete[] gt_matches_.data;
-        delete[] testDataset_.data;
-        delete[] sampledDataset_.data;
+        gt_matches.release();
+        sampledDataset.release();
+        testDataset.release();
 
         return bestParams;
     }
@@ -478,48 +538,48 @@ private:
 
 
     /**
-     *  Estimates the search time parameters needed to get the desired precision.
-     *  Precondition: the index is built
-     *  Postcondition: the searchParams will have the optimum params set, also the speedup obtained over linear search.
-     */
+        Estimates the search time parameters needed to get the desired precision.
+        Precondition: the index is built
+        Postcondition: the searchParams will have the optimum params set, also the speedup obtained over linear search.
+    */
     float estimateSearchParams(SearchParams& searchParams)
     {
         const int nn = 1;
         const size_t SAMPLE_COUNT = 1000;
 
-        assert(bestIndex_ != NULL); // must have a valid index
+        assert(bestIndex!=NULL);   // must have a valid index
 
         float speedup = 0;
 
-        int samples = (int)std::min(dataset_.rows / 10, SAMPLE_COUNT);
-        if (samples > 0) {
-            Matrix<ElementType> testDataset = random_sample(dataset_, samples);
+        int samples = (int)std::min(dataset.rows/10, SAMPLE_COUNT);
+        if (samples>0) {
+            Matrix<ELEM_TYPE> testDataset = random_sample(dataset,samples);
 
-            Logger::info("Computing ground truth\n");
+            logger().info("Computing ground truth\n");
 
             // we need to compute the ground truth first
-            Matrix<int> gt_matches(new int[testDataset.rows], testDataset.rows, 1);
+            Matrix<int> gt_matches(new int[testDataset.rows],(long)testDataset.rows,1);
             StartStopTimer t;
             t.start();
-            compute_ground_truth<Distance>(dataset_, testDataset, gt_matches, 1, distance_);
+            compute_ground_truth(dataset, testDataset, gt_matches,1);
             t.stop();
             float linear = (float)t.value;
 
             int checks;
-            Logger::info("Estimating number of checks\n");
+            logger().info("Estimating number of checks\n");
 
             float searchTime;
             float cb_index;
-            if (bestIndex_->getType() == FLANN_INDEX_KMEANS) {
-                Logger::info("KMeans algorithm, estimating cluster border factor\n");
-                KMeansIndex<Distance>* kmeans = (KMeansIndex<Distance>*)bestIndex_;
+            if (bestIndex->getType() == FLANN_INDEX_KMEANS) {
+                logger().info("KMeans algorithm, estimating cluster border factor\n");
+                KMeansIndex<ELEM_TYPE>* kmeans = (KMeansIndex<ELEM_TYPE>*)bestIndex;
                 float bestSearchTime = -1;
                 float best_cb_index = -1;
                 int best_checks = -1;
-                for (cb_index = 0; cb_index < 1.1f; cb_index += 0.2f) {
+                for (cb_index = 0;cb_index<1.1f; cb_index+=0.2f) {
                     kmeans->set_cb_index(cb_index);
-                    searchTime = test_index_precision(*kmeans, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1);
-                    if ((searchTime < bestSearchTime) || (bestSearchTime == -1)) {
+                    searchTime = test_index_precision(*kmeans, dataset, testDataset, gt_matches, index_params.target_precision, checks, nn, 1);
+                    if (searchTime<bestSearchTime || bestSearchTime == -1) {
                         bestSearchTime = searchTime;
                         best_cb_index = cb_index;
                         best_checks = checks;
@@ -530,54 +590,26 @@ private:
                 checks = best_checks;
 
                 kmeans->set_cb_index(best_cb_index);
-                Logger::info("Optimum cb_index: %g\n", cb_index);
-                bestParams_["cb_index"] = cb_index;
+                logger().info("Optimum cb_index: %g\n",cb_index);
+                ((KMeansIndexParams*)bestParams)->cb_index = cb_index;
             }
             else {
-                searchTime = test_index_precision(*bestIndex_, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1);
+                searchTime = test_index_precision(*bestIndex, dataset, testDataset, gt_matches, index_params.target_precision, checks, nn, 1);
             }
 
-            Logger::info("Required number of checks: %d \n", checks);
-            searchParams["checks"] = checks;
+            logger().info("Required number of checks: %d \n",checks);;
+            searchParams.checks = checks;
 
-            speedup = linear / searchTime;
+            speedup = linear/searchTime;
 
-            delete[] gt_matches.data;
-            delete[] testDataset.data;
+            gt_matches.release();
         }
 
         return speedup;
     }
 
-private:
-    NNIndex<Distance>* bestIndex_;
-
-    IndexParams bestParams_;
-    SearchParams bestSearchParams_;
-
-    Matrix<ElementType> sampledDataset_;
-    Matrix<ElementType> testDataset_;
-    Matrix<int> gt_matches_;
-
-    float speedup_;
-
-    /**
-     * The dataset used by this index
-     */
-    const Matrix<ElementType> dataset_;
-
-    /**
-     * Index parameters
-     */
-    float target_precision_;
-    float build_weight_;
-    float memory_weight_;
-    float sample_fraction_;
-
-    Distance distance_;
-
-
 };
-}
 
-#endif /* OPENCV_FLANN_AUTOTUNED_INDEX_H_ */
+} // namespace cvflann
+
+#endif /* _OPENCV_AUTOTUNEDINDEX_H_ */
index 527ca1a..7738bf6 100644 (file)
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef OPENCV_FLANN_COMPOSITE_INDEX_H_
-#define OPENCV_FLANN_COMPOSITE_INDEX_H_
+#ifndef _OPENCV_COMPOSITETREE_H_
+#define _OPENCV_COMPOSITETREE_H_
 
-#include "general.h"
-#include "nn_index.h"
-#include "kdtree_index.h"
-#include "kmeans_index.h"
+#include "opencv2/flann/general.h"
+#include "opencv2/flann/nn_index.h"
 
 namespace cvflann
 {
 
-/**
- * Index parameters for the CompositeIndex.
- */
-struct CompositeIndexParams : public IndexParams
-{
-    CompositeIndexParams(int trees = 4, int branching = 32, int iterations = 11,
-                         flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 )
-    {
-        (*this)["algorithm"] = FLANN_INDEX_KMEANS;
-        // number of randomized trees to use (for kdtree)
-        (*this)["trees"] = trees;
-        // branching factor
-        (*this)["branching"] = branching;
-        // max iterations to perform in one kmeans clustering (kmeans tree)
-        (*this)["iterations"] = iterations;
-        // algorithm used for picking the initial cluster centers for kmeans tree
-        (*this)["centers_init"] = centers_init;
-        // cluster boundary index. Used when searching the kmeans tree
-        (*this)["cb_index"] = cb_index;
-    }
+
+struct CompositeIndexParams : public IndexParams {
+       CompositeIndexParams(int trees_ = 4, int branching_ = 32, int iterations_ = 11,
+                       flann_centers_init_t centers_init_ = FLANN_CENTERS_RANDOM, float cb_index_ = 0.2 ) :
+               IndexParams(FLANN_INDEX_COMPOSITE),
+               trees(trees_),
+               branching(branching_),
+               iterations(iterations_),
+               centers_init(centers_init_),
+               cb_index(cb_index_) {};
+
+       int trees;                 // number of randomized trees to use (for kdtree)
+       int branching;             // branching factor (for kmeans tree)
+       int iterations;            // max iterations to perform in one kmeans clustering (kmeans tree)
+       flann_centers_init_t centers_init;          // algorithm used for picking the initial cluster centers for kmeans tree
+    float cb_index;            // cluster boundary index. Used when searching the kmeans tree
+
+       void print() const
+       {
+               logger().info("Index type: %d\n",(int)algorithm);
+               logger().info("Trees: %d\n", trees);
+               logger().info("Branching: %d\n", branching);
+               logger().info("Iterations: %d\n", iterations);
+               logger().info("Centres initialisation: %d\n", centers_init);
+               logger().info("Cluster boundary weight: %g\n", cb_index);
+       }
 };
 
 
-/**
- * This index builds a kd-tree index and a k-means index and performs nearest
- * neighbour search both indexes. This gives a slight boost in search performance
- * as some of the neighbours that are missed by one index are found by the other.
- */
-template <typename Distance>
-class CompositeIndex : public NNIndex<Distance>
+
+template <typename ELEM_TYPE, typename DIST_TYPE = typename DistType<ELEM_TYPE>::type >
+class CompositeIndex : public NNIndex<ELEM_TYPE>
 {
+       KMeansIndex<ELEM_TYPE, DIST_TYPE>* kmeans;
+       KDTreeIndex<ELEM_TYPE, DIST_TYPE>* kdtree;
+
+    const Matrix<ELEM_TYPE> dataset;
+
+    const IndexParams& index_params;
+
+       CompositeIndex& operator=(const CompositeIndex&);
+       CompositeIndex(const CompositeIndex&);
 public:
-    typedef typename Distance::ElementType ElementType;
-    typedef typename Distance::ResultType DistanceType;
-
-    /**
-     * Index constructor
-     * @param inputData dataset containing the points to index
-     * @param params Index parameters
-     * @param d Distance functor
-     * @return
-     */
-    CompositeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = CompositeIndexParams(),
-                   Distance d = Distance()) : index_params_(params)
-    {
-        kdtree_index_ = new KDTreeIndex<Distance>(inputData, params, d);
-        kmeans_index_ = new KMeansIndex<Distance>(inputData, params, d);
 
-    }
+       CompositeIndex(const Matrix<ELEM_TYPE>& inputData, const CompositeIndexParams& params = CompositeIndexParams() ) :
+               dataset(inputData), index_params(params)
+       {
+               KDTreeIndexParams kdtree_params(params.trees);
+               KMeansIndexParams kmeans_params(params.branching, params.iterations, params.centers_init, params.cb_index);
 
-    CompositeIndex(const CompositeIndex&);
-    CompositeIndex& operator=(const CompositeIndex&);
+               kdtree = new KDTreeIndex<ELEM_TYPE, DIST_TYPE>(inputData,kdtree_params);
+               kmeans = new KMeansIndex<ELEM_TYPE, DIST_TYPE>(inputData,kmeans_params);
+
+       }
+
+       virtual ~CompositeIndex()
+       {
+               delete kdtree;
+               delete kmeans;
+       }
 
-    virtual ~CompositeIndex()
-    {
-        delete kdtree_index_;
-        delete kmeans_index_;
-    }
 
-    /**
-     * @return The index type
-     */
     flann_algorithm_t getType() const
     {
         return FLANN_INDEX_COMPOSITE;
     }
 
-    /**
-     * @return Size of the index
-     */
+
     size_t size() const
-    {
-        return kdtree_index_->size();
-    }
+       {
+               return dataset.rows;
+       }
 
-    /**
-     * \returns The dimensionality of the features in this index.
-     */
-    size_t veclen() const
-    {
-        return kdtree_index_->veclen();
-    }
+       size_t veclen() const
+       {
+               return dataset.cols;
+       }
 
-    /**
-     * \returns The amount of memory (in bytes) used by the index.
-     */
-    int usedMemory() const
-    {
-        return kmeans_index_->usedMemory() + kdtree_index_->usedMemory();
-    }
 
-    /**
-     * \brief Builds the index
-     */
-    void buildIndex()
-    {
-        Logger::info("Building kmeans tree...\n");
-        kmeans_index_->buildIndex();
-        Logger::info("Building kdtree tree...\n");
-        kdtree_index_->buildIndex();
-    }
+       int usedMemory() const
+       {
+               return kmeans->usedMemory()+kdtree->usedMemory();
+       }
+
+       void buildIndex()
+       {
+               logger().info("Building kmeans tree...\n");
+               kmeans->buildIndex();
+               logger().info("Building kdtree tree...\n");
+               kdtree->buildIndex();
+       }
+
 
-    /**
-     * \brief Saves the index to a stream
-     * \param stream The stream to save the index to
-     */
     void saveIndex(FILE* stream)
     {
-        kmeans_index_->saveIndex(stream);
-        kdtree_index_->saveIndex(stream);
+       kmeans->saveIndex(stream);
+       kdtree->saveIndex(stream);
     }
 
-    /**
-     * \brief Loads the index from a stream
-     * \param stream The stream from which the index is loaded
-     */
-    void loadIndex(FILE* stream)
-    {
-        kmeans_index_->loadIndex(stream);
-        kdtree_index_->loadIndex(stream);
-    }
 
-    /**
-     * \returns The index parameters
-     */
-    IndexParams getParameters() const
+    void loadIndex(FILE* stream)
     {
-        return index_params_;
+       kmeans->loadIndex(stream);
+       kdtree->loadIndex(stream);
     }
 
-    /**
-     * \brief Method that searches for nearest-neighbours
-     */
-    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
-    {
-        kmeans_index_->findNeighbors(result, vec, searchParams);
-        kdtree_index_->findNeighbors(result, vec, searchParams);
-    }
+       void findNeighbors(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec, const SearchParams& searchParams)
+       {
+               kmeans->findNeighbors(result,vec,searchParams);
+               kdtree->findNeighbors(result,vec,searchParams);
+       }
 
-private:
-    /** The k-means index */
-    KMeansIndex<Distance>* kmeans_index_;
+       const IndexParams* getParameters() const
+       {
+               return &index_params;
+       }
 
-    /** The kd-tree index */
-    KDTreeIndex<Distance>* kdtree_index_;
 
-    /** The index parameters */
-    const IndexParams index_params_;
 };
 
-}
+} // namespace cvflann
 
-#endif //OPENCV_FLANN_COMPOSITE_INDEX_H_
+#endif //_OPENCV_COMPOSITETREE_H_
diff --git a/modules/flann/include/opencv2/flann/config.h b/modules/flann/include/opencv2/flann/config.h
deleted file mode 100644 (file)
index ca6138d..0000000
+++ /dev/null
@@ -1,35 +0,0 @@
-/***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2008-2011  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
- * Copyright 2008-2011  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- *    notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice, this list of conditions and the following disclaimer in the
- *    documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
-
-
-#ifndef OPENCV_FLANN_CONFIG_H_
-#define OPENCV_FLANN_CONFIG_H_
-
-#define FLANN_VERSION "1.6.10"
-
-#endif /* OPENCV_FLANN_CONFIG_H_ */
diff --git a/modules/flann/include/opencv2/flann/defines.h b/modules/flann/include/opencv2/flann/defines.h
deleted file mode 100644 (file)
index d1a0af8..0000000
+++ /dev/null
@@ -1,160 +0,0 @@
-/***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2008-2011  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
- * Copyright 2008-2011  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- *    notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice, this list of conditions and the following disclaimer in the
- *    documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
-
-
-#ifndef OPENCV_FLANN_DEFINES_H_
-#define OPENCV_FLANN_DEFINES_H_
-
-#include "config.h"
-
-#ifdef WIN32
-/* win32 dll export/import directives */
- #ifdef FLANN_EXPORTS
-  #define FLANN_EXPORT __declspec(dllexport)
- #elif defined(FLANN_STATIC)
-  #define FLANN_EXPORT
- #else
-  #define FLANN_EXPORT __declspec(dllimport)
- #endif
-#else
-/* unix needs nothing */
- #define FLANN_EXPORT
-#endif
-
-
-#ifdef __GNUC__
-#define FLANN_DEPRECATED __attribute__ ((deprecated))
-#elif defined(_MSC_VER)
-#define FLANN_DEPRECATED  __declspec(deprecated)
-#else
-#pragma message("WARNING: You need to implement FLANN_DEPRECATED for this compiler")
-#define FLANN_DEPRECATED
-#endif
-
-
-#if __amd64__ || __x86_64__ || _WIN64 || _M_X64
-#define FLANN_PLATFORM_64_BIT
-#else
-#define FLANN_PLATFORM_32_BIT
-#endif
-
-
-#define FLANN_ARRAY_LEN(a) (sizeof(a)/sizeof(a[0]))
-
-/* Nearest neighbour index algorithms */
-enum flann_algorithm_t
-{
-    FLANN_INDEX_LINEAR = 0,
-    FLANN_INDEX_KDTREE = 1,
-    FLANN_INDEX_KMEANS = 2,
-    FLANN_INDEX_COMPOSITE = 3,
-    FLANN_INDEX_KDTREE_SINGLE = 4,
-    FLANN_INDEX_HIERARCHICAL = 5,
-    FLANN_INDEX_LSH = 6,
-    FLANN_INDEX_SAVED = 254,
-    FLANN_INDEX_AUTOTUNED = 255,
-
-    // deprecated constants, should use the FLANN_INDEX_* ones instead
-    LINEAR = 0,
-    KDTREE = 1,
-    KMEANS = 2,
-    COMPOSITE = 3,
-    KDTREE_SINGLE = 4,
-    SAVED = 254,
-    AUTOTUNED = 255
-};
-
-
-
-enum flann_centers_init_t
-{
-    FLANN_CENTERS_RANDOM = 0,
-    FLANN_CENTERS_GONZALES = 1,
-    FLANN_CENTERS_KMEANSPP = 2,
-
-    // deprecated constants, should use the FLANN_CENTERS_* ones instead
-    CENTERS_RANDOM = 0,
-    CENTERS_GONZALES = 1,
-    CENTERS_KMEANSPP = 2
-};
-
-enum flann_log_level_t
-{
-    FLANN_LOG_NONE = 0,
-    FLANN_LOG_FATAL = 1,
-    FLANN_LOG_ERROR = 2,
-    FLANN_LOG_WARN = 3,
-    FLANN_LOG_INFO = 4,
-};
-
-enum flann_distance_t
-{
-    FLANN_DIST_EUCLIDEAN = 1,
-    FLANN_DIST_L2 = 1,
-    FLANN_DIST_MANHATTAN = 2,
-    FLANN_DIST_L1 = 2,
-    FLANN_DIST_MINKOWSKI = 3,
-    FLANN_DIST_MAX   = 4,
-    FLANN_DIST_HIST_INTERSECT   = 5,
-    FLANN_DIST_HELLINGER = 6,
-    FLANN_DIST_CHI_SQUARE = 7,
-    FLANN_DIST_CS         = 7,
-    FLANN_DIST_KULLBACK_LEIBLER  = 8,
-    FLANN_DIST_KL                = 8,
-
-    // deprecated constants, should use the FLANN_DIST_* ones instead
-    EUCLIDEAN = 1,
-    MANHATTAN = 2,
-    MINKOWSKI = 3,
-    MAX_DIST   = 4,
-    HIST_INTERSECT   = 5,
-    HELLINGER = 6,
-    CS         = 7,
-    KL         = 8,
-    KULLBACK_LEIBLER  = 8
-};
-
-enum flann_datatype_t
-{
-    FLANN_INT8 = 0,
-    FLANN_INT16 = 1,
-    FLANN_INT32 = 2,
-    FLANN_INT64 = 3,
-    FLANN_UINT8 = 4,
-    FLANN_UINT16 = 5,
-    FLANN_UINT32 = 6,
-    FLANN_UINT64 = 7,
-    FLANN_FLOAT32 = 8,
-    FLANN_FLOAT64 = 9
-};
-
-const int FLANN_CHECKS_UNLIMITED = -1;
-const int FLANN_CHECKS_AUTOTUNED = -2;
-
-
-#endif /* OPENCV_FLANN_DEFINES_H_ */
index 2b30059..2ddbee3 100644 (file)
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef OPENCV_FLANN_DIST_H_
-#define OPENCV_FLANN_DIST_H_
+#ifndef _OPENCV_DIST_H_
+#define _OPENCV_DIST_H_
 
 #include <cmath>
-#include <cstdlib>
-#include <string.h>
-#ifdef _MSC_VER
-typedef unsigned uint32_t;
-typedef unsigned __int64 uint64_t;
-#else
-#include <stdint.h>
-#endif
-
-#include "defines.h"
 
+#include "opencv2/flann/general.h"
 
 namespace cvflann
 {
 
-template<typename T>
-inline T abs(T x) { return (x<0) ? -x : x; }
-
-template<>
-inline int abs<int>(int x) { return ::abs(x); }
-
-template<>
-inline float abs<float>(float x) { return fabsf(x); }
-
-template<>
-inline double abs<double>(double x) { return fabs(x); }
-
-template<>
-inline long double abs<long double>(long double x) { return fabsl(x); }
-
-
-template<typename T>
-struct Accumulator { typedef T Type; };
-template<>
-struct Accumulator<unsigned char>  { typedef float Type; };
-template<>
-struct Accumulator<unsigned short> { typedef float Type; };
-template<>
-struct Accumulator<unsigned int> { typedef float Type; };
-template<>
-struct Accumulator<char>   { typedef float Type; };
-template<>
-struct Accumulator<short>  { typedef float Type; };
-template<>
-struct Accumulator<int> { typedef float Type; };
-
-
-class True
-{
-};
-
-class False
-{
-};
+/**
+ * Distance function by default set to the custom distance
+ * function. This can be set to a specific distance function
+ * for further efficiency.
+ */
+#define flann_dist custom_dist
+//#define flann_dist euclidean_dist
 
 
 /**
- * Squared Euclidean distance functor.
+ *  Compute the squared Euclidean distance between two vectors.
+ *
+ *     This is highly optimised, with loop unrolling, as it is one
+ *     of the most expensive inner loops.
  *
- * This is the simpler, unrolled version. This is preferable for
- * very low dimensionality data (eg 3D points)
+ *     The computation of squared root at the end is omitted for
+ *     efficiency.
  */
-template<class T>
-struct L2_Simple
+template <typename Iterator1, typename Iterator2>
+double euclidean_dist(Iterator1 first1, Iterator1 last1, Iterator2 first2, double acc = 0)
 {
-    typedef True is_kdtree_distance;
-    typedef True is_vector_space_distance;
-
-    typedef T ElementType;
-    typedef typename Accumulator<T>::Type ResultType;
-
-    template <typename Iterator1, typename Iterator2>
-    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
-    {
-        ResultType result = ResultType();
-        ResultType diff;
-        for(size_t i = 0; i < size; ++i ) {
-            diff = *a++ - *b++;
-            result += diff*diff;
-        }
-        return result;
-    }
-
-    template <typename U, typename V>
-    inline ResultType accum_dist(const U& a, const V& b, int) const
-    {
-        return (a-b)*(a-b);
-    }
-};
+       double distsq = acc;
+       double diff0, diff1, diff2, diff3;
+       Iterator1 lastgroup = last1 - 3;
+
+       /* Process 4 items with each loop for efficiency. */
+       while (first1 < lastgroup) {
+               diff0 = first1[0] - first2[0];
+               diff1 = first1[1] - first2[1];
+               diff2 = first1[2] - first2[2];
+               diff3 = first1[3] - first2[3];
+               distsq += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
+               first1 += 4;
+               first2 += 4;
+       }
+       /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
+       while (first1 < last1) {
+               diff0 = *first1++ - *first2++;
+               distsq += diff0 * diff0;
+       }
+       return distsq;
+}
 
+CV_EXPORTS double euclidean_dist(const unsigned char* first1, const unsigned char* last1, unsigned char* first2, double acc);
 
 
 /**
- * Squared Euclidean distance functor, optimized version
+ *  Compute the Manhattan (L_1) distance between two vectors.
+ *
+ *     This is highly optimised, with loop unrolling, as it is one
+ *     of the most expensive inner loops.
  */
-template<class T>
-struct L2
+template <typename Iterator1, typename Iterator2>
+double manhattan_dist(Iterator1 first1, Iterator1 last1, Iterator2 first2, double acc = 0)
 {
-    typedef True is_kdtree_distance;
-    typedef True is_vector_space_distance;
-
-    typedef T ElementType;
-    typedef typename Accumulator<T>::Type ResultType;
-
-    /**
-     *  Compute the squared Euclidean distance between two vectors.
-     *
-     * This is highly optimised, with loop unrolling, as it is one
-     * of the most expensive inner loops.
-     *
-     * The computation of squared root at the end is omitted for
-     * efficiency.
-     */
-    template <typename Iterator1, typename Iterator2>
-    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
-    {
-        ResultType result = ResultType();
-        ResultType diff0, diff1, diff2, diff3;
-        Iterator1 last = a + size;
-        Iterator1 lastgroup = last - 3;
-
-        /* Process 4 items with each loop for efficiency. */
-        while (a < lastgroup) {
-            diff0 = (ResultType)(a[0] - b[0]);
-            diff1 = (ResultType)(a[1] - b[1]);
-            diff2 = (ResultType)(a[2] - b[2]);
-            diff3 = (ResultType)(a[3] - b[3]);
-            result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
-            a += 4;
-            b += 4;
-
-            if ((worst_dist>0)&&(result>worst_dist)) {
-                return result;
-            }
-        }
-        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
-        while (a < last) {
-            diff0 = *a++ - *b++;
-            result += diff0 * diff0;
-        }
-        return result;
-    }
-
-    /**
-     * Partial euclidean distance, using just one dimension. This is used by the
-     * kd-tree when computing partial distances while traversing the tree.
-     *
-     * Squared root is omitted for efficiency.
-     */
-    template <typename U, typename V>
-    inline ResultType accum_dist(const U& a, const V& b, int) const
-    {
-        return (a-b)*(a-b);
-    }
-};
+       double distsq = acc;
+       double diff0, diff1, diff2, diff3;
+       Iterator1 lastgroup = last1 - 3;
+
+       /* Process 4 items with each loop for efficiency. */
+       while (first1 < lastgroup) {
+               diff0 = fabs(first1[0] - first2[0]);
+               diff1 = fabs(first1[1] - first2[1]);
+               diff2 = fabs(first1[2] - first2[2]);
+               diff3 = fabs(first1[3] - first2[3]);
+               distsq += diff0 + diff1 + diff2  + diff3;
+               first1 += 4;
+               first2 += 4;
+       }
+       /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
+       while (first1 < last1) {
+               diff0 = fabs(*first1++ - *first2++);
+               distsq += diff0;
+       }
+       return distsq;
+}
 
 
-/*
- * Manhattan distance functor, optimized version
+CV_EXPORTS int flann_minkowski_order();
+/**
+ *  Compute the Minkowski (L_p) distance between two vectors.
+ *
+ *     This is highly optimised, with loop unrolling, as it is one
+ *     of the most expensive inner loops.
+ *
+ *     The computation of squared root at the end is omitted for
+ *     efficiency.
  */
-template<class T>
-struct L1
+template <typename Iterator1, typename Iterator2>
+double minkowski_dist(Iterator1 first1, Iterator1 last1, Iterator2 first2, double acc = 0)
 {
-    typedef True is_kdtree_distance;
-    typedef True is_vector_space_distance;
-
-    typedef T ElementType;
-    typedef typename Accumulator<T>::Type ResultType;
-
-    /**
-     *  Compute the Manhattan (L_1) distance between two vectors.
-     *
-     * This is highly optimised, with loop unrolling, as it is one
-     * of the most expensive inner loops.
-     */
-    template <typename Iterator1, typename Iterator2>
-    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
-    {
-        ResultType result = ResultType();
-        ResultType diff0, diff1, diff2, diff3;
-        Iterator1 last = a + size;
-        Iterator1 lastgroup = last - 3;
-
-        /* Process 4 items with each loop for efficiency. */
-        while (a < lastgroup) {
-            diff0 = abs(a[0] - b[0]);
-            diff1 = abs(a[1] - b[1]);
-            diff2 = abs(a[2] - b[2]);
-            diff3 = abs(a[3] - b[3]);
-            result += diff0 + diff1 + diff2 + diff3;
-            a += 4;
-            b += 4;
-
-            if ((worst_dist>0)&&(result>worst_dist)) {
-                return result;
-            }
-        }
-        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
-        while (a < last) {
-            diff0 = abs(*a++ - *b++);
-            result += diff0;
-        }
-        return result;
-    }
-
-    /**
-     * Partial distance, used by the kd-tree.
-     */
-    template <typename U, typename V>
-    inline ResultType accum_dist(const U& a, const V& b, int) const
-    {
-        return abs(a-b);
-    }
-};
-
+       double distsq = acc;
+       double diff0, diff1, diff2, diff3;
+       Iterator1 lastgroup = last1 - 3;
+
+       int p = flann_minkowski_order();
+
+       /* Process 4 items with each loop for efficiency. */
+       while (first1 < lastgroup) {
+               diff0 = fabs(first1[0] - first2[0]);
+               diff1 = fabs(first1[1] - first2[1]);
+               diff2 = fabs(first1[2] - first2[2]);
+               diff3 = fabs(first1[3] - first2[3]);
+               distsq += pow(diff0,p) + pow(diff1,p) + pow(diff2,p)  + pow(diff3,p);
+               first1 += 4;
+               first2 += 4;
+       }
+       /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
+       while (first1 < last1) {
+               diff0 = fabs(*first1++ - *first2++);
+               distsq += pow(diff0,p);
+       }
+       return distsq;
+}
 
 
-template<class T>
-struct MinkowskiDistance
+// L_infinity distance (NOT A VALID KD-TREE DISTANCE - NOT DIMENSIONWISE ADDITIVE)
+template <typename Iterator1, typename Iterator2>
+double max_dist(Iterator1 first1, Iterator1 last1, Iterator2 first2, double acc = 0)
 {
-    typedef True is_kdtree_distance;
-    typedef True is_vector_space_distance;
-
-    typedef T ElementType;
-    typedef typename Accumulator<T>::Type ResultType;
-
-    int order;
-
-    MinkowskiDistance(int order_) : order(order_) {}
-
-    /**
-     *  Compute the Minkowsky (L_p) distance between two vectors.
-     *
-     * This is highly optimised, with loop unrolling, as it is one
-     * of the most expensive inner loops.
-     *
-     * The computation of squared root at the end is omitted for
-     * efficiency.
-     */
-    template <typename Iterator1, typename Iterator2>
-    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
-    {
-        ResultType result = ResultType();
-        ResultType diff0, diff1, diff2, diff3;
-        Iterator1 last = a + size;
-        Iterator1 lastgroup = last - 3;
-
-        /* Process 4 items with each loop for efficiency. */
-        while (a < lastgroup) {
-            diff0 = abs(a[0] - b[0]);
-            diff1 = abs(a[1] - b[1]);
-            diff2 = abs(a[2] - b[2]);
-            diff3 = abs(a[3] - b[3]);
-            result += pow(diff0,order) + pow(diff1,order) + pow(diff2,order) + pow(diff3,order);
-            a += 4;
-            b += 4;
-
-            if ((worst_dist>0)&&(result>worst_dist)) {
-                return result;
-            }
-        }
-        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
-        while (a < last) {
-            diff0 = abs(*a++ - *b++);
-            result += pow(diff0,order);
-        }
-        return result;
-    }
-
-    /**
-     * Partial distance, used by the kd-tree.
-     */
-    template <typename U, typename V>
-    inline ResultType accum_dist(const U& a, const V& b, int) const
-    {
-        return pow(static_cast<ResultType>(abs(a-b)),order);
-    }
-};
-
+       double dist = acc;
+       Iterator1 lastgroup = last1 - 3;
+       double diff0, diff1, diff2, diff3;
+
+       /* Process 4 items with each loop for efficiency. */
+       while (first1 < lastgroup) {
+               diff0 = fabs(first1[0] - first2[0]);
+               diff1 = fabs(first1[1] - first2[1]);
+               diff2 = fabs(first1[2] - first2[2]);
+               diff3 = fabs(first1[3] - first2[3]);
+               if (diff0 > dist) dist = diff0;
+               if (diff1 > dist) dist = diff1;
+               if (diff2 > dist) dist = diff2;
+               if (diff3 > dist) dist = diff3;
+               first1 += 4;
+               first2 += 4;
+       }
+       /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
+       while (first1 < last1) {
+               diff0 = fabs(*first1++ - *first2++);
+               dist = (diff0 > dist) ? diff0 : dist;
+       }
+       return dist;
+}
 
 
-template<class T>
-struct MaxDistance
+template <typename Iterator1, typename Iterator2>
+double hist_intersection_kernel(Iterator1 first1, Iterator1 last1, Iterator2 first2)
 {
-    typedef False is_kdtree_distance;
-    typedef True is_vector_space_distance;
-
-    typedef T ElementType;
-    typedef typename Accumulator<T>::Type ResultType;
-
-    /**
-     *  Compute the max distance (L_infinity) between two vectors.
-     *
-     *  This distance is not a valid kdtree distance, it's not dimensionwise additive.
-     */
-    template <typename Iterator1, typename Iterator2>
-    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
-    {
-        ResultType result = ResultType();
-        ResultType diff0, diff1, diff2, diff3;
-        Iterator1 last = a + size;
-        Iterator1 lastgroup = last - 3;
-
-        /* Process 4 items with each loop for efficiency. */
-        while (a < lastgroup) {
-            diff0 = abs(a[0] - b[0]);
-            diff1 = abs(a[1] - b[1]);
-            diff2 = abs(a[2] - b[2]);
-            diff3 = abs(a[3] - b[3]);
-            if (diff0>result) {result = diff0; }
-            if (diff1>result) {result = diff1; }
-            if (diff2>result) {result = diff2; }
-            if (diff3>result) {result = diff3; }
-            a += 4;
-            b += 4;
-
-            if ((worst_dist>0)&&(result>worst_dist)) {
-                return result;
-            }
-        }
-        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
-        while (a < last) {
-            diff0 = abs(*a++ - *b++);
-            result = (diff0>result) ? diff0 : result;
-        }
-        return result;
-    }
-
-    /* This distance functor is not dimension-wise additive, which
-     * makes it an invalid kd-tree distance, not implementing the accum_dist method */
-
-};
-
-////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+       double kernel = 0;
+       Iterator1 lastgroup = last1 - 3;
+       double min0, min1, min2, min3;
+
+       /* Process 4 items with each loop for efficiency. */
+       while (first1 < lastgroup) {
+               min0 = first1[0] < first2[0] ? first1[0] : first2[0];
+               min1 = first1[1] < first2[1] ? first1[1] : first2[1];
+               min2 = first1[2] < first2[2] ? first1[2] : first2[2];
+               min3 = first1[3] < first2[3] ? first1[3] : first2[3];
+               kernel += min0 + min1 + min2 + min3;
+               first1 += 4;
+               first2 += 4;
+       }
+       /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
+       while (first1 < last1) {
+               min0 = first1[0] < first2[0] ? first1[0] : first2[0];
+               kernel += min0;
+               first1++;
+               first2++;
+       }
+       return kernel;
+}
 
-/**
- * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
- * bit count of A exclusive XOR'ed with B
- */
-struct HammingLUT
+template <typename Iterator1, typename Iterator2>
+double hist_intersection_dist_sq(Iterator1 first1, Iterator1 last1, Iterator2 first2, double acc = 0)
 {
-    typedef False is_kdtree_distance;
-    typedef False is_vector_space_distance;
-
-    typedef unsigned char ElementType;
-    typedef int ResultType;
-
-    /** this will count the bits in a ^ b
-     */
-    ResultType operator()(const unsigned char* a, const unsigned char* b, int size) const
-    {
-        ResultType result = 0;
-        for (int i = 0; i < size; i++) {
-            result += byteBitsLookUp(a[i] ^ b[i]);
-        }
-        return result;
-    }
-
-
-    /** \brief given a byte, count the bits using a look up table
-     *  \param b the byte to count bits.  The look up table has an entry for all
-     *  values of b, where that entry is the number of bits.
-     *  \return the number of bits in byte b
-     */
-    static unsigned char byteBitsLookUp(unsigned char b)
-    {
-        static const unsigned char table[256]  = {
-            /* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2,
-            /* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3,
-            /* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3,
-            /* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4,
-            /* 10 */ 1, /* 11 */ 2, /* 12 */ 2, /* 13 */ 3,
-            /* 14 */ 2, /* 15 */ 3, /* 16 */ 3, /* 17 */ 4,
-            /* 18 */ 2, /* 19 */ 3, /* 1a */ 3, /* 1b */ 4,
-            /* 1c */ 3, /* 1d */ 4, /* 1e */ 4, /* 1f */ 5,
-            /* 20 */ 1, /* 21 */ 2, /* 22 */ 2, /* 23 */ 3,
-            /* 24 */ 2, /* 25 */ 3, /* 26 */ 3, /* 27 */ 4,
-            /* 28 */ 2, /* 29 */ 3, /* 2a */ 3, /* 2b */ 4,
-            /* 2c */ 3, /* 2d */ 4, /* 2e */ 4, /* 2f */ 5,
-            /* 30 */ 2, /* 31 */ 3, /* 32 */ 3, /* 33 */ 4,
-            /* 34 */ 3, /* 35 */ 4, /* 36 */ 4, /* 37 */ 5,
-            /* 38 */ 3, /* 39 */ 4, /* 3a */ 4, /* 3b */ 5,
-            /* 3c */ 4, /* 3d */ 5, /* 3e */ 5, /* 3f */ 6,
-            /* 40 */ 1, /* 41 */ 2, /* 42 */ 2, /* 43 */ 3,
-            /* 44 */ 2, /* 45 */ 3, /* 46 */ 3, /* 47 */ 4,
-            /* 48 */ 2, /* 49 */ 3, /* 4a */ 3, /* 4b */ 4,
-            /* 4c */ 3, /* 4d */ 4, /* 4e */ 4, /* 4f */ 5,
-            /* 50 */ 2, /* 51 */ 3, /* 52 */ 3, /* 53 */ 4,
-            /* 54 */ 3, /* 55 */ 4, /* 56 */ 4, /* 57 */ 5,
-            /* 58 */ 3, /* 59 */ 4, /* 5a */ 4, /* 5b */ 5,
-            /* 5c */ 4, /* 5d */ 5, /* 5e */ 5, /* 5f */ 6,
-            /* 60 */ 2, /* 61 */ 3, /* 62 */ 3, /* 63 */ 4,
-            /* 64 */ 3, /* 65 */ 4, /* 66 */ 4, /* 67 */ 5,
-            /* 68 */ 3, /* 69 */ 4, /* 6a */ 4, /* 6b */ 5,
-            /* 6c */ 4, /* 6d */ 5, /* 6e */ 5, /* 6f */ 6,
-            /* 70 */ 3, /* 71 */ 4, /* 72 */ 4, /* 73 */ 5,
-            /* 74 */ 4, /* 75 */ 5, /* 76 */ 5, /* 77 */ 6,
-            /* 78 */ 4, /* 79 */ 5, /* 7a */ 5, /* 7b */ 6,
-            /* 7c */ 5, /* 7d */ 6, /* 7e */ 6, /* 7f */ 7,
-            /* 80 */ 1, /* 81 */ 2, /* 82 */ 2, /* 83 */ 3,
-            /* 84 */ 2, /* 85 */ 3, /* 86 */ 3, /* 87 */ 4,
-            /* 88 */ 2, /* 89 */ 3, /* 8a */ 3, /* 8b */ 4,
-            /* 8c */ 3, /* 8d */ 4, /* 8e */ 4, /* 8f */ 5,
-            /* 90 */ 2, /* 91 */ 3, /* 92 */ 3, /* 93 */ 4,
-            /* 94 */ 3, /* 95 */ 4, /* 96 */ 4, /* 97 */ 5,
-            /* 98 */ 3, /* 99 */ 4, /* 9a */ 4, /* 9b */ 5,
-            /* 9c */ 4, /* 9d */ 5, /* 9e */ 5, /* 9f */ 6,
-            /* a0 */ 2, /* a1 */ 3, /* a2 */ 3, /* a3 */ 4,
-            /* a4 */ 3, /* a5 */ 4, /* a6 */ 4, /* a7 */ 5,
-            /* a8 */ 3, /* a9 */ 4, /* aa */ 4, /* ab */ 5,
-            /* ac */ 4, /* ad */ 5, /* ae */ 5, /* af */ 6,
-            /* b0 */ 3, /* b1 */ 4, /* b2 */ 4, /* b3 */ 5,
-            /* b4 */ 4, /* b5 */ 5, /* b6 */ 5, /* b7 */ 6,
-            /* b8 */ 4, /* b9 */ 5, /* ba */ 5, /* bb */ 6,
-            /* bc */ 5, /* bd */ 6, /* be */ 6, /* bf */ 7,
-            /* c0 */ 2, /* c1 */ 3, /* c2 */ 3, /* c3 */ 4,
-            /* c4 */ 3, /* c5 */ 4, /* c6 */ 4, /* c7 */ 5,
-            /* c8 */ 3, /* c9 */ 4, /* ca */ 4, /* cb */ 5,
-            /* cc */ 4, /* cd */ 5, /* ce */ 5, /* cf */ 6,
-            /* d0 */ 3, /* d1 */ 4, /* d2 */ 4, /* d3 */ 5,
-            /* d4 */ 4, /* d5 */ 5, /* d6 */ 5, /* d7 */ 6,
-            /* d8 */ 4, /* d9 */ 5, /* da */ 5, /* db */ 6,
-            /* dc */ 5, /* dd */ 6, /* de */ 6, /* df */ 7,
-            /* e0 */ 3, /* e1 */ 4, /* e2 */ 4, /* e3 */ 5,
-            /* e4 */ 4, /* e5 */ 5, /* e6 */ 5, /* e7 */ 6,
-            /* e8 */ 4, /* e9 */ 5, /* ea */ 5, /* eb */ 6,
-            /* ec */ 5, /* ed */ 6, /* ee */ 6, /* ef */ 7,
-            /* f0 */ 4, /* f1 */ 5, /* f2 */ 5, /* f3 */ 6,
-            /* f4 */ 5, /* f5 */ 6, /* f6 */ 6, /* f7 */ 7,
-            /* f8 */ 5, /* f9 */ 6, /* fa */ 6, /* fb */ 7,
-            /* fc */ 6, /* fd */ 7, /* fe */ 7, /* ff */ 8
-        };
-        return table[b];
-    }
-};
+       double dist_sq = acc - 2 * hist_intersection_kernel(first1, last1, first2);
+       while (first1 < last1) {
+               dist_sq += *first1 + *first2;
+               first1++;
+               first2++;
+       }
+       return dist_sq;
+}
 
-/**
- * Hamming distance functor (pop count between two binary vectors, i.e. xor them and count the number of bits set)
- * That code was taken from brief.cpp in OpenCV
- */
-template<class T>
-struct Hamming
-{
-    typedef False is_kdtree_distance;
-    typedef False is_vector_space_distance;
-
-
-    typedef T ElementType;
-    typedef int ResultType;
-
-    template<typename Iterator1, typename Iterator2>
-    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
-    {
-        ResultType result = 0;
-#if __GNUC__
-#if ANDROID && HAVE_NEON
-        static uint64_t features = android_getCpuFeatures();
-        if ((features& ANDROID_CPU_ARM_FEATURE_NEON)) {
-            for (size_t i = 0; i < size; i += 16) {
-                uint8x16_t A_vec = vld1q_u8 (a + i);
-                uint8x16_t B_vec = vld1q_u8 (b + i);
-                //uint8x16_t veorq_u8 (uint8x16_t, uint8x16_t)
-                uint8x16_t AxorB = veorq_u8 (A_vec, B_vec);
-
-                uint8x16_t bitsSet += vcntq_u8 (AxorB);
-                //uint16x8_t vpadalq_u8 (uint16x8_t, uint8x16_t)
-                uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet);
-                uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8);
-
-                uint64x2_t bitSet2 = vpaddlq_u32 (bitSet4);
-                result += vgetq_lane_u64 (bitSet2,0);
-                result += vgetq_lane_u64 (bitSet2,1);
-            }
-        }
-        else
-#endif
-        //for portability just use unsigned long -- and use the __builtin_popcountll (see docs for __builtin_popcountll)
-        typedef unsigned long long pop_t;
-        const size_t modulo = size % sizeof(pop_t);
-        const pop_t* a2 = reinterpret_cast<const pop_t*> (a);
-        const pop_t* b2 = reinterpret_cast<const pop_t*> (b);
-        const pop_t* a2_end = a2 + (size / sizeof(pop_t));
-
-        for (; a2 != a2_end; ++a2, ++b2) result += __builtin_popcountll((*a2) ^ (*b2));
-
-        if (modulo) {
-            //in the case where size is not dividable by sizeof(size_t)
-            //need to mask off the bits at the end
-            pop_t a_final = 0, b_final = 0;
-            memcpy(&a_final, a2, modulo);
-            memcpy(&b_final, b2, modulo);
-            result += __builtin_popcountll(a_final ^ b_final);
-        }
-#else
-        HammingLUT lut;
-        result = lut(reinterpret_cast<const unsigned char*> (a),
-                     reinterpret_cast<const unsigned char*> (b), size * sizeof(pop_t));
-#endif
-        return result;
-    }
-};
 
-template<typename T>
-struct Hamming2
+// Hellinger distance
+template <typename Iterator1, typename Iterator2>
+double hellinger_dist(Iterator1 first1, Iterator1 last1, Iterator2 first2, double acc = 0)
 {
-    typedef False is_kdtree_distance;
-    typedef False is_vector_space_distance;
-
-    typedef T ElementType;
-    typedef int ResultType;
-
-    /** This is popcount_3() from:
-     * http://en.wikipedia.org/wiki/Hamming_weight */
-    unsigned int popcnt32(uint32_t n) const
-    {
-        n -= ((n >> 1) & 0x55555555);
-        n = (n & 0x33333333) + ((n >> 2) & 0x33333333);
-        return (((n + (n >> 4))& 0xF0F0F0F)* 0x1010101) >> 24;
-    }
-
-    unsigned int popcnt64(uint64_t n) const
-    {
-        n -= ((n >> 1) & 0x5555555555555555);
-        n = (n & 0x3333333333333333) + ((n >> 2) & 0x3333333333333333);
-        return (((n + (n >> 4))& 0x0f0f0f0f0f0f0f0f)* 0x0101010101010101) >> 56;
-    }
-
-    template <typename Iterator1, typename Iterator2>
-    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
-    {
-#ifdef FLANN_PLATFORM_64_BIT
-        const uint64_t* pa = reinterpret_cast<const uint64_t*>(a);
-        const uint64_t* pb = reinterpret_cast<const uint64_t*>(b);
-        ResultType result = 0;
-        size /= (sizeof(uint64_t)/sizeof(unsigned char));
-        for(size_t i = 0; i < size; ++i ) {
-            result += popcnt64(*pa ^ *pb);
-            ++pa;
-            ++pb;
-        }
-#else
-        const uint32_t* pa = reinterpret_cast<const uint32_t*>(a);
-        const uint32_t* pb = reinterpret_cast<const uint32_t*>(b);
-        ResultType result = 0;
-        size /= (sizeof(uint32_t)/sizeof(unsigned char));
-        for(size_t i = 0; i < size; ++i ) {
-               result += popcnt32(*pa ^ *pb);
-               ++pa;
-               ++pb;
-        }
-#endif
-        return result;
-    }
-};
-
-
+       double distsq = acc;
+       double diff0, diff1, diff2, diff3;
+       Iterator1 lastgroup = last1 - 3;
+
+       /* Process 4 items with each loop for efficiency. */
+       while (first1 < lastgroup) {
+               diff0 = sqrt(first1[0]) - sqrt(first2[0]);
+               diff1 = sqrt(first1[1]) - sqrt(first2[1]);
+               diff2 = sqrt(first1[2]) - sqrt(first2[2]);
+               diff3 = sqrt(first1[3]) - sqrt(first2[3]);
+               distsq += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
+               first1 += 4;
+               first2 += 4;
+       }
+       /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
+       while (first1 < last1) {
+               diff0 = sqrt(*first1++) - sqrt(*first2++);
+               distsq += diff0 * diff0;
+       }
+       return distsq;
+}
 
-////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 
-template<class T>
-struct HistIntersectionDistance
+// chi-dsquare distance
+template <typename Iterator1, typename Iterator2>
+double chi_square_dist(Iterator1 first1, Iterator1 last1, Iterator2 first2, double acc = 0)
 {
-    typedef True is_kdtree_distance;
-    typedef True is_vector_space_distance;
-
-    typedef T ElementType;
-    typedef typename Accumulator<T>::Type ResultType;
-
-    /**
-     *  Compute the histogram intersection distance
-     */
-    template <typename Iterator1, typename Iterator2>
-    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
-    {
-        ResultType result = ResultType();
-        ResultType min0, min1, min2, min3;
-        Iterator1 last = a + size;
-        Iterator1 lastgroup = last - 3;
-
-        /* Process 4 items with each loop for efficiency. */
-        while (a < lastgroup) {
-            min0 = a[0] < b[0] ? a[0] : b[0];
-            min1 = a[1] < b[1] ? a[1] : b[1];
-            min2 = a[2] < b[2] ? a[2] : b[2];
-            min3 = a[3] < b[3] ? a[3] : b[3];
-            result += min0 + min1 + min2 + min3;
-            a += 4;
-            b += 4;
-            if ((worst_dist>0)&&(result>worst_dist)) {
-                return result;
-            }
-        }
-        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
-        while (a < last) {
-            min0 = *a < *b ? *a : *b;
-            result += min0;
-        }
-        return result;
-    }
-
-    /**
-     * Partial distance, used by the kd-tree.
-     */
-    template <typename U, typename V>
-    inline ResultType accum_dist(const U& a, const V& b, int) const
-    {
-        return a<b ? a : b;
-    }
-};
-
+       double dist = acc;
+
+       while (first1 < last1) {
+               double sum = *first1 + *first2;
+               if (sum > 0) {
+                       double diff = *first1 - *first2;
+                       dist += diff * diff / sum;
+               }
+               first1++;
+               first2++;
+       }
+       return dist;
+}
 
 
-template<class T>
-struct HellingerDistance
+// Kullback–Leibler divergence (NOT SYMMETRIC)
+template <typename Iterator1, typename Iterator2>
+double kl_divergence(Iterator1 first1, Iterator1 last1, Iterator2 first2, double acc = 0)
 {
-    typedef True is_kdtree_distance;
-    typedef True is_vector_space_distance;
-
-    typedef T ElementType;
-    typedef typename Accumulator<T>::Type ResultType;
-
-    /**
-     *  Compute the histogram intersection distance
-     */
-    template <typename Iterator1, typename Iterator2>
-    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
-    {
-        ResultType result = ResultType();
-        ResultType diff0, diff1, diff2, diff3;
-        Iterator1 last = a + size;
-        Iterator1 lastgroup = last - 3;
-
-        /* Process 4 items with each loop for efficiency. */
-        while (a < lastgroup) {
-            diff0 = sqrt(static_cast<ResultType>(a[0])) - sqrt(static_cast<ResultType>(b[0]));
-            diff1 = sqrt(static_cast<ResultType>(a[1])) - sqrt(static_cast<ResultType>(b[1]));
-            diff2 = sqrt(static_cast<ResultType>(a[2])) - sqrt(static_cast<ResultType>(b[2]));
-            diff3 = sqrt(static_cast<ResultType>(a[3])) - sqrt(static_cast<ResultType>(b[3]));
-            result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
-            a += 4;
-            b += 4;
-        }
-        while (a < last) {
-            diff0 = sqrt(static_cast<ResultType>(*a++)) - sqrt(static_cast<ResultType>(*b++));
-            result += diff0 * diff0;
-        }
-        return result;
-    }
-
-    /**
-     * Partial distance, used by the kd-tree.
-     */
-    template <typename U, typename V>
-    inline ResultType accum_dist(const U& a, const V& b, int) const
-    {
-        return sqrt(static_cast<ResultType>(a)) - sqrt(static_cast<ResultType>(b));
-    }
-};
+       double div = acc;
+
+       while (first1 < last1) {
+               if (*first2 != 0) {
+                       double ratio = *first1 / *first2;
+                       if (ratio > 0) {
+                               div += *first1 * log(ratio);
+                       }
+               }
+               first1++;
+               first2++;
+       }
+       return div;
+}
 
 
-template<class T>
-struct ChiSquareDistance
-{
-    typedef True is_kdtree_distance;
-    typedef True is_vector_space_distance;
-
-    typedef T ElementType;
-    typedef typename Accumulator<T>::Type ResultType;
-
-    /**
-     *  Compute the chi-square distance
-     */
-    template <typename Iterator1, typename Iterator2>
-    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
-    {
-        ResultType result = ResultType();
-        ResultType sum, diff;
-        Iterator1 last = a + size;
-
-        while (a < last) {
-            sum = *a + *b;
-            if (sum>0) {
-                diff = *a - *b;
-                result += diff*diff/sum;
-            }
-            ++a;
-            ++b;
-
-            if ((worst_dist>0)&&(result>worst_dist)) {
-                return result;
-            }
-        }
-        return result;
-    }
-
-    /**
-     * Partial distance, used by the kd-tree.
-     */
-    template <typename U, typename V>
-    inline ResultType accum_dist(const U& a, const V& b, int) const
-    {
-        ResultType result = ResultType();
-        ResultType sum, diff;
-
-        sum = a+b;
-        if (sum>0) {
-            diff = a-b;
-            result = diff*diff/sum;
-        }
-        return result;
-    }
-};
 
 
-template<class T>
-struct KL_Divergence
+CV_EXPORTS flann_distance_t flann_distance_type();
+/**
+ * Custom distance function. The distance computed is dependent on the value
+ * of the 'flann_distance_type' global variable.
+ *
+ * If the last argument 'acc' is passed, the result is accumulated to the value
+ * of this argument.
+ */
+template <typename Iterator1, typename Iterator2>
+double custom_dist(Iterator1 first1, Iterator1 last1, Iterator2 first2, double acc = 0)
 {
-    typedef True is_kdtree_distance;
-    typedef True is_vector_space_distance;
-
-    typedef T ElementType;
-    typedef typename Accumulator<T>::Type ResultType;
-
-    /**
-     *  Compute the Kullback–Leibler divergence
-     */
-    template <typename Iterator1, typename Iterator2>
-    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
-    {
-        ResultType result = ResultType();
-        Iterator1 last = a + size;
-
-        while (a < last) {
-            if (* a != 0) {
-                ResultType ratio = *a / *b;
-                if (ratio>0) {
-                    result += *a * log(ratio);
-                }
-            }
-            ++a;
-            ++b;
-
-            if ((worst_dist>0)&&(result>worst_dist)) {
-                return result;
-            }
-        }
-        return result;
-    }
-
-    /**
-     * Partial distance, used by the kd-tree.
-     */
-    template <typename U, typename V>
-    inline ResultType accum_dist(const U& a, const V& b, int) const
-    {
-        ResultType result = ResultType();
-        ResultType ratio = a / b;
-        if (ratio>0) {
-            result = a * log(ratio);
-        }
-        return result;
-    }
-};
-
-
+       switch (flann_distance_type()) {
+       case FLANN_DIST_EUCLIDEAN:
+               return euclidean_dist(first1, last1, first2, acc);
+       case FLANN_DIST_MANHATTAN:
+               return manhattan_dist(first1, last1, first2, acc);
+       case FLANN_DIST_MINKOWSKI:
+               return minkowski_dist(first1, last1, first2, acc);
+       case FLANN_DIST_MAX:
+               return max_dist(first1, last1, first2, acc);
+       case FLANN_DIST_HIST_INTERSECT:
+               return hist_intersection_dist_sq(first1, last1, first2, acc);
+       case FLANN_DIST_HELLINGER:
+               return hellinger_dist(first1, last1, first2, acc);
+       case FLANN_DIST_CS:
+               return chi_square_dist(first1, last1, first2, acc);
+       case FLANN_DIST_KL:
+               return kl_divergence(first1, last1, first2, acc);
+       default:
+               return euclidean_dist(first1, last1, first2, acc);
+       }
+}
 
 /*
  * This is a "zero iterator". It basically behaves like a zero filled
@@ -806,36 +333,28 @@ struct KL_Divergence
  * zero-filled array.
  */
 template <typename T>
-struct ZeroIterator
-{
-
-    T operator*()
-    {
-        return 0;
-    }
+struct ZeroIterator {
 
-    T operator[](int)
-    {
-        return 0;
-    }
+       T operator*() {
+               return 0;
+       }
 
-    const ZeroIterator<T>& operator ++()
-    {
-        return *this;
-    }
+       T operator[](int) {
+               return 0;
+       }
 
-    ZeroIterator<T> operator ++(int)
-    {
-        return *this;
-    }
+       ZeroIterator<T>& operator ++(int) {
+               return *this;
+       }
 
-    ZeroIterator<T>& operator+=(int)
-    {
-        return *this;
-    }
+       ZeroIterator<T>& operator+=(int) {
+               return *this;
+       }
 
 };
 
-}
+CV_EXPORTS ZeroIterator<float>& zero();
+
+} // namespace cvflann
 
-#endif //OPENCV_FLANN_DIST_H_
+#endif //_OPENCV_DIST_H_
diff --git a/modules/flann/include/opencv2/flann/dynamic_bitset.h b/modules/flann/include/opencv2/flann/dynamic_bitset.h
deleted file mode 100644 (file)
index e88cfaa..0000000
+++ /dev/null
@@ -1,152 +0,0 @@
-/***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
- * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
- *
- * THE BSD LICENSE
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- *    notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice, this list of conditions and the following disclaimer in the
- *    documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
-
-/***********************************************************************
- * Author: Vincent Rabaud
- *************************************************************************/
-
-#ifndef OPENCV_FLANN_DYNAMIC_BITSET_H_
-#define OPENCV_FLANN_DYNAMIC_BITSET_H_
-
-//#define FLANN_USE_BOOST 1
-#if FLANN_USE_BOOST
-#include <boost/dynamic_bitset.hpp>
-typedef boost::dynamic_bitset<> DynamicBitset;
-#else
-
-#include <limits.h>
-
-#include "dist.h"
-
-/** Class re-implementing the boost version of it
- * This helps not depending on boost, it also does not do the bound checks
- * and has a way to reset a block for speed
- */
-class DynamicBitset
-{
-public:
-    /** @param default constructor
-     */
-    DynamicBitset()
-    {
-    }
-
-    /** @param only constructor we use in our code
-     * @param the size of the bitset (in bits)
-     */
-    DynamicBitset(size_t size)
-    {
-        resize(size);
-        reset();
-    }
-
-    /** Sets all the bits to 0
-     */
-    void clear()
-    {
-        std::fill(bitset_.begin(), bitset_.end(), 0);
-    }
-
-    /** @brief checks if the bitset is empty
-     * @return true if the bitset is empty
-     */
-    bool empty() const
-    {
-        return bitset_.empty();
-    }
-
-    /** @param set all the bits to 0
-     */
-    void reset()
-    {
-        std::fill(bitset_.begin(), bitset_.end(), 0);
-    }
-
-    /** @brief set one bit to 0
-     * @param
-     */
-    void reset(size_t index)
-    {
-        bitset_[index / cell_bit_size_] &= ~(size_t(1) << (index % cell_bit_size_));
-    }
-
-    /** @brief sets a specific bit to 0, and more bits too
-     * This function is useful when resetting a given set of bits so that the
-     * whole bitset ends up being 0: if that's the case, we don't care about setting
-     * other bits to 0
-     * @param
-     */
-    void reset_block(size_t index)
-    {
-        bitset_[index / cell_bit_size_] = 0;
-    }
-
-    /** @param resize the bitset so that it contains at least size bits
-     * @param size
-     */
-    void resize(size_t size)
-    {
-        size_ = size;
-        bitset_.resize(size / cell_bit_size_ + 1);
-    }
-
-    /** @param set a bit to true
-     * @param index the index of the bit to set to 1
-     */
-    void set(size_t index)
-    {
-        bitset_[index / cell_bit_size_] |= size_t(1) << (index % cell_bit_size_);
-    }
-
-    /** @param gives the number of contained bits
-     */
-    size_t size() const
-    {
-        return size_;
-    }
-
-    /** @param check if a bit is set
-     * @param index the index of the bit to check
-     * @return true if the bit is set
-     */
-    bool test(size_t index) const
-    {
-        return (bitset_[index / cell_bit_size_] & (size_t(1) << (index % cell_bit_size_))) != 0;
-    }
-
-private:
-    std::vector<size_t> bitset_;
-    size_t size_;
-    static const unsigned int cell_bit_size_ = CHAR_BIT * sizeof(size_t);
-};
-
-#endif
-
-#endif // OPENCV_FLANN_DYNAMIC_BITSET_H_
index 99f4bef..642b17b 100644 (file)
 
 #include "opencv2/flann/flann_base.hpp"
 
-namespace cvflann
-{
-    inline flann_distance_t& flann_distance_type_()
-    {
-        static flann_distance_t distance_type = FLANN_DIST_L2;
-        return distance_type;
-    }
-
-    FLANN_DEPRECATED inline void set_distance_type(flann_distance_t distance_type, int order  = 0)
-    {
-        flann_distance_type_() = (flann_distance_t)((size_t)distance_type + order*0);
-    }
-}
-
-
 namespace cv
 {
 namespace flann
@@ -76,360 +61,132 @@ template <> struct CvType<int> { static int type() { return CV_32S; } };
 template <> struct CvType<float> { static int type() { return CV_32F; } };
 template <> struct CvType<double> { static int type() { return CV_64F; } };
 
-
-// bring the flann parameters into this namespace
+    
 using ::cvflann::IndexParams;
 using ::cvflann::LinearIndexParams;
 using ::cvflann::KDTreeIndexParams;
 using ::cvflann::KMeansIndexParams;
 using ::cvflann::CompositeIndexParams;
-using ::cvflann::LshIndexParams;
-using ::cvflann::HierarchicalClusteringIndexParams;
 using ::cvflann::AutotunedIndexParams;
 using ::cvflann::SavedIndexParams;
-using ::cvflann::SearchParams;
-using ::cvflann::get_param;
-using ::cvflann::print_params;
-
-
-// bring the flann distances into this namespace
-using ::cvflann::L2_Simple;
-using ::cvflann::L2;
-using ::cvflann::L1;
-using ::cvflann::MinkowskiDistance;
-using ::cvflann::MaxDistance;
-using ::cvflann::HammingLUT;
-using ::cvflann::Hamming;
-using ::cvflann::Hamming2;
-using ::cvflann::HistIntersectionDistance;
-using ::cvflann::HellingerDistance;
-using ::cvflann::ChiSquareDistance;
-using ::cvflann::KL_Divergence;
-
-
-
-template <typename Distance>
-class GenericIndex 
-{
-public:
-        typedef typename Distance::ElementType ElementType;
-        typedef typename Distance::ResultType DistanceType;
-
-        GenericIndex(const Mat& features, const IndexParams& params, Distance distance = Distance());
-
-        ~GenericIndex();
-
-        void knnSearch(const vector<ElementType>& query, vector<int>& indices, 
-                       vector<DistanceType>& dists, int knn, const SearchParams& params);
-        void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const SearchParams& params);
-
-        int radiusSearch(const vector<ElementType>& query, vector<int>& indices, 
-                         vector<DistanceType>& dists, DistanceType radius, const SearchParams& params);
-        int radiusSearch(const Mat& query, Mat& indices, Mat& dists, 
-                         DistanceType radius, const SearchParams& params);
-
-        void save(std::string filename) { nnIndex->save(filename); }
-
-        int veclen() const { return nnIndex->veclen(); }
-
-        int size() const { return nnIndex->size(); }
-
-        IndexParams getParameters() { return nnIndex->getParameters(); }
-
-        FLANN_DEPRECATED const IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); }
-
-private:
-        ::cvflann::Index<Distance>* nnIndex;
-};
 
-
-#define FLANN_DISTANCE_CHECK \
-    if ( ::cvflann::flann_distance_type_() != FLANN_DIST_L2) { \
-        printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\
-        "the distance using cvflann::set_distance_type. This is no longer working as expected "\
-        "(cv::flann::Index always uses L2). You should create the index templated on the distance, "\
-        "for example for L1 distance use: GenericIndex< L1<float> > \n"); \
-    }
-    
-
-template <typename Distance>
-GenericIndex<Distance>::GenericIndex(const Mat& dataset, const IndexParams& params, Distance distance)
-{
-    CV_Assert(dataset.type() == CvType<ElementType>::type());
-    CV_Assert(dataset.isContinuous());
-    ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
-    
-    nnIndex = new ::cvflann::Index<Distance>(m_dataset, params, distance);
-    
-    FLANN_DISTANCE_CHECK
-    
-    nnIndex->buildIndex();
-}
-
-template <typename Distance>
-GenericIndex<Distance>::~GenericIndex()
-{
-    delete nnIndex;
-}
-
-template <typename Distance>
-void GenericIndex<Distance>::knnSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, int knn, const SearchParams& searchParams)
-{
-    ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
-    ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
-    ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
-
-    FLANN_DISTANCE_CHECK
-
-    nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
-}
-
-
-template <typename Distance>
-void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const SearchParams& searchParams)
-{
-    CV_Assert(queries.type() == CvType<ElementType>::type());
-    CV_Assert(queries.isContinuous());
-    ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
-    
-    CV_Assert(indices.type() == CV_32S);
-    CV_Assert(indices.isContinuous());
-    ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
-    
-    CV_Assert(dists.type() == CvType<DistanceType>::type());
-    CV_Assert(dists.isContinuous());
-    ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
-
-    FLANN_DISTANCE_CHECK
-    
-    nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
-}
-
-template <typename Distance>
-int GenericIndex<Distance>::radiusSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, DistanceType radius, const SearchParams& searchParams)
-{
-    ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
-    ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
-    ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
-
-    FLANN_DISTANCE_CHECK
-    
-    return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
-}
-
-template <typename Distance>
-int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const SearchParams& searchParams)
-{
-    CV_Assert(query.type() == CvType<ElementType>::type());
-    CV_Assert(query.isContinuous());
-    ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
-    
-    CV_Assert(indices.type() == CV_32S);
-    CV_Assert(indices.isContinuous());
-    ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
-    
-    CV_Assert(dists.type() == CvType<DistanceType>::type());
-    CV_Assert(dists.isContinuous());
-    ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
-    
-    FLANN_DISTANCE_CHECK
-    
-    return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
-}
-
-
-typedef GenericIndex< L2<float> > Index;
+using ::cvflann::SearchParams;
 
 
-/**
- * @deprecated Use GenericIndex class instead
- */
 template <typename T>
-class FLANN_DEPRECATED Index_ {
-public:
-        typedef typename L2<T>::ElementType ElementType;
-        typedef typename L2<T>::ResultType DistanceType;
+class CV_EXPORTS Index_ {
+       ::cvflann::Index<T>* nnIndex;
 
+public:
        Index_(const Mat& features, const IndexParams& params);
 
        ~Index_();
 
-       void knnSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, int knn, const SearchParams& params);
+       void knnSearch(const vector<T>& query, vector<int>& indices, vector<float>& dists, int knn, const SearchParams& params);
        void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const SearchParams& params);
 
-       int radiusSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, DistanceType radius, const SearchParams& params);
-       int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const SearchParams& params);
-
-       void save(std::string filename) 
-        { 
-            if (nnIndex_L1) nnIndex_L1->save(filename);
-            if (nnIndex_L2) nnIndex_L2->save(filename);
-        }
+       int radiusSearch(const vector<T>& query, vector<int>& indices, vector<float>& dists, float radius, const SearchParams& params);
+       int radiusSearch(const Mat& query, Mat& indices, Mat& dists, float radius, const SearchParams& params);
 
-       int veclen() const 
-       { 
-            if (nnIndex_L1) return nnIndex_L1->veclen();
-            if (nnIndex_L2) return nnIndex_L2->veclen();            
-        }
+       void save(std::string filename) { nnIndex->save(filename); }
 
-       int size() const 
-       { 
-            if (nnIndex_L1) return nnIndex_L1->size();
-            if (nnIndex_L2) return nnIndex_L2->size(); 
-        }
+       int veclen() const { return nnIndex->veclen(); }
 
-        IndexParams getParameters() 
-        { 
-            if (nnIndex_L1) return nnIndex_L1->getParameters();
-            if (nnIndex_L2) return nnIndex_L2->getParameters();
-            
-        }
+       int size() const { return nnIndex->size(); }
 
-        FLANN_DEPRECATED const IndexParams* getIndexParameters() 
-        { 
-            if (nnIndex_L1) return nnIndex_L1->getIndexParameters();
-            if (nnIndex_L2) return nnIndex_L2->getIndexParameters(); 
-        }
+       const IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); }
 
-private:
-        // providing backwards compatibility for L2 and L1 distances (most common)
-        ::cvflann::Index< L2<ElementType> >* nnIndex_L2;
-        ::cvflann::Index< L1<ElementType> >* nnIndex_L1;
 };
 
 
 template <typename T>
 Index_<T>::Index_(const Mat& dataset, const IndexParams& params)
 {
-    printf("[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n");
-    
-    CV_Assert(dataset.type() == CvType<ElementType>::type());
+    CV_Assert(dataset.type() == CvType<T>::type());
     CV_Assert(dataset.isContinuous());
-    ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
+    ::cvflann::Matrix<T> m_dataset((T*)dataset.ptr<T>(0), dataset.rows, dataset.cols);
     
-    if ( ::cvflann::flann_distance_type_() == FLANN_DIST_L2 ) {
-        nnIndex_L1 = NULL;
-        nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params);
-    }
-    else if ( ::cvflann::flann_distance_type_() == FLANN_DIST_L1 ) {
-        nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params);
-        nnIndex_L2 = NULL;        
-    }
-    else {
-        printf("[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. "
-        "For other distance types you must use cv::flann::GenericIndex<Distance>\n");
-        CV_Assert(0);
-    }
-    if (nnIndex_L1) nnIndex_L1->buildIndex();
-    if (nnIndex_L2) nnIndex_L2->buildIndex();
+    nnIndex = new ::cvflann::Index<T>(m_dataset, params);
+    nnIndex->buildIndex();
 }
 
 template <typename T>
 Index_<T>::~Index_()
 {
-    if (nnIndex_L1) delete nnIndex_L1;
-    if (nnIndex_L2) delete nnIndex_L2;
+    delete nnIndex;
 }
 
 template <typename T>
-void Index_<T>::knnSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, int knn, const SearchParams& searchParams)
+void Index_<T>::knnSearch(const vector<T>& query, vector<int>& indices, vector<float>& dists, int knn, const SearchParams& searchParams)
 {
-    ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
-    ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
-    ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
+    ::cvflann::Matrix<T> m_query((T*)&query[0], 1, (int)query.size());
+    ::cvflann::Matrix<int> m_indices(&indices[0], 1, (int)indices.size());
+    ::cvflann::Matrix<float> m_dists(&dists[0], 1, (int)dists.size());
     
-    if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
-    if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
+    nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
 }
 
 
 template <typename T>
 void Index_<T>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const SearchParams& searchParams)
 {
-    CV_Assert(queries.type() == CvType<ElementType>::type());
+    CV_Assert(queries.type() == CvType<T>::type());
     CV_Assert(queries.isContinuous());
-    ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
+    ::cvflann::Matrix<T> m_queries((T*)queries.ptr<T>(0), queries.rows, queries.cols);
     
     CV_Assert(indices.type() == CV_32S);
     CV_Assert(indices.isContinuous());
     ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
     
-    CV_Assert(dists.type() == CvType<DistanceType>::type());
+    CV_Assert(dists.type() == CV_32F);
     CV_Assert(dists.isContinuous());
-    ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
-
-    if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
-    if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
+    ::cvflann::Matrix<float> m_dists((float*)dists.ptr<float>(0), dists.rows, dists.cols);
+    
+    nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
 }
 
 template <typename T>
-int Index_<T>::radiusSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, DistanceType radius, const SearchParams& searchParams)
+int Index_<T>::radiusSearch(const vector<T>& query, vector<int>& indices, vector<float>& dists, float radius, const SearchParams& searchParams)
 {
-    ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
-    ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
-    ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
+    ::cvflann::Matrix<T> m_query((T*)&query[0], 1, (int)query.size());
+    ::cvflann::Matrix<int> m_indices(&indices[0], 1, (int)indices.size());
+    ::cvflann::Matrix<float> m_dists(&dists[0], 1, (int)dists.size());
     
-    if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
-    if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
+    return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 }
 
 template <typename T>
-int Index_<T>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const SearchParams& searchParams)
+int Index_<T>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, float radius, const SearchParams& searchParams)
 {
-    CV_Assert(query.type() == CvType<ElementType>::type());
+    CV_Assert(query.type() == CvType<T>::type());
     CV_Assert(query.isContinuous());
-    ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
+    ::cvflann::Matrix<T> m_query((T*)query.ptr<T>(0), query.rows, query.cols);
     
     CV_Assert(indices.type() == CV_32S);
     CV_Assert(indices.isContinuous());
     ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
     
-    CV_Assert(dists.type() == CvType<DistanceType>::type());
+    CV_Assert(dists.type() == CV_32F);
     CV_Assert(dists.isContinuous());
-    ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
+    ::cvflann::Matrix<float> m_dists((float*)dists.ptr<float>(0), dists.rows, dists.cols);
     
-    if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
-    if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
+    return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 }
 
+typedef Index_<float> Index;
 
-template <typename Distance>
-int hierarchicalClustering(const Mat& features, Mat& centers, const KMeansIndexParams& params,
-                           Distance d = Distance())
+template <typename ELEM_TYPE, typename DIST_TYPE>
+int hierarchicalClustering(const Mat& features, Mat& centers, const KMeansIndexParams& params)
 {
-    typedef typename Distance::ElementType ElementType;
-    typedef typename Distance::ResultType DistanceType;
-    
-    CV_Assert(features.type() == CvType<ElementType>::type());
+    CV_Assert(features.type() == CvType<ELEM_TYPE>::type());
     CV_Assert(features.isContinuous());
-    ::cvflann::Matrix<ElementType> m_features((ElementType*)features.ptr<ElementType>(0), features.rows, features.cols);
+    ::cvflann::Matrix<ELEM_TYPE> m_features((ELEM_TYPE*)features.ptr<ELEM_TYPE>(0), features.rows, features.cols);
     
-    CV_Assert(centers.type() == CvType<DistanceType>::type());
+    CV_Assert(centers.type() == CvType<DIST_TYPE>::type());
     CV_Assert(centers.isContinuous());
-    ::cvflann::Matrix<DistanceType> m_centers((DistanceType*)centers.ptr<DistanceType>(0), centers.rows, centers.cols);
-
-    return ::cvflann::hierarchicalClustering<Distance>(m_features, m_centers, params, d);
-}
-
-
-template <typename ELEM_TYPE, typename DIST_TYPE>
-FLANN_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const KMeansIndexParams& params)
-{
-    printf("[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use "
-        "cv::flann::hierarchicalClustering<Distance> instead\n");
-        
-    if ( ::cvflann::flann_distance_type_() == FLANN_DIST_L2 ) {
-        return hierarchicalClustering< L2<ELEM_TYPE> >(features, centers, params);
-    }
-    else if ( ::cvflann::flann_distance_type_() == FLANN_DIST_L1 ) {
-        return hierarchicalClustering< L1<ELEM_TYPE> >(features, centers, params);
-    }
-    else {
-        printf("[ERROR] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> only provides backwards "
-        "compatibility for the L1 and L2 distances. "
-        "For other distance types you must use cv::flann::hierarchicalClustering<Distance>\n");
-        CV_Assert(0);
-    }
+    ::cvflann::Matrix<DIST_TYPE> m_centers((DIST_TYPE*)centers.ptr<DIST_TYPE>(0), centers.rows, centers.cols);
+    
+    return ::cvflann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE>(m_features, m_centers, params);
 }
 
 } } // namespace cv::flann
index 0426262..46143df 100644 (file)
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef FLANN_BASE_HPP_
-#define FLANN_BASE_HPP_
+#ifndef _OPENCV_FLANN_BASE_HPP_
+#define _OPENCV_FLANN_BASE_HPP_
 
 #include <vector>
 #include <string>
 #include <cassert>
 #include <cstdio>
 
-#include "general.h"
-#include "matrix.h"
-#include "params.h"
-#include "saving.h"
+#include "opencv2/flann/general.h"
+#include "opencv2/flann/matrix.h"
+#include "opencv2/flann/result_set.h"
+#include "opencv2/flann/index_testing.h"
+#include "opencv2/flann/object_factory.h"
+#include "opencv2/flann/saving.h"
 
-#include "all_indices.h"
+#include "opencv2/flann/all_indices.h"
 
 namespace cvflann
 {
 
+
 /**
- * Sets the log level used for all flann functions
- * @param level Verbosity level
- */
-inline void log_verbosity(int level)
-{
-    if (level >= 0) {
-        Logger::setLevel(level);
-    }
-}
+Sets the log level used for all flann functions
+
+Params:
+    level = verbosity level
+*/
+CV_EXPORTS void log_verbosity(int level);
+
 
 /**
- * (Deprecated) Index parameters for creating a saved index.
+ * Sets the distance type to use throughout FLANN.
+ * If distance type specified is MINKOWSKI, the second argument
+ * specifies which order the minkowski distance should have.
  */
-struct SavedIndexParams : public IndexParams
-{
-    SavedIndexParams(std::string filename)
-    {
-        (* this)["algorithm"] = FLANN_INDEX_SAVED;
-        (*this)["filename"] = filename;
-    }
+CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order);
+
+
+struct CV_EXPORTS SavedIndexParams : public IndexParams {
+       SavedIndexParams(std::string filename_) : IndexParams(FLANN_INDEX_SAVED), filename(filename_) {}
+
+       std::string filename;           // filename of the stored index
+
+       void print() const
+       {
+               logger().info("Index type: %d\n",(int)algorithm);
+               logger().info("Filename: %s\n", filename.c_str());
+       }
 };
 
+template<typename T>
+class CV_EXPORTS Index {
+       NNIndex<T>* nnIndex;
+    bool built;
 
-template<typename Distance>
-NNIndex<Distance>* load_saved_index(const Matrix<typename Distance::ElementType>& dataset, const std::string& filename, Distance distance)
-{
-    typedef typename Distance::ElementType ElementType;
+public:
+       Index(const Matrix<T>& features, const IndexParams& params);
 
-    FILE* fin = fopen(filename.c_str(), "rb");
-    if (fin == NULL) {
-        return NULL;
-    }
-    IndexHeader header = load_header(fin);
-    if (header.data_type != Datatype<ElementType>::type()) {
-        throw FLANNException("Datatype of saved index is different than of the one to be created.");
-    }
-    if ((size_t(header.rows) != dataset.rows)||(size_t(header.cols) != dataset.cols)) {
-        throw FLANNException("The index saved belongs to a different dataset");
-    }
+       ~Index();
+
+       void buildIndex();
+
+       void knnSearch(const Matrix<T>& queries, Matrix<int>& indices, Matrix<float>& dists, int knn, const SearchParams& params);
+
+       int radiusSearch(const Matrix<T>& query, Matrix<int>& indices, Matrix<float>& dists, float radius, const SearchParams& params);
+
+       void save(std::string filename);
+
+       int veclen() const;
+
+       int size() const;
 
-    IndexParams params;
-    params["algorithm"] = header.index_type;
-    NNIndex<Distance>* nnIndex = create_index_by_type<Distance>(dataset, params, distance);
-    nnIndex->loadIndex(fin);
-    fclose(fin);
+       NNIndex<T>* getIndex() { return nnIndex; }
 
-    return nnIndex;
+       const IndexParams* getIndexParameters() { return nnIndex->getParameters(); }
+};
+
+
+template<typename T>
+NNIndex<T>* load_saved_index(const Matrix<T>& dataset, const std::string& filename)
+{
+       FILE* fin = fopen(filename.c_str(), "rb");
+       if (fin==NULL) {
+               return NULL;
+       }
+       IndexHeader header = load_header(fin);
+       if (header.data_type!=Datatype<T>::type()) {
+               throw FLANNException("Datatype of saved index is different than of the one to be created.");
+       }
+       if (size_t(header.rows)!=dataset.rows || size_t(header.cols)!=dataset.cols) {
+               throw FLANNException("The index saved belongs to a different dataset");
+       }
+
+       IndexParams* params = ParamsFactory_instance().create(header.index_type);
+       NNIndex<T>* nnIndex = create_index_by_type(dataset, *params);
+       nnIndex->loadIndex(fin);
+       fclose(fin);
+
+       return nnIndex;
 }
 
 
-template<typename Distance>
-class Index : public NNIndex<Distance>
+template<typename T>
+Index<T>::Index(const Matrix<T>& dataset, const IndexParams& params)
 {
-public:
-    typedef typename Distance::ElementType ElementType;
-    typedef typename Distance::ResultType DistanceType;
-
-    Index(const Matrix<ElementType>& features, const IndexParams& params, Distance distance = Distance() )
-        : index_params_(params)
-    {
-        flann_algorithm_t index_type = get_param<flann_algorithm_t>(params,"algorithm");
-        loaded_ = false;
-
-        if (index_type == FLANN_INDEX_SAVED) {
-            nnIndex_ = load_saved_index<Distance>(features, get_param<std::string>(params,"filename"), distance);
-            loaded_ = true;
-        }
-        else {
-            nnIndex_ = create_index_by_type<Distance>(features, params, distance);
-        }
-    }
+       flann_algorithm_t index_type = params.getIndexType();
+    built = false;
+
+       if (index_type==FLANN_INDEX_SAVED) {
+               nnIndex = load_saved_index(dataset, ((const SavedIndexParams&)params).filename);
+        built = true;
+       }
+       else {
+               nnIndex = create_index_by_type(dataset, params);
+       }
+}
 
-    ~Index()
-    {
-        delete nnIndex_;
-    }
+template<typename T>
+Index<T>::~Index()
+{
+       delete nnIndex;
+}
 
-    /**
-     * Builds the index.
-     */
-    void buildIndex()
-    {
-        if (!loaded_) {
-            nnIndex_->buildIndex();
-        }
-    }
+template<typename T>
+void Index<T>::buildIndex()
+{
+       if (!built)     {
+               nnIndex->buildIndex();
+               built = true;
+       }
+}
 
-    void save(std::string filename)
-    {
-        FILE* fout = fopen(filename.c_str(), "wb");
-        if (fout == NULL) {
-            throw FLANNException("Cannot open file");
-        }
-        save_header(fout, *nnIndex_);
-        saveIndex(fout);
-        fclose(fout);
+template<typename T>
+void Index<T>::knnSearch(const Matrix<T>& queries, Matrix<int>& indices, Matrix<float>& dists, int knn, const SearchParams& searchParams)
+{
+    if (!built) {
+        throw FLANNException("You must build the index before searching.");
     }
+       assert(queries.cols==nnIndex->veclen());
+       assert(indices.rows>=queries.rows);
+       assert(dists.rows>=queries.rows);
+       assert(int(indices.cols)>=knn);
+       assert(int(dists.cols)>=knn);
 
-    /**
-     * \brief Saves the index to a stream
-     * \param stream The stream to save the index to
-     */
-    virtual void saveIndex(FILE* stream)
-    {
-        nnIndex_->saveIndex(stream);
-    }
+    KNNResultSet<T> resultSet(knn);
 
-    /**
-     * \brief Loads the index from a stream
-     * \param stream The stream from which the index is loaded
-     */
-    virtual void loadIndex(FILE* stream)
-    {
-        nnIndex_->loadIndex(stream);
-    }
+    for (size_t i = 0; i < queries.rows; i++) {
+        T* target = queries[i];
+        resultSet.init(target, (int)queries.cols);
 
-    /**
-     * \returns number of features in this index.
-     */
-    size_t veclen() const
-    {
-        return nnIndex_->veclen();
-    }
+        nnIndex->findNeighbors(resultSet, target, searchParams);
 
-    /**
-     * \returns The dimensionality of the features in this index.
-     */
-    size_t size() const
-    {
-        return nnIndex_->size();
+        int* neighbors = resultSet.getNeighbors();
+        float* distances = resultSet.getDistances();
+        memcpy(indices[i], neighbors, knn*sizeof(int));
+        memcpy(dists[i], distances, knn*sizeof(float));
     }
+}
 
-    /**
-     * \returns The index type (kdtree, kmeans,...)
-     */
-    flann_algorithm_t getType() const
-    {
-        return nnIndex_->getType();
+template<typename T>
+int Index<T>::radiusSearch(const Matrix<T>& query, Matrix<int>& indices, Matrix<float>& dists, float radius, const SearchParams& searchParams)
+{
+    if (!built) {
+        throw FLANNException("You must build the index before searching.");
     }
+       if (query.rows!=1) {
+           fprintf(stderr, "I can only search one feature at a time for range search\n");
+               return -1;
+       }
+       assert(query.cols==nnIndex->veclen());
 
-    /**
-     * \returns The amount of memory (in bytes) used by the index.
-     */
-    virtual int usedMemory() const
-    {
-        return nnIndex_->usedMemory();
-    }
+       RadiusResultSet<T> resultSet(radius);
+       resultSet.init(query.data, (int)query.cols);
+       nnIndex->findNeighbors(resultSet,query.data,searchParams);
 
+       // TODO: optimise here
+       int* neighbors = resultSet.getNeighbors();
+       float* distances = resultSet.getDistances();
+       size_t count_nn = std::min(resultSet.size(), indices.cols);
 
-    /**
-     * \returns The index parameters
-     */
-    IndexParams getParameters() const
-    {
-        return nnIndex_->getParameters();
-    }
+       assert (dists.cols>=count_nn);
 
-    /**
-     * \brief Perform k-nearest neighbor search
-     * \param[in] queries The query points for which to find the nearest neighbors
-     * \param[out] indices The indices of the nearest neighbors found
-     * \param[out] dists Distances to the nearest neighbors found
-     * \param[in] knn Number of nearest neighbors to return
-     * \param[in] params Search parameters
-     */
-    void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
-    {
-        nnIndex_->knnSearch(queries, indices, dists, knn, params);
-    }
+       for (size_t i=0;i<count_nn;++i) {
+               indices[0][i] = neighbors[i];
+               dists[0][i] = distances[i];
+       }
 
-    /**
-     * \brief Perform radius search
-     * \param[in] query The query point
-     * \param[out] indices The indinces of the neighbors found within the given radius
-     * \param[out] dists The distances to the nearest neighbors found
-     * \param[in] radius The radius used for search
-     * \param[in] params Search parameters
-     * \returns Number of neighbors found
-     */
-    int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params)
-    {
-        return nnIndex_->radiusSearch(query, indices, dists, radius, params);
-    }
+       return (int)count_nn;
+}
 
-    /**
-     * \brief Method that searches for nearest-neighbours
-     */
-    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
-    {
-        nnIndex_->findNeighbors(result, vec, searchParams);
-    }
 
-    /**
-     * \brief Returns actual index
-     */
-    FLANN_DEPRECATED NNIndex<Distance>* getIndex()
-    {
-        return nnIndex_;
-    }
+template<typename T>
+void Index<T>::save(std::string filename)
+{
+       FILE* fout = fopen(filename.c_str(), "wb");
+       if (fout==NULL) {
+               throw FLANNException("Cannot open file");
+       }
+       save_header(fout, *nnIndex);
+       nnIndex->saveIndex(fout);
+       fclose(fout);
+}
 
-    /**
-     * \brief Returns index parameters.
-     * \deprecated use getParameters() instead.
-     */
-    FLANN_DEPRECATED  const IndexParams* getIndexParameters()
-    {
-        return &index_params_;
-    }
 
-private:
-    /** Pointer to actual index class */
-    NNIndex<Distance>* nnIndex_;
-    /** Indices if the index was loaded from a file */
-    bool loaded_;
-    /** Parameters passed to the index */
-    IndexParams index_params_;
-};
+template<typename T>
+int Index<T>::size() const
+{
+       return nnIndex->size();
+}
 
-/**
- * Performs a hierarchical clustering of the points passed as argument and then takes a cut in the
- * the clustering tree to return a flat clustering.
- * @param[in] points Points to be clustered
- * @param centers The computed cluster centres. Matrix should be preallocated and centers.rows is the
- *  number of clusters requested.
- * @param params Clustering parameters (The same as for cvflann::KMeansIndex)
- * @param d Distance to be used for clustering (eg: cvflann::L2)
- * @return number of clusters computed (can be different than clusters.rows and is the highest number
- * of the form (branching-1)*K+1 smaller than clusters.rows).
- */
-template <typename Distance>
-int hierarchicalClustering(const Matrix<typename Distance::ElementType>& points, Matrix<typename Distance::ResultType>& centers,
-                           const KMeansIndexParams& params, Distance d = Distance())
+template<typename T>
+int Index<T>::veclen() const
 {
-    KMeansIndex<Distance> kmeans(points, params, d);
-    kmeans.buildIndex();
+       return nnIndex->veclen();
+}
+
+
+template <typename ELEM_TYPE, typename DIST_TYPE>
+int hierarchicalClustering(const Matrix<ELEM_TYPE>& features, Matrix<DIST_TYPE>& centers, const KMeansIndexParams& params)
+{
+    KMeansIndex<ELEM_TYPE, DIST_TYPE> kmeans(features, params);
+       kmeans.buildIndex();
 
     int clusterNum = kmeans.getClusterCenters(centers);
-    return clusterNum;
+       return clusterNum;
 }
 
-}
-#endif /* FLANN_BASE_HPP_ */
+} // namespace cvflann
+#endif /* _OPENCV_FLANN_BASE_HPP_ */
index 28db33b..880cc84 100644 (file)
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef OPENCV_FLANN_GENERAL_H_
-#define OPENCV_FLANN_GENERAL_H_
+#ifndef _OPENCV_GENERAL_H_
+#define _OPENCV_GENERAL_H_
+
+#ifdef __cplusplus
 
-#include "defines.h"
 #include <stdexcept>
 #include <cassert>
+#include "opencv2/flann/object_factory.h"
+#include "opencv2/flann/logger.h"
+
+namespace cvflann {
+
+#undef ARRAY_LEN
+#define ARRAY_LEN(a) (sizeof(a)/sizeof(a[0]))
+
+/* Nearest neighbour index algorithms */
+enum flann_algorithm_t {
+       FLANN_INDEX_LINEAR = 0,
+       FLANN_INDEX_KDTREE = 1,
+       FLANN_INDEX_KMEANS = 2,
+       FLANN_INDEX_COMPOSITE = 3,
+       FLANN_INDEX_SAVED = 254,
+       FLANN_INDEX_AUTOTUNED = 255
+};
+
+enum flann_centers_init_t {
+       FLANN_CENTERS_RANDOM = 0,
+       FLANN_CENTERS_GONZALES = 1,
+       FLANN_CENTERS_KMEANSPP = 2
+};
+
 
-namespace cvflann
+enum flann_distance_t {
+       FLANN_DIST_EUCLIDEAN = 1,
+       FLANN_DIST_L2 = 1,
+       FLANN_DIST_MANHATTAN = 2,
+       FLANN_DIST_L1 = 2,
+       FLANN_DIST_MINKOWSKI = 3,
+       FLANN_DIST_MAX       = 4,
+       FLANN_DIST_HIST_INTERSECT = 5,
+       FLANN_DIST_HELLINGER = 6,
+       FLANN_DIST_CHI_SQUARE = 7,
+       FLANN_DIST_CS         = 7,
+       FLANN_DIST_KULLBACK_LEIBLER        = 8,
+       FLANN_DIST_KL        = 8
+};
+
+enum flann_datatype_t {
+       FLANN_INT8 = 0,
+       FLANN_INT16 = 1,
+       FLANN_INT32 = 2,
+       FLANN_INT64 = 3,
+       FLANN_UINT8 = 4,
+       FLANN_UINT16 = 5,
+       FLANN_UINT32 = 6,
+       FLANN_UINT64 = 7,
+       FLANN_FLOAT32 = 8,
+       FLANN_FLOAT64 = 9
+};
+
+template <typename ELEM_TYPE>
+struct DistType
 {
+       typedef ELEM_TYPE type;
+};
 
-class FLANNException : public std::runtime_error
+template <>
+struct DistType<unsigned char>
 {
+       typedef float type;
+};
+
+template <>
+struct DistType<int>
+{
+       typedef float type;
+};
+
+
+class FLANNException : public std::runtime_error {
+ public:
+   FLANNException(const char* message) : std::runtime_error(message) { }
+
+   FLANNException(const std::string& message) : std::runtime_error(message) { }
+ };
+
+
+struct CV_EXPORTS IndexParams {
+protected:
+       IndexParams(flann_algorithm_t algorithm_) : algorithm(algorithm_) {};
+       
 public:
-    FLANNException(const char* message) : std::runtime_error(message) { }
+       virtual ~IndexParams() {}
+       virtual flann_algorithm_t getIndexType() const { return algorithm; }
 
-    FLANNException(const std::string& message) : std::runtime_error(message) { }
+       virtual void print() const = 0;
+
+       flann_algorithm_t algorithm;
 };
 
-#if (defined WIN32 || defined _WIN32 || defined WINCE) && defined CVAPI_EXPORTS\r
-__declspec(dllexport)\r
-#endif
-void dummyfunc();
 
-}
+typedef ObjectFactory<IndexParams, flann_algorithm_t> ParamsFactory;
+CV_EXPORTS ParamsFactory& ParamsFactory_instance();
 
+struct CV_EXPORTS SearchParams {
+       SearchParams(int checks_ = 32) :
+               checks(checks_) {};
+
+       int checks;
+};
+
+} // namespace cvflann
+
+#endif
 
-#endif  /* OPENCV_FLANN_GENERAL_H_ */
+#endif  /* _OPENCV_GENERAL_H_ */
index 8f1c698..cb21324 100644 (file)
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef OPENCV_FLANN_GROUND_TRUTH_H_
-#define OPENCV_FLANN_GROUND_TRUTH_H_
-
-#include "dist.h"
-#include "matrix.h"
+#ifndef _OPENCV_GROUND_TRUTH_H_
+#define _OPENCV_GROUND_TRUTH_H_
 
+#include "opencv2/flann/dist.h"
+#include "opencv2/flann/matrix.h"
 
 namespace cvflann
 {
 
-template <typename Distance>
-void find_nearest(const Matrix<typename Distance::ElementType>& dataset, typename Distance::ElementType* query, int* matches, int nn,
-                  int skip = 0, Distance distance = Distance())
+template <typename T>
+void find_nearest(const Matrix<T>& dataset, T* query, int* matches, int nn, int skip = 0)
 {
-    typedef typename Distance::ElementType ElementType;
-    typedef typename Distance::ResultType DistanceType;
     int n = nn + skip;
 
-    int* match = new int[n];
-    DistanceType* dists = new DistanceType[n];
+    T* query_end = query + dataset.cols;
+
+    long* match = new long[n];
+    T* dists = new T[n];
 
-    dists[0] = distance(dataset[0], query, dataset.cols);
+    dists[0] = (float)flann_dist(query, query_end, dataset[0]);
     match[0] = 0;
     int dcnt = 1;
 
-    for (size_t i=1; i<dataset.rows; ++i) {
-        DistanceType tmp = distance(dataset[i], query, dataset.cols);
+    for (size_t i=1;i<dataset.rows;++i) {
+        T tmp = (T)flann_dist(query, query_end, dataset[i]);
 
         if (dcnt<n) {
-            match[dcnt] = i;
+            match[dcnt] = (long)i;
             dists[dcnt++] = tmp;
         }
         else if (tmp < dists[dcnt-1]) {
             dists[dcnt-1] = tmp;
-            match[dcnt-1] = i;
+            match[dcnt-1] = (long)i;
         }
 
         int j = dcnt-1;
@@ -74,7 +72,7 @@ void find_nearest(const Matrix<typename Distance::ElementType>& dataset, typenam
         }
     }
 
-    for (int i=0; i<nn; ++i) {
+    for (int i=0;i<nn;++i) {
         matches[i] = match[i+skip];
     }
 
@@ -83,16 +81,15 @@ void find_nearest(const Matrix<typename Distance::ElementType>& dataset, typenam
 }
 
 
-template <typename Distance>
-void compute_ground_truth(const Matrix<typename Distance::ElementType>& dataset, const Matrix<typename Distance::ElementType>& testset, Matrix<int>& matches,
-                          int skip=0, Distance d = Distance())
+template <typename T>
+void compute_ground_truth(const Matrix<T>& dataset, const Matrix<T>& testset, Matrix<int>& matches, int skip=0)
 {
-    for (size_t i=0; i<testset.rows; ++i) {
-        find_nearest<Distance>(dataset, testset[i], matches[i], (int)matches.cols, skip, d);
+    for (size_t i=0;i<testset.rows;++i) {
+        find_nearest(dataset, testset[i], matches[i], (int)matches.cols, skip);
     }
 }
 
 
-}
+} // namespace cvflann
 
-#endif //OPENCV_FLANN_GROUND_TRUTH_H_
+#endif //_OPENCV_GROUND_TRUTH_H_
index ff92434..727d5a1 100644 (file)
  *************************************************************************/
 
 
-#ifndef OPENCV_FLANN_HDF5_H_
-#define OPENCV_FLANN_HDF5_H_
+#ifndef _OPENCV_HDF5_H_
+#define _OPENCV_HDF5_H_
 
-#include <hdf5.h>
+#include <H5Cpp.h>
 
-#include "matrix.h"
+#include "opencv2/flann/matrix.h"
 
 
-namespace cvflann
-{
 
-namespace
-{
+#ifndef H5_NO_NAMESPACE
+    using namespace H5;
+#endif
 
-template<typename T>
-hid_t get_hdf5_type()
+namespace cvflann 
 {
-    throw FLANNException("Unsupported type for IO operations");
-}
-
-template<>
-hid_t get_hdf5_type<char>() { return H5T_NATIVE_CHAR; }
-template<>
-hid_t get_hdf5_type<unsigned char>() { return H5T_NATIVE_UCHAR; }
-template<>
-hid_t get_hdf5_type<short int>() { return H5T_NATIVE_SHORT; }
-template<>
-hid_t get_hdf5_type<unsigned short int>() { return H5T_NATIVE_USHORT; }
-template<>
-hid_t get_hdf5_type<int>() { return H5T_NATIVE_INT; }
-template<>
-hid_t get_hdf5_type<unsigned int>() { return H5T_NATIVE_UINT; }
-template<>
-hid_t get_hdf5_type<long>() { return H5T_NATIVE_LONG; }
-template<>
-hid_t get_hdf5_type<unsigned long>() { return H5T_NATIVE_ULONG; }
-template<>
-hid_t get_hdf5_type<float>() { return H5T_NATIVE_FLOAT; }
-template<>
-hid_t get_hdf5_type<double>() { return H5T_NATIVE_DOUBLE; }
-template<>
-hid_t get_hdf5_type<long double>() { return H5T_NATIVE_LDOUBLE; }
-}
 
 
-#define CHECK_ERROR(x,y) if ((x)<0) throw FLANNException((y));
+namespace {
 
 template<typename T>
-void save_to_file(const cvflann::Matrix<T>& dataset, const std::string& filename, const std::string& name)
+PredType get_hdf5_type()
 {
+       throw FLANNException("Unsupported type for IO operations");
+}
 
-#if H5Eset_auto_vers == 2
-    H5Eset_auto( H5E_DEFAULT, NULL, NULL );
-#else
-    H5Eset_auto( NULL, NULL );
-#endif
-
-    herr_t status;
-    hid_t file_id;
-    file_id = H5Fopen(filename.c_str(), H5F_ACC_RDWR, H5P_DEFAULT);
-    if (file_id < 0) {
-        file_id = H5Fcreate(filename.c_str(), H5F_ACC_EXCL, H5P_DEFAULT, H5P_DEFAULT);
-    }
-    CHECK_ERROR(file_id,"Error creating hdf5 file.");
-
-    hsize_t     dimsf[2];              // dataset dimensions
-    dimsf[0] = dataset.rows;
-    dimsf[1] = dataset.cols;
-
-    hid_t space_id = H5Screate_simple(2, dimsf, NULL);
-    hid_t memspace_id = H5Screate_simple(2, dimsf, NULL);
-
-    hid_t dataset_id;
-#if H5Dcreate_vers == 2
-    dataset_id = H5Dcreate2(file_id, name.c_str(), get_hdf5_type<T>(), space_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
-#else
-    dataset_id = H5Dcreate(file_id, name.c_str(), get_hdf5_type<T>(), space_id, H5P_DEFAULT);
-#endif
-
-    if (dataset_id<0) {
-#if H5Dopen_vers == 2
-        dataset_id = H5Dopen2(file_id, name.c_str(), H5P_DEFAULT);
-#else
-        dataset_id = H5Dopen(file_id, name.c_str());
-#endif
-    }
-    CHECK_ERROR(dataset_id,"Error creating or opening dataset in file.");
-
-    status = H5Dwrite(dataset_id, get_hdf5_type<T>(), memspace_id, space_id, H5P_DEFAULT, dataset.data );
-    CHECK_ERROR(status, "Error writing to dataset");
-
-    H5Sclose(memspace_id);
-    H5Sclose(space_id);
-    H5Dclose(dataset_id);
-    H5Fclose(file_id);
+template<> PredType get_hdf5_type<char>() { return PredType::NATIVE_CHAR; }
+template<> PredType get_hdf5_type<unsigned char>() { return PredType::NATIVE_UCHAR; }
+template<> PredType get_hdf5_type<short int>() { return PredType::NATIVE_SHORT; }
+template<> PredType get_hdf5_type<unsigned short int>() { return PredType::NATIVE_USHORT; }
+template<> PredType get_hdf5_type<int>() { return PredType::NATIVE_INT; }
+template<> PredType get_hdf5_type<unsigned int>() { return PredType::NATIVE_UINT; }
+template<> PredType get_hdf5_type<long>() { return PredType::NATIVE_LONG; }
+template<> PredType get_hdf5_type<unsigned long>() { return PredType::NATIVE_ULONG; }
+template<> PredType get_hdf5_type<float>() { return PredType::NATIVE_FLOAT; }
+template<> PredType get_hdf5_type<double>() { return PredType::NATIVE_DOUBLE; }
+template<> PredType get_hdf5_type<long double>() { return PredType::NATIVE_LDOUBLE; }
 
 }
 
 
 template<typename T>
-void load_from_file(cvflann::Matrix<T>& dataset, const std::string& filename, const std::string& name)
+void save_to_file(const cvflann::Matrix<T>& flann_dataset, const std::string& filename, const std::string& name)
 {
-    herr_t status;
-    hid_t file_id = H5Fopen(filename.c_str(), H5F_ACC_RDWR, H5P_DEFAULT);
-    CHECK_ERROR(file_id,"Error opening hdf5 file.");
-
-    hid_t dataset_id;
-#if H5Dopen_vers == 2
-    dataset_id = H5Dopen2(file_id, name.c_str(), H5P_DEFAULT);
-#else
-    dataset_id = H5Dopen(file_id, name.c_str());
-#endif
-    CHECK_ERROR(dataset_id,"Error opening dataset in file.");
-
-    hid_t space_id = H5Dget_space(dataset_id);
-
-    hsize_t dims_out[2];
-    H5Sget_simple_extent_dims(space_id, dims_out, NULL);
-
-    dataset = cvflann::Matrix<T>(new T[dims_out[0]*dims_out[1]], dims_out[0], dims_out[1]);
-
-    status = H5Dread(dataset_id, get_hdf5_type<T>(), H5S_ALL, H5S_ALL, H5P_DEFAULT, dataset[0]);
-    CHECK_ERROR(status, "Error reading dataset");
-
-    H5Sclose(space_id);
-    H5Dclose(dataset_id);
-    H5Fclose(file_id);
+       // Try block to detect exceptions raised by any of the calls inside it
+       try
+       {
+               /*
+                * Turn off the auto-printing when failure occurs so that we can
+                * handle the errors appropriately
+                */
+               Exception::dontPrint();
+
+               /*
+                * Create a new file using H5F_ACC_TRUNC access,
+                * default file creation properties, and default file
+                * access properties.
+                */
+               H5File file( filename, H5F_ACC_TRUNC );
+
+               /*
+                * Define the size of the array and create the data space for fixed
+                * size dataset.
+                */
+               hsize_t     dimsf[2];              // dataset dimensions
+               dimsf[0] = flann_dataset.rows;
+               dimsf[1] = flann_dataset.cols;
+               DataSpace dataspace( 2, dimsf );
+
+               /*
+                * Create a new dataset within the file using defined dataspace and
+                * datatype and default dataset creation properties.
+                */
+               DataSet dataset = file.createDataSet( name, get_hdf5_type<T>(), dataspace );
+
+               /*
+                * Write the data to the dataset using default memory space, file
+                * space, and transfer properties.
+                */
+               dataset.write( flann_dataset.data, get_hdf5_type<T>() );
+       }  // end of try block
+       catch( H5::Exception& error )
+       {
+               error.printError();
+               throw FLANNException(error.getDetailMsg());
+       }
 }
 
 
-#ifdef HAVE_MPI
-
-namespace mpi
-{
-/**
- * Loads a the hyperslice corresponding to this processor from a hdf5 file.
- * @param flann_dataset Dataset where the data is loaded
- * @param filename HDF5 file name
- * @param name Name of dataset inside file
- */
 template<typename T>
-void load_from_file(cvflann::Matrix<T>& dataset, const std::string& filename, const std::string& name)
+void load_from_file(cvflann::Matrix<T>& flann_dataset, const std::string& filename, const std::string& name)
 {
-    MPI_Comm comm  = MPI_COMM_WORLD;
-    MPI_Info info  = MPI_INFO_NULL;
-
-    int mpi_size, mpi_rank;
-    MPI_Comm_size(comm, &mpi_size);
-    MPI_Comm_rank(comm, &mpi_rank);
-
-    herr_t status;
-
-    hid_t plist_id = H5Pcreate(H5P_FILE_ACCESS);
-    H5Pset_fapl_mpio(plist_id, comm, info);
-    hid_t file_id = H5Fopen(filename.c_str(), H5F_ACC_RDWR, plist_id);
-    CHECK_ERROR(file_id,"Error opening hdf5 file.");
-    H5Pclose(plist_id);
-    hid_t dataset_id;
-#if H5Dopen_vers == 2
-    dataset_id = H5Dopen2(file_id, name.c_str(), H5P_DEFAULT);
-#else
-    dataset_id = H5Dopen(file_id, name.c_str());
-#endif
-    CHECK_ERROR(dataset_id,"Error opening dataset in file.");
-
-    hid_t space_id = H5Dget_space(dataset_id);
-    hsize_t dims[2];
-    H5Sget_simple_extent_dims(space_id, dims, NULL);
-
-    hsize_t count[2];
-    hsize_t offset[2];
-
-    hsize_t item_cnt = dims[0]/mpi_size+(dims[0]%mpi_size==0 ? 0 : 1);
-    hsize_t cnt = (mpi_rank<mpi_size-1 ? item_cnt : dims[0]-item_cnt*(mpi_size-1));
-
-    count[0] = cnt;
-    count[1] = dims[1];
-    offset[0] = mpi_rank*item_cnt;
-    offset[1] = 0;
-
-    hid_t memspace_id = H5Screate_simple(2,count,NULL);
-
-    H5Sselect_hyperslab(space_id, H5S_SELECT_SET, offset, NULL, count, NULL);
-
-    dataset.rows = count[0];
-    dataset.cols = count[1];
-    dataset.data = new T[dataset.rows*dataset.cols];
+       try
+       {
+               Exception::dontPrint();
+
+               H5File file( filename, H5F_ACC_RDONLY );
+               DataSet dataset = file.openDataSet( name );
+
+               /*
+                * Check the type used by the dataset matches
+                */
+               if ( !(dataset.getDataType()==get_hdf5_type<T>())) {
+                       throw FLANNException("Dataset matrix type does not match the type to be read.");
+               }
+
+               /*
+                * Get dataspace of the dataset.
+                */
+               DataSpace dataspace = dataset.getSpace();
+
+               /*
+                * Get the dimension size of each dimension in the dataspace and
+                * display them.
+                */
+               hsize_t dims_out[2];
+               dataspace.getSimpleExtentDims( dims_out, NULL);
+               
+               flann_dataset.rows = dims_out[0];
+               flann_dataset.cols = dims_out[1];
+               flann_dataset.data = new T[flann_dataset.rows*flann_dataset.cols];
+
+               dataset.read( flann_dataset.data, get_hdf5_type<T>() );
+       }  // end of try block
+       catch( H5::Exception &error )
+       {
+               error.printError();
+               throw FLANNException(error.getDetailMsg());
+       }
+}
 
-    plist_id = H5Pcreate(H5P_DATASET_XFER);
-    H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);
-    status = H5Dread(dataset_id, get_hdf5_type<T>(), memspace_id, space_id, plist_id, dataset.data);
-    CHECK_ERROR(status, "Error reading dataset");
 
-    H5Pclose(plist_id);
-    H5Sclose(space_id);
-    H5Sclose(memspace_id);
-    H5Dclose(dataset_id);
-    H5Fclose(file_id);
-}
-}
-#endif // HAVE_MPI
-} // namespace cvflann::mpi
+} // namespace cvflann
 
-#endif /* OPENCV_FLANN_HDF5_H_ */
+#endif /* _OPENCV_HDF5_H_ */
index a189717..0e05451 100644 (file)
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef OPENCV_FLANN_HEAP_H_
-#define OPENCV_FLANN_HEAP_H_
+#ifndef _OPENCV_HEAP_H_
+#define _OPENCV_HEAP_H_
+
 
 #include <algorithm>
-#include <vector>
 
 namespace cvflann
 {
@@ -43,123 +43,166 @@ namespace cvflann
  * The priority queue is implemented with a heap.  A heap is a complete
  * (full) binary tree in which each parent is less than both of its
  * children, but the order of the children is unspecified.
+ * Note that a heap uses 1-based indexing to allow for power-of-2
+ * location of parents and children.  We ignore element 0 of Heap array.
  */
 template <typename T>
-class Heap
-{
+class Heap {
 
-    /**
-     * Storage array for the heap.
-     * Type T must be comparable.
-     */
-    std::vector<T> heap;
+       /**
+       * Storage array for the heap.
+       * Type T must be comparable.
+       */
+       T* heap;
     int length;
 
-    /**
-     * Number of element in the heap
-     */
-    int count;
+       /**
+        * Number of element in the heap
+        */
+       int count;
 
 
 
 public:
-    /**
-     * Constructor.
-     *
-     * Params:
-     *     size = heap size
-     */
-
-    Heap(int size)
-    {
-        length = size;
-        heap.reserve(length);
-        count = 0;
-    }
-
-    /**
-     *
-     * Returns: heap size
-     */
-    int size()
-    {
-        return count;
-    }
-
-    /**
-     * Tests if the heap is empty
-     *
-     * Returns: true is heap empty, false otherwise
-     */
-    bool empty()
-    {
-        return size()==0;
-    }
-
-    /**
-     * Clears the heap.
-     */
-    void clear()
-    {
-        heap.clear();
-        count = 0;
-    }
-
-    struct CompareT
-    {
-        bool operator()(const T& t_1, const T& t_2) const
-        {
-            return !(t_1 < t_2);
-        }
-    };
-
-    /**
-     * Insert a new element in the heap.
-     *
-     * We select the next empty leaf node, and then keep moving any larger
-     * parents down until the right location is found to store this element.
-     *
-     * Params:
-     *     value = the new element to be inserted in the heap
-     */
-    void insert(T value)
-    {
-        /* If heap is full, then return without adding this element. */
-        if (count == length) {
-            return;
-        }
-
-        heap.push_back(value);
-        static CompareT compareT;
-        std::push_heap(heap.begin(), heap.end(), compareT);
-        ++count;
-    }
-
-
-
-    /**
-     * Returns the node of minimum value from the heap (top of the heap).
-     *
-     * Params:
-     *     value = out parameter used to return the min element
-     * Returns: false if heap empty
-     */
-    bool popMin(T& value)
-    {
-        if (count == 0) {
-            return false;
-        }
-
-        value = heap[0];
-        static CompareT compareT;
-        std::pop_heap(heap.begin(), heap.end(), compareT);
-        heap.pop_back();
-        --count;
-
-        return true;  /* Return old last node. */
-    }
+       /**
+        * Constructor.
+        *
+        * Params:
+        *     size = heap size
+        */
+
+       Heap(int size)
+       {
+        length = size+1;
+               heap = new T[length];  // heap uses 1-based indexing
+               count = 0;
+       }
+
+
+       /**
+        * Destructor.
+        *
+        */
+       ~Heap()
+       {
+               delete[] heap;
+       }
+
+       /**
+        *
+        * Returns: heap size
+        */
+       int size()
+       {
+               return count;
+       }
+
+       /**
+        * Tests if the heap is empty
+        *
+        * Returns: true is heap empty, false otherwise
+        */
+       bool empty()
+       {
+               return size()==0;
+       }
+
+       /**
+        * Clears the heap.
+        */
+       void clear()
+       {
+               count = 0;
+       }
+
+
+       /**
+        * Insert a new element in the heap.
+        *
+        * We select the next empty leaf node, and then keep moving any larger
+        * parents down until the right location is found to store this element.
+        *
+        * Params:
+        *     value = the new element to be inserted in the heap
+        */
+       void insert(T value)
+       {
+               /* If heap is full, then return without adding this element. */
+               if (count == length-1) {
+                       return;
+               }
+
+               int loc = ++(count);   /* Remember 1-based indexing. */
+
+               /* Keep moving parents down until a place is found for this node. */
+               int par = loc / 2;                 /* Location of parent. */
+               while (par > 0  && value < heap[par]) {
+                       heap[loc] = heap[par];     /* Move parent down to loc. */
+                       loc = par;
+                       par = loc / 2;
+               }
+               /* Insert the element at the determined location. */
+               heap[loc] = value;
+       }
+
+
+
+       /**
+        * Returns the node of minimum value from the heap (top of the heap).
+        *
+        * Params:
+        *     value = out parameter used to return the min element
+        * Returns: false if heap empty
+        */
+       bool popMin(T& value)
+       {
+               if (count == 0) {
+                       return false;
+               }
+
+               /* Switch first node with last. */
+        std::swap(heap[1],heap[count]);
+
+               count -= 1;
+               heapify(1);      /* Move new node 1 to right position. */
+
+               value = heap[count + 1];
+               return true;  /* Return old last node. */
+       }
+
+
+       /**
+        * Reorganizes the heap (a parent is smaller than its children)
+        * starting with a node.
+        *
+        * Params:
+        *     parent = node form which to start heap reorganization.
+        */
+       void heapify(int parent)
+       {
+               int minloc = parent;
+
+               /* Check the left child */
+               int left = 2 * parent;
+               if (left <= count && heap[left] < heap[parent]) {
+                       minloc = left;
+               }
+
+               /* Check the right child */
+               int right = left + 1;
+               if (right <= count && heap[right] < heap[minloc]) {
+                       minloc = right;
+               }
+
+               /* If a child was smaller, than swap parent with it and Heapify. */
+               if (minloc != parent) {
+            std::swap(heap[parent],heap[minloc]);
+                       heapify(minloc);
+               }
+       }
+
 };
 
-}
+} // namespace cvflann
 
-#endif //OPENCV_FLANN_HEAP_H_
+#endif //_OPENCV_HEAP_H_
diff --git a/modules/flann/include/opencv2/flann/hierarchical_clustering_index.h b/modules/flann/include/opencv2/flann/hierarchical_clustering_index.h
deleted file mode 100644 (file)
index 9c3d16e..0000000
+++ /dev/null
@@ -1,717 +0,0 @@
-/***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2008-2011  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
- * Copyright 2008-2011  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
- *
- * THE BSD LICENSE
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- *    notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice, this list of conditions and the following disclaimer in the
- *    documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
-
-#ifndef OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
-#define OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
-
-#include <algorithm>
-#include <string>
-#include <map>
-#include <cassert>
-#include <limits>
-#include <cmath>
-
-#include "general.h"
-#include "nn_index.h"
-#include "dist.h"
-#include "matrix.h"
-#include "result_set.h"
-#include "heap.h"
-#include "allocator.h"
-#include "random.h"
-#include "saving.h"
-
-
-namespace cvflann
-{
-
-struct HierarchicalClusteringIndexParams : public IndexParams
-{
-    HierarchicalClusteringIndexParams(int branching = 32,
-                                      flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
-                                      int trees = 4, int leaf_size = 100)
-    {
-        (*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL;
-        // The branching factor used in the hierarchical clustering
-        (*this)["branching"] = branching;
-        // Algorithm used for picking the initial cluster centers
-        (*this)["centers_init"] = centers_init;
-        // number of parallel trees to build
-        (*this)["trees"] = trees;
-        // maximum leaf size
-        (*this)["leaf_size"] = leaf_size;
-    }
-};
-
-
-/**
- * Hierarchical index
- *
- * Contains a tree constructed through a hierarchical clustering
- * and other information for indexing a set of points for nearest-neighbour matching.
- */
-template <typename Distance>
-class HierarchicalClusteringIndex : public NNIndex<Distance>
-{
-public:
-    typedef typename Distance::ElementType ElementType;
-    typedef typename Distance::ResultType DistanceType;
-
-private:
-
-
-    typedef void (HierarchicalClusteringIndex::* centersAlgFunction)(int, int*, int, int*, int&);
-
-    /**
-     * The function used for choosing the cluster centers.
-     */
-    centersAlgFunction chooseCenters;
-
-
-
-    /**
-     * Chooses the initial centers in the k-means clustering in a random manner.
-     *
-     * Params:
-     *     k = number of centers
-     *     vecs = the dataset of points
-     *     indices = indices in the dataset
-     *     indices_length = length of indices vector
-     *
-     */
-    void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length)
-    {
-        UniqueRandom r(indices_length);
-
-        int index;
-        for (index=0; index<k; ++index) {
-            bool duplicate = true;
-            int rnd;
-            while (duplicate) {
-                duplicate = false;
-                rnd = r.next();
-                if (rnd<0) {
-                    centers_length = index;
-                    return;
-                }
-
-                centers[index] = indices[rnd];
-
-                for (int j=0; j<index; ++j) {
-                    float sq = distance(dataset[centers[index]], dataset[centers[j]], dataset.cols);
-                    if (sq<1e-16) {
-                        duplicate = true;
-                    }
-                }
-            }
-        }
-
-        centers_length = index;
-    }
-
-
-    /**
-     * Chooses the initial centers in the k-means using Gonzales' algorithm
-     * so that the centers are spaced apart from each other.
-     *
-     * Params:
-     *     k = number of centers
-     *     vecs = the dataset of points
-     *     indices = indices in the dataset
-     * Returns:
-     */
-    void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length)
-    {
-        int n = indices_length;
-
-        int rnd = rand_int(n);
-        assert(rnd >=0 && rnd < n);
-
-        centers[0] = indices[rnd];
-
-        int index;
-        for (index=1; index<k; ++index) {
-
-            int best_index = -1;
-            float best_val = 0;
-            for (int j=0; j<n; ++j) {
-                float dist = distance(dataset[centers[0]],dataset[indices[j]],dataset.cols);
-                for (int i=1; i<index; ++i) {
-                    float tmp_dist = distance(dataset[centers[i]],dataset[indices[j]],dataset.cols);
-                    if (tmp_dist<dist) {
-                        dist = tmp_dist;
-                    }
-                }
-                if (dist>best_val) {
-                    best_val = dist;
-                    best_index = j;
-                }
-            }
-            if (best_index!=-1) {
-                centers[index] = indices[best_index];
-            }
-            else {
-                break;
-            }
-        }
-        centers_length = index;
-    }
-
-
-    /**
-     * Chooses the initial centers in the k-means using the algorithm
-     * proposed in the KMeans++ paper:
-     * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
-     *
-     * Implementation of this function was converted from the one provided in Arthur's code.
-     *
-     * Params:
-     *     k = number of centers
-     *     vecs = the dataset of points
-     *     indices = indices in the dataset
-     * Returns:
-     */
-    void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length)
-    {
-        int n = indices_length;
-
-        double currentPot = 0;
-        DistanceType* closestDistSq = new DistanceType[n];
-
-        // Choose one random center and set the closestDistSq values
-        int index = rand_int(n);
-        assert(index >=0 && index < n);
-        centers[0] = indices[index];
-
-        for (int i = 0; i < n; i++) {
-            closestDistSq[i] = distance(dataset[indices[i]], dataset[indices[index]], dataset.cols);
-            currentPot += closestDistSq[i];
-        }
-
-
-        const int numLocalTries = 1;
-
-        // Choose each center
-        int centerCount;
-        for (centerCount = 1; centerCount < k; centerCount++) {
-
-            // Repeat several trials
-            double bestNewPot = -1;
-            int bestNewIndex = 0;
-            for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
-
-                // Choose our center - have to be slightly careful to return a valid answer even accounting
-                // for possible rounding errors
-                double randVal = rand_double(currentPot);
-                for (index = 0; index < n-1; index++) {
-                    if (randVal <= closestDistSq[index]) break;
-                    else randVal -= closestDistSq[index];
-                }
-
-                // Compute the new potential
-                double newPot = 0;
-                for (int i = 0; i < n; i++) newPot += std::min( distance(dataset[indices[i]], dataset[indices[index]], dataset.cols), closestDistSq[i] );
-
-                // Store the best result
-                if ((bestNewPot < 0)||(newPot < bestNewPot)) {
-                    bestNewPot = newPot;
-                    bestNewIndex = index;
-                }
-            }
-
-            // Add the appropriate center
-            centers[centerCount] = indices[bestNewIndex];
-            currentPot = bestNewPot;
-            for (int i = 0; i < n; i++) closestDistSq[i] = std::min( distance(dataset[indices[i]], dataset[indices[bestNewIndex]], dataset.cols), closestDistSq[i] );
-        }
-
-        centers_length = centerCount;
-
-        delete[] closestDistSq;
-    }
-
-
-public:
-
-
-    /**
-     * Index constructor
-     *
-     * Params:
-     *          inputData = dataset with the input features
-     *          params = parameters passed to the hierarchical k-means algorithm
-     */
-    HierarchicalClusteringIndex(const Matrix<ElementType>& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(),
-                                Distance d = Distance())
-        : dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d)
-    {
-        memoryCounter = 0;
-
-        size_ = dataset.rows;
-        veclen_ = dataset.cols;
-
-        branching_ = get_param(params,"branching",32);
-        centers_init_ = get_param(params,"centers_init", FLANN_CENTERS_RANDOM);
-        trees_ = get_param(params,"trees",4);
-        leaf_size_ = get_param(params,"leaf_size",100);
-
-        if (centers_init_==FLANN_CENTERS_RANDOM) {
-            chooseCenters = &HierarchicalClusteringIndex::chooseCentersRandom;
-        }
-        else if (centers_init_==FLANN_CENTERS_GONZALES) {
-            chooseCenters = &HierarchicalClusteringIndex::chooseCentersGonzales;
-        }
-        else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
-            chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp;
-        }
-        else {
-            throw FLANNException("Unknown algorithm for choosing initial centers.");
-        }
-
-        trees_ = get_param(params,"trees",4);
-        root = new NodePtr[trees_];
-        indices = new int*[trees_];
-    }
-
-    HierarchicalClusteringIndex(const HierarchicalClusteringIndex&);
-    HierarchicalClusteringIndex& operator=(const HierarchicalClusteringIndex&);
-
-    /**
-     * Index destructor.
-     *
-     * Release the memory used by the index.
-     */
-    virtual ~HierarchicalClusteringIndex()
-    {
-        if (indices!=NULL) {
-            delete[] indices;
-        }
-    }
-
-    /**
-     *  Returns size of index.
-     */
-    size_t size() const
-    {
-        return size_;
-    }
-
-    /**
-     * Returns the length of an index feature.
-     */
-    size_t veclen() const
-    {
-        return veclen_;
-    }
-
-
-    /**
-     * Computes the inde memory usage
-     * Returns: memory used by the index
-     */
-    int usedMemory() const
-    {
-        return pool.usedMemory+pool.wastedMemory+memoryCounter;
-    }
-
-    /**
-     * Builds the index
-     */
-    void buildIndex()
-    {
-        if (branching_<2) {
-            throw FLANNException("Branching factor must be at least 2");
-        }
-        for (int i=0; i<trees_; ++i) {
-            indices[i] = new int[size_];
-            for (size_t j=0; j<size_; ++j) {
-                indices[i][j] = j;
-            }
-            root[i] = pool.allocate<Node>();
-            computeClustering(root[i], indices[i], size_, branching_,0);
-        }
-    }
-
-
-    flann_algorithm_t getType() const
-    {
-        return FLANN_INDEX_HIERARCHICAL;
-    }
-
-
-    void saveIndex(FILE* stream)
-    {
-        save_value(stream, branching_);
-        save_value(stream, trees_);
-        save_value(stream, centers_init_);
-        save_value(stream, leaf_size_);
-        save_value(stream, memoryCounter);
-        for (int i=0; i<trees_; ++i) {
-            save_value(stream, *indices[i], size_);
-            save_tree(stream, root[i], i);
-        }
-
-    }
-
-
-    void loadIndex(FILE* stream)
-    {
-        load_value(stream, branching_);
-        load_value(stream, trees_);
-        load_value(stream, centers_init_);
-        load_value(stream, leaf_size_);
-        load_value(stream, memoryCounter);
-        indices = new int*[trees_];
-        root = new NodePtr[trees_];
-        for (int i=0; i<trees_; ++i) {
-            indices[i] = new int[size_];
-            load_value(stream, *indices[i], size_);
-            load_tree(stream, root[i], i);
-        }
-
-        params["algorithm"] = getType();
-        params["branching"] = branching_;
-        params["trees"] = trees_;
-        params["centers_init"] = centers_init_;
-        params["leaf_size"] = leaf_size_;
-    }
-
-
-    /**
-     * Find set of nearest neighbors to vec. Their indices are stored inside
-     * the result object.
-     *
-     * Params:
-     *     result = the result object in which the indices of the nearest-neighbors are stored
-     *     vec = the vector for which to search the nearest neighbors
-     *     searchParams = parameters that influence the search algorithm (checks)
-     */
-    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
-    {
-
-        int maxChecks = get_param(searchParams,"checks",32);
-
-        // Priority queue storing intermediate branches in the best-bin-first search
-        Heap<BranchSt>* heap = new Heap<BranchSt>(size_);
-
-        std::vector<bool> checked(size_,false);
-        int checks = 0;
-        for (int i=0; i<trees_; ++i) {
-            findNN(root[i], result, vec, checks, maxChecks, heap, checked);
-        }
-
-        BranchSt branch;
-        while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
-            NodePtr node = branch.node;
-            findNN(node, result, vec, checks, maxChecks, heap, checked);
-        }
-        assert(result.full());
-
-        delete heap;
-
-    }
-
-    IndexParams getParameters() const
-    {
-        return params;
-    }
-
-
-private:
-
-    /**
-     * Struture representing a node in the hierarchical k-means tree.
-     */
-    struct Node
-    {
-        /**
-         * The cluster center index
-         */
-        int pivot;
-        /**
-         * The cluster size (number of points in the cluster)
-         */
-        int size;
-        /**
-         * Child nodes (only for non-terminal nodes)
-         */
-        Node** childs;
-        /**
-         * Node points (only for terminal nodes)
-         */
-        int* indices;
-        /**
-         * Level
-         */
-        int level;
-    };
-    typedef Node* NodePtr;
-
-
-
-    /**
-     * Alias definition for a nicer syntax.
-     */
-    typedef BranchStruct<NodePtr, DistanceType> BranchSt;
-
-
-
-    void save_tree(FILE* stream, NodePtr node, int num)
-    {
-        save_value(stream, *node);
-        if (node->childs==NULL) {
-            int indices_offset = node->indices - indices[num];
-            save_value(stream, indices_offset);
-        }
-        else {
-            for(int i=0; i<branching_; ++i) {
-                save_tree(stream, node->childs[i], num);
-            }
-        }
-    }
-
-
-    void load_tree(FILE* stream, NodePtr& node, int num)
-    {
-        node = pool.allocate<Node>();
-        load_value(stream, *node);
-        if (node->childs==NULL) {
-            int indices_offset;
-            load_value(stream, indices_offset);
-            node->indices = indices[num] + indices_offset;
-        }
-        else {
-            node->childs = pool.allocate<NodePtr>(branching_);
-            for(int i=0; i<branching_; ++i) {
-                load_tree(stream, node->childs[i], num);
-            }
-        }
-    }
-
-
-
-
-    void computeLabels(int* indices, int indices_length,  int* centers, int centers_length, int* labels, DistanceType& cost)
-    {
-        cost = 0;
-        for (int i=0; i<indices_length; ++i) {
-            ElementType* point = dataset[indices[i]];
-            DistanceType dist = distance(point, dataset[centers[0]], veclen_);
-            labels[i] = 0;
-            for (int j=1; j<centers_length; ++j) {
-                DistanceType new_dist = distance(point, dataset[centers[j]], veclen_);
-                if (dist>new_dist) {
-                    labels[i] = j;
-                    dist = new_dist;
-                }
-            }
-            cost += dist;
-        }
-    }
-
-    /**
-     * The method responsible with actually doing the recursive hierarchical
-     * clustering
-     *
-     * Params:
-     *     node = the node to cluster
-     *     indices = indices of the points belonging to the current node
-     *     branching = the branching factor to use in the clustering
-     *
-     * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
-     */
-    void computeClustering(NodePtr node, int* indices, int indices_length, int branching, int level)
-    {
-        node->size = indices_length;
-        node->level = level;
-
-        if (indices_length < leaf_size_) { // leaf node
-            node->indices = indices;
-            std::sort(node->indices,node->indices+indices_length);
-            node->childs = NULL;
-            return;
-        }
-
-        std::vector<int> centers(branching);
-        std::vector<int> labels(indices_length);
-
-        int centers_length;
-        (this->*chooseCenters)(branching, indices, indices_length, &centers[0], centers_length);
-
-        if (centers_length<branching) {
-            node->indices = indices;
-            std::sort(node->indices,node->indices+indices_length);
-            node->childs = NULL;
-            return;
-        }
-
-
-        //     assign points to clusters
-        DistanceType cost;
-        computeLabels(indices, indices_length, &centers[0], centers_length, &labels[0], cost);
-
-        node->childs = pool.allocate<NodePtr>(branching);
-        int start = 0;
-        int end = start;
-        for (int i=0; i<branching; ++i) {
-            for (int j=0; j<indices_length; ++j) {
-                if (labels[j]==i) {
-                    std::swap(indices[j],indices[end]);
-                    std::swap(labels[j],labels[end]);
-                    end++;
-                }
-            }
-
-            node->childs[i] = pool.allocate<Node>();
-            node->childs[i]->pivot = centers[i];
-            node->childs[i]->indices = NULL;
-            computeClustering(node->childs[i],indices+start, end-start, branching, level+1);
-            start=end;
-        }
-    }
-
-
-
-    /**
-     * Performs one descent in the hierarchical k-means tree. The branches not
-     * visited are stored in a priority queue.
-     *
-     * Params:
-     *      node = node to explore
-     *      result = container for the k-nearest neighbors found
-     *      vec = query points
-     *      checks = how many points in the dataset have been checked so far
-     *      maxChecks = maximum dataset points to checks
-     */
-
-
-    void findNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
-                Heap<BranchSt>* heap, std::vector<bool>& checked)
-    {
-        if (node->childs==NULL) {
-            if (checks>=maxChecks) {
-                if (result.full()) return;
-            }
-            checks += node->size;
-            for (int i=0; i<node->size; ++i) {
-                int index = node->indices[i];
-                if (!checked[index]) {
-                    DistanceType dist = distance(dataset[index], vec, veclen_);
-                    result.addPoint(dist, index);
-                    checked[index] = true;
-                }
-            }
-        }
-        else {
-            DistanceType* domain_distances = new DistanceType[branching_];
-            int best_index = 0;
-            domain_distances[best_index] = distance(vec, dataset[node->childs[best_index]->pivot], veclen_);
-            for (int i=1; i<branching_; ++i) {
-                domain_distances[i] = distance(vec, dataset[node->childs[i]->pivot], veclen_);
-                if (domain_distances[i]<domain_distances[best_index]) {
-                    best_index = i;
-                }
-            }
-            for (int i=0; i<branching_; ++i) {
-                if (i!=best_index) {
-                    heap->insert(BranchSt(node->childs[i],domain_distances[i]));
-                }
-            }
-            delete[] domain_distances;
-            findNN(node->childs[best_index],result,vec, checks, maxChecks, heap, checked);
-        }
-    }
-
-private:
-
-
-    /**
-     * The dataset used by this index
-     */
-    const Matrix<ElementType> dataset;
-
-    /**
-     * Parameters used by this index
-     */
-    IndexParams params;
-
-
-    /**
-     * Number of features in the dataset.
-     */
-    size_t size_;
-
-    /**
-     * Length of each feature.
-     */
-    size_t veclen_;
-
-    /**
-     * The root node in the tree.
-     */
-    NodePtr* root;
-
-    /**
-     *  Array of indices to vectors in the dataset.
-     */
-    int** indices;
-
-
-    /**
-     * The distance
-     */
-    Distance distance;
-
-    /**
-     * Pooled memory allocator.
-     *
-     * Using a pooled memory allocator is more efficient
-     * than allocating memory directly when there is a large
-     * number small of memory allocations.
-     */
-    PooledAllocator pool;
-
-    /**
-     * Memory occupied by the index.
-     */
-    int memoryCounter;
-
-    /** index parameters */
-    int branching_;
-    int trees_;
-    flann_centers_init_t centers_init_;
-    int leaf_size_;
-
-
-};
-
-}
-
-#endif /* OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */
index c98a14b..476c2c2 100644 (file)
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef OPENCV_FLANN_INDEX_TESTING_H_
-#define OPENCV_FLANN_INDEX_TESTING_H_
+#ifndef _OPENCV_TESTING_H_
+#define _OPENCV_TESTING_H_
 
 #include <cstring>
 #include <cassert>
-#include <cmath>
 
-#include "matrix.h"
-#include "nn_index.h"
-#include "result_set.h"
-#include "logger.h"
-#include "timer.h"
+#include "opencv2/flann/matrix.h"
+#include "opencv2/flann/nn_index.h"
+#include "opencv2/flann/result_set.h"
+#include "opencv2/flann/logger.h"
+#include "opencv2/flann/timer.h"
+
 
 
 namespace cvflann
 {
 
-inline int countCorrectMatches(int* neighbors, int* groundTruth, int n)
-{
-    int count = 0;
-    for (int i=0; i<n; ++i) {
-        for (int k=0; k<n; ++k) {
-            if (neighbors[i]==groundTruth[k]) {
-                count++;
-                break;
-            }
-        }
-    }
-    return count;
-}
+CV_EXPORTS int countCorrectMatches(int* neighbors, int* groundTruth, int n);
 
 
-template <typename Distance>
-typename Distance::ResultType computeDistanceRaport(const Matrix<typename Distance::ElementType>& inputData, typename Distance::ElementType* target,
-                                                    int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance)
+template <typename ELEM_TYPE>
+float computeDistanceRaport(const Matrix<ELEM_TYPE>& inputData, ELEM_TYPE* target, int* neighbors, int* groundTruth, int veclen, int n)
 {
-    typedef typename Distance::ResultType DistanceType;
+       ELEM_TYPE* target_end = target + veclen;
+    float ret = 0;
+    for (int i=0;i<n;++i) {
+        float den = (float)flann_dist(target,target_end, inputData[groundTruth[i]]);
+        float num = (float)flann_dist(target,target_end, inputData[neighbors[i]]);
 
-    DistanceType ret = 0;
-    for (int i=0; i<n; ++i) {
-        DistanceType den = distance(inputData[groundTruth[i]], target, veclen);
-        DistanceType num = distance(inputData[neighbors[i]], target, veclen);
-
-        if ((den==0)&&(num==0)) {
+        if (den==0 && num==0) {
             ret += 1;
         }
         else {
@@ -82,28 +68,20 @@ typename Distance::ResultType computeDistanceRaport(const Matrix<typename Distan
     return ret;
 }
 
-template <typename Distance>
-float search_with_ground_truth(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
-                               const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, int nn, int checks,
-                               float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches)
+template <typename ELEM_TYPE>
+float search_with_ground_truth(NNIndex<ELEM_TYPE>& index, const Matrix<ELEM_TYPE>& inputData, const Matrix<ELEM_TYPE>& testData, const Matrix<int>& matches, int nn, int checks, float& time, float& dist, int skipMatches)
 {
-    typedef typename Distance::ResultType DistanceType;
-
     if (matches.cols<size_t(nn)) {
-        Logger::info("matches.cols=%d, nn=%d\n",matches.cols,nn);
+        logger().info("matches.cols=%d, nn=%d\n",matches.cols,nn);
 
         throw FLANNException("Ground truth is not computed for as many neighbors as requested");
     }
 
-    KNNResultSet<DistanceType> resultSet(nn+skipMatches);
+    KNNResultSet<ELEM_TYPE> resultSet(nn+skipMatches);
     SearchParams searchParams(checks);
 
-    int* indices = new int[nn+skipMatches];
-    DistanceType* dists = new DistanceType[nn+skipMatches];
-    int* neighbors = indices + skipMatches;
-
     int correct = 0;
-    DistanceType distR = 0;
+    float distR = 0;
     StartStopTimer t;
     int repeats = 0;
     while (t.value<0.2) {
@@ -112,69 +90,65 @@ float search_with_ground_truth(NNIndex<Distance>& index, const Matrix<typename D
         correct = 0;
         distR = 0;
         for (size_t i = 0; i < testData.rows; i++) {
-            resultSet.init(indices, dists);
-            index.findNeighbors(resultSet, testData[i], searchParams);
+            ELEM_TYPE* target = testData[i];
+            resultSet.init(target, (int)testData.cols);
+            index.findNeighbors(resultSet,target, searchParams);
+            int* neighbors = resultSet.getNeighbors();
+            neighbors = neighbors+skipMatches;
 
             correct += countCorrectMatches(neighbors,matches[i], nn);
-            distR += computeDistanceRaport<Distance>(inputData, testData[i], neighbors, matches[i], testData.cols, nn, distance);
+            distR += computeDistanceRaport(inputData, target,neighbors,matches[i], (int)testData.cols, nn);
         }
         t.stop();
     }
-    time = float(t.value/repeats);
+    time = (float)(t.value/repeats);
 
-    delete[] indices;
-    delete[] dists;
 
     float precicion = (float)correct/(nn*testData.rows);
 
     dist = distR/(testData.rows*nn);
 
-    Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n",
-                 checks, precicion, time, 1000.0 * time / testData.rows, dist);
+    logger().info("%8d %10.4g %10.5g %10.5g %10.5g\n",
+            checks, precicion, time, 1000.0 * time / testData.rows, dist);
 
     return precicion;
 }
 
 
-template <typename Distance>
-float test_index_checks(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
-                        const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
-                        int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0)
+template <typename ELEM_TYPE>
+float test_index_checks(NNIndex<ELEM_TYPE>& index, const Matrix<ELEM_TYPE>& inputData, const Matrix<ELEM_TYPE>& testData, const Matrix<int>& matches,
+            int checks, float& precision, int nn = 1, int skipMatches = 0)
 {
-    typedef typename Distance::ResultType DistanceType;
-
-    Logger::info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");
-    Logger::info("---------------------------------------------------------\n");
+    logger().info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");
+    logger().info("---------------------------------------------------------\n");
 
     float time = 0;
-    DistanceType dist = 0;
-    precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches);
+    float dist = 0;
+    precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, skipMatches);
 
     return time;
 }
 
-template <typename Distance>
-float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
-                           const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
-                           float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0)
+template <typename ELEM_TYPE>
+float test_index_precision(NNIndex<ELEM_TYPE>& index, const Matrix<ELEM_TYPE>& inputData, const Matrix<ELEM_TYPE>& testData, const Matrix<int>& matches,
+             float precision, int& checks, int nn = 1, int skipMatches = 0)
 {
-    typedef typename Distance::ResultType DistanceType;
-    const float SEARCH_EPS = 0.001f;
+       const float SEARCH_EPS = 0.001f;
 
-    Logger::info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");
-    Logger::info("---------------------------------------------------------\n");
+    logger().info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");
+    logger().info("---------------------------------------------------------\n");
 
     int c2 = 1;
     float p2;
     int c1 = 1;
     float p1;
     float time;
-    DistanceType dist;
+    float dist;
 
-    p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
+    p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, skipMatches);
 
     if (p2>precision) {
-        Logger::info("Got as close as I can\n");
+        logger().info("Got as close as I can\n");
         checks = c2;
         return time;
     }
@@ -183,18 +157,18 @@ float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Dista
         c1 = c2;
         p1 = p2;
         c2 *=2;
-        p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
+        p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, skipMatches);
     }
 
     int cx;
     float realPrecision;
     if (fabs(p2-precision)>SEARCH_EPS) {
-        Logger::info("Start linear estimation\n");
+        logger().info("Start linear estimation\n");
         // after we got to values in the vecinity of the desired precision
         // use linear approximation get a better estimation
 
         cx = (c1+c2)/2;
-        realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
+        realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, skipMatches);
         while (fabs(realPrecision-precision)>SEARCH_EPS) {
 
             if (realPrecision<precision) {
@@ -205,18 +179,17 @@ float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Dista
             }
             cx = (c1+c2)/2;
             if (cx==c1) {
-                Logger::info("Got as close as I can\n");
+                logger().info("Got as close as I can\n");
                 break;
             }
-            realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
+            realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, skipMatches);
         }
 
         c2 = cx;
         p2 = realPrecision;
 
-    }
-    else {
-        Logger::info("No need for linear estimation\n");
+    } else {
+        logger().info("No need for linear estimation\n");
         cx = c2;
         realPrecision = p2;
     }
@@ -226,14 +199,11 @@ float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Dista
 }
 
 
-template <typename Distance>
-void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
-                           const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
-                           float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0)
+template <typename ELEM_TYPE>
+float test_index_precisions(NNIndex<ELEM_TYPE>& index, const Matrix<ELEM_TYPE>& inputData, const Matrix<ELEM_TYPE>& testData, const Matrix<int>& matches,
+                    float* precisions, int precisions_length, int nn = 1, int skipMatches = 0, float maxTime = 0)
 {
-    typedef typename Distance::ResultType DistanceType;
-
-    const float SEARCH_EPS = 0.001;
+       const float SEARCH_EPS = 0.001;
 
     // make sure precisions array is sorted
     std::sort(precisions, precisions+precisions_length);
@@ -241,8 +211,8 @@ void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Dista
     int pindex = 0;
     float precision = precisions[pindex];
 
-    Logger::info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");
-    Logger::info("---------------------------------------------------------\n");
+    logger().info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist");
+    logger().info("---------------------------------------------------------");
 
     int c2 = 1;
     float p2;
@@ -251,9 +221,9 @@ void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Dista
     float p1;
 
     float time;
-    DistanceType dist;
+    float dist;
 
-    p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
+    p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, skipMatches);
 
     // if precision for 1 run down the tree is already
     // better then some of the requested precisions, then
@@ -263,30 +233,30 @@ void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Dista
     }
 
     if (pindex==precisions_length) {
-        Logger::info("Got as close as I can\n");
-        return;
+        logger().info("Got as close as I can\n");
+        return time;
     }
 
-    for (int i=pindex; i<precisions_length; ++i) {
+    for (int i=pindex;i<precisions_length;++i) {
 
         precision = precisions[i];
         while (p2<precision) {
             c1 = c2;
             p1 = p2;
             c2 *=2;
-            p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
-            if ((maxTime> 0)&&(time > maxTime)&&(p2<precision)) return;
+            p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, skipMatches);
+            if (maxTime> 0 && time > maxTime && p2<precision) return time;
         }
 
         int cx;
         float realPrecision;
         if (fabs(p2-precision)>SEARCH_EPS) {
-            Logger::info("Start linear estimation\n");
+            logger().info("Start linear estimation\n");
             // after we got to values in the vecinity of the desired precision
             // use linear approximation get a better estimation
 
             cx = (c1+c2)/2;
-            realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
+            realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, skipMatches);
             while (fabs(realPrecision-precision)>SEARCH_EPS) {
 
                 if (realPrecision<precision) {
@@ -297,25 +267,25 @@ void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Dista
                 }
                 cx = (c1+c2)/2;
                 if (cx==c1) {
-                    Logger::info("Got as close as I can\n");
+                    logger().info("Got as close as I can\n");
                     break;
                 }
-                realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
+                realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, skipMatches);
             }
 
             c2 = cx;
             p2 = realPrecision;
 
-        }
-        else {
-            Logger::info("No need for linear estimation\n");
+        } else {
+            logger().info("No need for linear estimation\n");
             cx = c2;
             realPrecision = p2;
         }
 
     }
+    return time;
 }
 
-}
+} // namespace cvflann
 
-#endif //OPENCV_FLANN_INDEX_TESTING_H_
+#endif //_OPENCV_TESTING_H_
index d524779..7344165 100644 (file)
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef OPENCV_FLANN_KDTREE_INDEX_H_
-#define OPENCV_FLANN_KDTREE_INDEX_H_
+#ifndef _OPENCV_KDTREE_H_
+#define _OPENCV_KDTREE_H_
 
 #include <algorithm>
 #include <map>
 #include <cassert>
 #include <cstring>
 
-#include "general.h"
-#include "nn_index.h"
-#include "dynamic_bitset.h"
-#include "matrix.h"
-#include "result_set.h"
-#include "heap.h"
-#include "allocator.h"
-#include "random.h"
-#include "saving.h"
+#include "opencv2/flann/general.h"
+#include "opencv2/flann/nn_index.h"
+#include "opencv2/flann/matrix.h"
+#include "opencv2/flann/result_set.h"
+#include "opencv2/flann/heap.h"
+#include "opencv2/flann/allocator.h"
+#include "opencv2/flann/random.h"
+#include "opencv2/flann/saving.h"
 
 
 namespace cvflann
 {
 
-struct KDTreeIndexParams : public IndexParams
-{
-    KDTreeIndexParams(int trees = 4)
-    {
-        (*this)["algorithm"] = FLANN_INDEX_KDTREE;
-        (*this)["trees"] = trees;
-    }
+struct CV_EXPORTS KDTreeIndexParams : public IndexParams {
+       KDTreeIndexParams(int trees_ = 4) : IndexParams(FLANN_INDEX_KDTREE), trees(trees_) {};
+
+       int trees;                 // number of randomized trees to use (for kdtree)
+
+       void print() const
+       {
+               logger().info("Index type: %d\n",(int)algorithm);
+               logger().info("Trees: %d\n", trees);
+       }
+
 };
 
 
@@ -66,126 +69,223 @@ struct KDTreeIndexParams : public IndexParams
  * Contains the k-d trees and other information for indexing a set of points
  * for nearest-neighbor matching.
  */
-template <typename Distance>
-class KDTreeIndex : public NNIndex<Distance>
+template <typename ELEM_TYPE, typename DIST_TYPE = typename DistType<ELEM_TYPE>::type >
+class KDTreeIndex : public NNIndex<ELEM_TYPE>
 {
-public:
-    typedef typename Distance::ElementType ElementType;
-    typedef typename Distance::ResultType DistanceType;
 
+       enum {
+               /**
+                * To improve efficiency, only SAMPLE_MEAN random values are used to
+                * compute the mean and variance at each level when building a tree.
+                * A value of 100 seems to perform as well as using all values.
+                */
+               SAMPLE_MEAN = 100,
+               /**
+                * Top random dimensions to consider
+                *
+                * When creating random trees, the dimension on which to subdivide is
+                * selected at random from among the top RAND_DIM dimensions with the
+                * highest variance.  A value of 5 works well.
+                */
+               RAND_DIM=5
+       };
+
+
+       /**
+        * Number of randomized trees that are used
+        */
+       int numTrees;
+
+       /**
+        *  Array of indices to vectors in the dataset.
+        */
+       int* vind;
+
+
+       /**
+        * The dataset used by this index
+        */
+       const Matrix<ELEM_TYPE> dataset;
+
+    const IndexParams& index_params;
+
+       size_t size_;
+       size_t veclen_;
+
+
+    DIST_TYPE* mean;
+    DIST_TYPE* var;
+
+
+       /*--------------------- Internal Data Structures --------------------------*/
+
+       /**
+        * A node of the binary k-d tree.
+        *
+        *  This is   All nodes that have vec[divfeat] < divval are placed in the
+        *   child1 subtree, else child2., A leaf node is indicated if both children are NULL.
+        */
+       struct TreeSt {
+               /**
+                * Index of the vector feature used for subdivision.
+                * If this is a leaf node (both children are NULL) then
+                * this holds vector index for this leaf.
+                */
+               int divfeat;
+               /**
+                * The value used for subdivision.
+                */
+               DIST_TYPE divval;
+               /**
+                * The child nodes.
+                */
+               TreeSt *child1, *child2;
+       };
+       typedef TreeSt* Tree;
 
     /**
-     * KDTree constructor
-     *
-     * Params:
-     *          inputData = dataset with the input features
-     *          params = parameters passed to the kdtree algorithm
+     * Array of k-d trees used to find neighbours.
      */
-    KDTreeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeIndexParams(),
-                Distance d = Distance() ) :
-        dataset_(inputData), index_params_(params), distance_(d)
-    {
-        size_ = dataset_.rows;
-        veclen_ = dataset_.cols;
-
-        trees_ = get_param(index_params_,"trees",4);
-        tree_roots_ = new NodePtr[trees_];
-
-        // Create a permutable array of indices to the input vectors.
-        vind_.resize(size_);
-        for (size_t i = 0; i < size_; ++i) {
-            vind_[i] = int(i);
-        }
-
-        mean_ = new DistanceType[veclen_];
-        var_ = new DistanceType[veclen_];
-    }
+    Tree* trees;
+    typedef BranchStruct<Tree> BranchSt;
+    typedef BranchSt* Branch;
 
+       /**
+        * Pooled memory allocator.
+        *
+        * Using a pooled memory allocator is more efficient
+        * than allocating memory directly when there is a large
+        * number small of memory allocations.
+        */
+       PooledAllocator pool;
 
-    KDTreeIndex(const KDTreeIndex&);
-    KDTreeIndex& operator=(const KDTreeIndex&);
 
-    /**
-     * Standard destructor
-     */
-    ~KDTreeIndex()
-    {
-        if (tree_roots_!=NULL) {
-            delete[] tree_roots_;
-        }
-        delete[] mean_;
-        delete[] var_;
-    }
-
-    /**
-     * Builds the index
-     */
-    void buildIndex()
-    {
-        /* Construct the randomized trees. */
-        for (int i = 0; i < trees_; i++) {
-            /* Randomize the order of vectors to allow for unbiased sampling. */
-            std::random_shuffle(vind_.begin(), vind_.end());
-            tree_roots_[i] = divideTree(vind_.data(), int(size_) );
-        }
-    }
 
+public:
 
     flann_algorithm_t getType() const
     {
         return FLANN_INDEX_KDTREE;
     }
 
+       /**
+        * KDTree constructor
+        *
+        * Params:
+        *              inputData = dataset with the input features
+        *              params = parameters passed to the kdtree algorithm
+        */
+       KDTreeIndex(const Matrix<ELEM_TYPE>& inputData, const KDTreeIndexParams& params = KDTreeIndexParams() ) :
+               dataset(inputData), index_params(params)
+       {
+        size_ = dataset.rows;
+        veclen_ = dataset.cols;
+
+        numTrees = params.trees;
+        trees = new Tree[numTrees];
+
+               // get the parameters
+//        if (params.find("trees") != params.end()) {
+//             numTrees = (int)params["trees"];
+//             trees = new Tree[numTrees];
+//        }
+//        else {
+//             numTrees = -1;
+//             trees = NULL;
+//        }
+
+               // Create a permutable array of indices to the input vectors.
+               vind = new int[size_];
+               for (size_t i = 0; i < size_; i++) {
+                       vind[i] = (int)i;
+               }
+
+        mean = new DIST_TYPE[veclen_];
+        var = new DIST_TYPE[veclen_];
+       }
+
+       /**
+        * Standard destructor
+        */
+       ~KDTreeIndex()
+       {
+               delete[] vind;
+               if (trees!=NULL) {
+                       delete[] trees;
+               }
+               delete[] mean;
+        delete[] var;
+       }
+
+
+       /**
+        * Builds the index
+        */
+       void buildIndex()
+       {
+               /* Construct the randomized trees. */
+               for (int i = 0; i < numTrees; i++) {
+                       /* Randomize the order of vectors to allow for unbiased sampling. */
+                       for (int j = (int)size_; j > 0; --j) {
+                               int rnd = rand_int(j);
+                std::swap(vind[j-1], vind[rnd]);
+                       }
+                       trees[i] = divideTree(0, (int)size_ - 1);
+               }
+       }
+
+
 
     void saveIndex(FILE* stream)
     {
-        save_value(stream, trees_);
-        for (int i=0; i<trees_; ++i) {
-            save_tree(stream, tree_roots_[i]);
-        }
+       save_value(stream, numTrees);
+       for (int i=0;i<numTrees;++i) {
+               save_tree(stream, trees[i]);
+       }
     }
 
 
 
     void loadIndex(FILE* stream)
     {
-        load_value(stream, trees_);
-        if (tree_roots_!=NULL) {
-            delete[] tree_roots_;
-        }
-        tree_roots_ = new NodePtr[trees_];
-        for (int i=0; i<trees_; ++i) {
-            load_tree(stream,tree_roots_[i]);
-        }
-
-        index_params_["algorithm"] = getType();
-        index_params_["trees"] = tree_roots_;
+       load_value(stream, numTrees);
+
+       if (trees!=NULL) {
+               delete[] trees;
+       }
+       trees = new Tree[numTrees];
+       for (int i=0;i<numTrees;++i) {
+               load_tree(stream,trees[i]);
+       }
     }
 
+
     /**
-     *  Returns size of index.
-     */
+    *  Returns size of index.
+    */
     size_t size() const
     {
         return size_;
     }
 
     /**
-     * Returns the length of an index feature.
-     */
+    * Returns the length of an index feature.
+    */
     size_t veclen() const
     {
         return veclen_;
     }
 
-    /**
-     * Computes the inde memory usage
-     * Returns: memory used by the index
-     */
-    int usedMemory() const
-    {
-        return int(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int));  // pool memory and vind array memory
-    }
+
+       /**
+        * Computes the inde memory usage
+        * Returns: memory used by the index
+        */
+       int usedMemory() const
+       {
+               return  (int)(pool.usedMemory+pool.wastedMemory+dataset.rows*sizeof(int));   // pool memory and vind array memory
+       }
+
 
     /**
      * Find set of nearest neighbors to vec. Their indices are stored inside
@@ -196,426 +296,326 @@ public:
      *     vec = the vector for which to search the nearest neighbors
      *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
      */
-    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
+    void findNeighbors(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec, const SearchParams& searchParams)
     {
-        int maxChecks = get_param(searchParams,"checks", 32);
-        float epsError = 1+get_param(searchParams,"eps",0.0f);
+        int maxChecks = searchParams.checks;
 
-        if (maxChecks==FLANN_CHECKS_UNLIMITED) {
-            getExactNeighbors(result, vec, epsError);
-        }
-        else {
-            getNeighbors(result, vec, maxChecks, epsError);
+        if (maxChecks<0) {
+            getExactNeighbors(result, vec);
+        } else {
+            getNeighbors(result, vec, maxChecks);
         }
     }
 
-    IndexParams getParameters() const
-    {
-        return index_params_;
-    }
+       const IndexParams* getParameters() const
+       {
+               return &index_params;
+       }
 
 private:
 
+       KDTreeIndex& operator=(const KDTreeIndex&);
+       KDTreeIndex(const KDTreeIndex&);
 
-    /*--------------------- Internal Data Structures --------------------------*/
-    struct Node
-    {
-        /**
-         * Dimension used for subdivision.
-         */
-        int divfeat;
-        /**
-         * The values used for subdivision.
-         */
-        DistanceType divval;
-        /**
-         * The child nodes.
-         */
-        Node* child1, * child2;
-    };
-    typedef Node* NodePtr;
-    typedef BranchStruct<NodePtr, DistanceType> BranchSt;
-    typedef BranchSt* Branch;
 
-
-
-    void save_tree(FILE* stream, NodePtr tree)
+    void save_tree(FILE* stream, Tree tree)
     {
-        save_value(stream, *tree);
-        if (tree->child1!=NULL) {
-            save_tree(stream, tree->child1);
-        }
-        if (tree->child2!=NULL) {
-            save_tree(stream, tree->child2);
-        }
+       save_value(stream, *tree);
+       if (tree->child1!=NULL) {
+               save_tree(stream, tree->child1);
+       }
+       if (tree->child2!=NULL) {
+               save_tree(stream, tree->child2);
+       }
     }
 
 
-    void load_tree(FILE* stream, NodePtr& tree)
+    void load_tree(FILE* stream, Tree& tree)
     {
-        tree = pool_.allocate<Node>();
-        load_value(stream, *tree);
-        if (tree->child1!=NULL) {
-            load_tree(stream, tree->child1);
-        }
-        if (tree->child2!=NULL) {
-            load_tree(stream, tree->child2);
-        }
+       tree = pool.allocate<TreeSt>();
+       load_value(stream, *tree);
+       if (tree->child1!=NULL) {
+               load_tree(stream, tree->child1);
+       }
+       if (tree->child2!=NULL) {
+               load_tree(stream, tree->child2);
+       }
     }
 
 
-    /**
-     * Create a tree node that subdivides the list of vecs from vind[first]
-     * to vind[last].  The routine is called recursively on each sublist.
-     * Place a pointer to this new tree node in the location pTree.
-     *
-     * Params: pTree = the new node to create
-     *                  first = index of the first vector
-     *                  last = index of the last vector
-     */
-    NodePtr divideTree(int* ind, int count)
-    {
-        NodePtr node = pool_.allocate<Node>(); // allocate memory
-
-        /* If too few exemplars remain, then make this a leaf node. */
-        if ( count == 1) {
-            node->child1 = node->child2 = NULL;    /* Mark as leaf node. */
-            node->divfeat = *ind;    /* Store index of this vec. */
-        }
-        else {
-            int idx;
-            int cutfeat;
-            DistanceType cutval;
-            meanSplit(ind, count, idx, cutfeat, cutval);
-
-            node->divfeat = cutfeat;
-            node->divval = cutval;
-            node->child1 = divideTree(ind, idx);
-            node->child2 = divideTree(ind+idx, count-idx);
-        }
-
-        return node;
-    }
-
-
-    /**
-     * Choose which feature to use in order to subdivide this set of vectors.
-     * Make a random choice among those with the highest variance, and use
-     * its variance as the threshold value.
-     */
-    void meanSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval)
-    {
-        memset(mean_,0,veclen_*sizeof(DistanceType));
-        memset(var_,0,veclen_*sizeof(DistanceType));
-
-        /* Compute mean values.  Only the first SAMPLE_MEAN values need to be
-            sampled to get a good estimate.
-         */
-        int cnt = std::min((int)SAMPLE_MEAN+1, count);
-        for (int j = 0; j < cnt; ++j) {
-            ElementType* v = dataset_[ind[j]];
+       /**
+        * Create a tree node that subdivides the list of vecs from vind[first]
+        * to vind[last].  The routine is called recursively on each sublist.
+        * Place a pointer to this new tree node in the location pTree.
+        *
+        * Params: pTree = the new node to create
+        *                      first = index of the first vector
+        *                      last = index of the last vector
+        */
+       Tree divideTree(int first, int last)
+       {
+               Tree node = pool.allocate<TreeSt>(); // allocate memory
+
+               /* If only one exemplar remains, then make this a leaf node. */
+               if (first == last) {
+                       node->child1 = node->child2 = NULL;    /* Mark as leaf node. */
+                       node->divfeat = vind[first];    /* Store index of this vec. */
+               }
+               else {
+                       chooseDivision(node, first, last);
+                       subdivide(node, first, last);
+               }
+
+               return node;
+       }
+
+
+       /**
+        * Choose which feature to use in order to subdivide this set of vectors.
+        * Make a random choice among those with the highest variance, and use
+        * its variance as the threshold value.
+        */
+       void chooseDivision(Tree node, int first, int last)
+       {
+        memset(mean,0,veclen_*sizeof(DIST_TYPE));
+        memset(var,0,veclen_*sizeof(DIST_TYPE));
+
+               /* Compute mean values.  Only the first SAMPLE_MEAN values need to be
+                       sampled to get a good estimate.
+               */
+               int end = std::min(first + SAMPLE_MEAN, last);
+               for (int j = first; j <= end; ++j) {
+                       ELEM_TYPE* v = dataset[vind[j]];
             for (size_t k=0; k<veclen_; ++k) {
-                mean_[k] += v[k];
+                mean[k] += v[k];
             }
-        }
+               }
         for (size_t k=0; k<veclen_; ++k) {
-            mean_[k] /= cnt;
+            mean[k] /= (end - first + 1);
         }
 
-        /* Compute variances (no need to divide by count). */
-        for (int j = 0; j < cnt; ++j) {
-            ElementType* v = dataset_[ind[j]];
+               /* Compute variances (no need to divide by count). */
+               for (int j = first; j <= end; ++j) {
+                       ELEM_TYPE* v = dataset[vind[j]];
             for (size_t k=0; k<veclen_; ++k) {
-                DistanceType dist = v[k] - mean_[k];
-                var_[k] += dist * dist;
+                DIST_TYPE dist = v[k] - mean[k];
+                var[k] += dist * dist;
             }
-        }
-        /* Select one of the highest variance indices at random. */
-        cutfeat = selectDivision(var_);
-        cutval = mean_[cutfeat];
-
-        int lim1, lim2;
-        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
-
-        if (lim1>count/2) index = lim1;
-        else if (lim2<count/2) index = lim2;
-        else index = count/2;
-
-        /* If either list is empty, it means that all remaining features
-         * are identical. Split in the middle to maintain a balanced tree.
-         */
-        if ((lim1==count)||(lim2==0)) index = count/2;
-    }
-
-
-    /**
-     * Select the top RAND_DIM largest values from v and return the index of
-     * one of these selected at random.
-     */
-    int selectDivision(DistanceType* v)
-    {
-        int num = 0;
-        size_t topind[RAND_DIM];
-
-        /* Create a list of the indices of the top RAND_DIM values. */
-        for (size_t i = 0; i < veclen_; ++i) {
-            if ((num < RAND_DIM)||(v[i] > v[topind[num-1]])) {
-                /* Put this element at end of topind. */
-                if (num < RAND_DIM) {
-                    topind[num++] = i;            /* Add to list. */
-                }
-                else {
-                    topind[num-1] = i;         /* Replace last element. */
-                }
-                /* Bubble end value down to right location by repeated swapping. */
-                int j = num - 1;
-                while (j > 0  &&  v[topind[j]] > v[topind[j-1]]) {
+               }
+               /* Select one of the highest variance indices at random. */
+               node->divfeat = selectDivision(var);
+               node->divval = mean[node->divfeat];
+
+       }
+
+
+       /**
+        * Select the top RAND_DIM largest values from v and return the index of
+        * one of these selected at random.
+        */
+       int selectDivision(DIST_TYPE* v)
+       {
+               int num = 0;
+               int topind[RAND_DIM];
+
+               /* Create a list of the indices of the top RAND_DIM values. */
+               for (size_t i = 0; i < veclen_; ++i) {
+                       if (num < RAND_DIM  ||  v[i] > v[topind[num-1]]) {
+                               /* Put this element at end of topind. */
+                               if (num < RAND_DIM) {
+                                       topind[num++] = (int)i;            /* Add to list. */
+                               }
+                               else {
+                                       topind[num-1] = (int)i;         /* Replace last element. */
+                               }
+                               /* Bubble end value down to right location by repeated swapping. */
+                               int j = num - 1;
+                               while (j > 0  &&  v[topind[j]] > v[topind[j-1]]) {
                     std::swap(topind[j], topind[j-1]);
-                    --j;
-                }
-            }
-        }
-        /* Select a random integer in range [0,num-1], and return that index. */
-        int rnd = rand_int(num);
-        return (int)topind[rnd];
-    }
-
-
-    /**
-     *  Subdivide the list of points by a plane perpendicular on axe corresponding
-     *  to the 'cutfeat' dimension at 'cutval' position.
-     *
-     *  On return:
-     *  dataset[ind[0..lim1-1]][cutfeat]<cutval
-     *  dataset[ind[lim1..lim2-1]][cutfeat]==cutval
-     *  dataset[ind[lim2..count]][cutfeat]>cutval
-     */
-    void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
-    {
-        /* Move vector indices for left subtree to front of list. */
-        int left = 0;
-        int right = count-1;
-        for (;; ) {
-            while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
-            while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
-            if (left>right) break;
-            std::swap(ind[left], ind[right]); ++left; --right;
-        }
-        lim1 = left;
-        right = count-1;
-        for (;; ) {
-            while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
-            while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
-            if (left>right) break;
-            std::swap(ind[left], ind[right]); ++left; --right;
-        }
-        lim2 = left;
-    }
-
-    /**
-     * Performs an exact nearest neighbor search. The exact search performs a full
-     * traversal of the tree.
-     */
-    void getExactNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, float epsError)
-    {
-        //             checkID -= 1;  /* Set a different unique ID for each search. */
-
-        if (trees_ > 1) {
+                                       --j;
+                               }
+                       }
+               }
+               /* Select a random integer in range [0,num-1], and return that index. */
+               int rnd = rand_int(num);
+               return topind[rnd];
+       }
+
+
+       /**
+        *  Subdivide the list of exemplars using the feature and division
+        *  value given in this node.  Call divideTree recursively on each list.
+       */
+       void subdivide(Tree node, int first, int last)
+       {
+               /* Move vector indices for left subtree to front of list. */
+               int i = first;
+               int j = last;
+               while (i <= j) {
+                       int ind = vind[i];
+                       ELEM_TYPE val = dataset[ind][node->divfeat];
+                       if (val < node->divval) {
+                               ++i;
+                       } else {
+                               /* Move to end of list by swapping vind i and j. */
+                std::swap(vind[i], vind[j]);
+                               --j;
+                       }
+               }
+               /* If either list is empty, it means we have hit the unlikely case
+                       in which all remaining features are identical. Split in the middle
+            to maintain a balanced tree.
+               */
+               if ( (i == first) || (i == last+1)) {
+            i = (first+last+1)/2;
+               }
+
+               node->child1 = divideTree(first, i - 1);
+               node->child2 = divideTree(i, last);
+       }
+
+
+
+       /**
+        * Performs an exact nearest neighbor search. The exact search performs a full
+        * traversal of the tree.
+        */
+       void getExactNeighbors(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec)
+       {
+//             checkID -= 1;  /* Set a different unique ID for each search. */
+
+               if (numTrees > 1) {
             fprintf(stderr,"It doesn't make any sense to use more than one tree for exact search");
-        }
-        if (trees_>0) {
-            searchLevelExact(result, vec, tree_roots_[0], 0.0, epsError);
-        }
-        assert(result.full());
-    }
-
-    /**
-     * Performs the approximate nearest-neighbor search. The search is approximate
-     * because the tree traversal is abandoned after a given number of descends in
-     * the tree.
-     */
-    void getNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, int maxCheck, float epsError)
-    {
-        int i;
-        BranchSt branch;
-
-        int checkCount = 0;
-        Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
-        DynamicBitset checked(size_);
-
-        /* Search once through each tree down to root. */
-        for (i = 0; i < trees_; ++i) {
-            searchLevel(result, vec, tree_roots_[i], 0, checkCount, maxCheck, epsError, heap, checked);
-        }
-
-        /* Keep searching other branches from heap until finished. */
-        while ( heap->popMin(branch) && (checkCount < maxCheck || !result.full() )) {
-            searchLevel(result, vec, branch.node, branch.mindist, checkCount, maxCheck, epsError, heap, checked);
-        }
-
-        delete heap;
-
-        assert(result.full());
-    }
-
-
-    /**
-     *  Search starting from a given node of the tree.  Based on any mismatches at
-     *  higher levels, all exemplars below this level must have a distance of
-     *  at least "mindistsq".
-     */
-    void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, NodePtr node, DistanceType mindist, int& checkCount, int maxCheck,
-                     float epsError, Heap<BranchSt>* heap, DynamicBitset& checked)
-    {
-        if (result_set.worstDist()<mindist) {
-            //                 printf("Ignoring branch, too far\n");
-            return;
-        }
-
-        /* If this is a leaf node, then do check and return. */
-        if ((node->child1 == NULL)&&(node->child2 == NULL)) {
-            /*  Do not check same node more than once when searching multiple trees.
-                Once a vector is checked, we set its location in vind to the
-                current checkID.
-             */
-            int index = node->divfeat;
-            if ( checked.test(index) || ((checkCount>=maxCheck)&& result_set.full()) ) return;
-            checked.set(index);
+               }
+               if (numTrees>0) {
+                       searchLevelExact(result, vec, trees[0], 0.0);
+               }
+               assert(result.full());
+       }
+
+       /**
+        * Performs the approximate nearest-neighbor search. The search is approximate
+        * because the tree traversal is abandoned after a given number of descends in
+        * the tree.
+        */
+       void getNeighbors(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec, int maxCheck)
+       {
+               int i;
+               BranchSt branch;
+
+               int checkCount = 0;
+               Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
+        std::vector<bool> checked(size_,false);
+
+               /* Search once through each tree down to root. */
+               for (i = 0; i < numTrees; ++i) {
+                       searchLevel(result, vec, trees[i], 0.0, checkCount, maxCheck, heap, checked);
+               }
+
+               /* Keep searching other branches from heap until finished. */
+               while ( heap->popMin(branch) && (checkCount < maxCheck || !result.full() )) {
+                       searchLevel(result, vec, branch.node, branch.mindistsq, checkCount, maxCheck, heap, checked);
+               }
+
+               delete heap;
+
+               assert(result.full());
+       }
+
+
+       /**
+        *  Search starting from a given node of the tree.  Based on any mismatches at
+        *  higher levels, all exemplars below this level must have a distance of
+        *  at least "mindistsq".
+       */
+       void searchLevel(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec, Tree node, float mindistsq, int& checkCount, int maxCheck,
+                       Heap<BranchSt>* heap, std::vector<bool>& checked)
+       {
+               if (result.worstDist()<mindistsq) {
+//                     printf("Ignoring branch, too far\n");
+                       return;
+               }
+
+               /* If this is a leaf node, then do check and return. */
+               if (node->child1 == NULL  &&  node->child2 == NULL) {
+
+                       /* Do not check same node more than once when searching multiple trees.
+                               Once a vector is checked, we set its location in vind to the
+                               current checkID.
+                       */
+                       if (checked[node->divfeat] == true || checkCount>=maxCheck) {
+                               if (result.full()) return;
+                       }
             checkCount++;
-
-            DistanceType dist = distance_(dataset_[index], vec, veclen_);
-            result_set.addPoint(dist,index);
-
-            return;
-        }
-
-        /* Which child branch should be taken first? */
-        ElementType val = vec[node->divfeat];
-        DistanceType diff = val - node->divval;
-        NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
-        NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;
-
-        /* Create a branch record for the branch not taken.  Add distance
-            of this feature boundary (we don't attempt to correct for any
-            use of this feature in a parent node, which is unlikely to
-            happen and would have only a small effect).  Don't bother
-            adding more branches to heap after halfway point, as cost of
-            adding exceeds their value.
-         */
-
-        DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
-        //             if (2 * checkCount < maxCheck  ||  !result.full()) {
-        if ((new_distsq*epsError < result_set.worstDist())||  !result_set.full()) {
-            heap->insert( BranchSt(otherChild, new_distsq) );
-        }
-
-        /* Call recursively to search next level down. */
-        searchLevel(result_set, vec, bestChild, mindist, checkCount, maxCheck, epsError, heap, checked);
-    }
-
-    /**
-     * Performs an exact search in the tree starting from a node.
-     */
-    void searchLevelExact(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindist, const float epsError)
-    {
-        /* If this is a leaf node, then do check and return. */
-        if ((node->child1 == NULL)&&(node->child2 == NULL)) {
-            int index = node->divfeat;
-            DistanceType dist = distance_(dataset_[index], vec, veclen_);
-            result_set.addPoint(dist,index);
-            return;
-        }
-
-        /* Which child branch should be taken first? */
-        ElementType val = vec[node->divfeat];
-        DistanceType diff = val - node->divval;
-        NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
-        NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;
-
-        /* Create a branch record for the branch not taken.  Add distance
-            of this feature boundary (we don't attempt to correct for any
-            use of this feature in a parent node, which is unlikely to
-            happen and would have only a small effect).  Don't bother
-            adding more branches to heap after halfway point, as cost of
-            adding exceeds their value.
-         */
-
-        DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
-
-        /* Call recursively to search next level down. */
-        searchLevelExact(result_set, vec, bestChild, mindist, epsError);
-
-        if (new_distsq*epsError<=result_set.worstDist()) {
-            searchLevelExact(result_set, vec, otherChild, new_distsq, epsError);
-        }
-    }
-
-
-private:
-
-    enum
-    {
-        /**
-         * To improve efficiency, only SAMPLE_MEAN random values are used to
-         * compute the mean and variance at each level when building a tree.
-         * A value of 100 seems to perform as well as using all values.
-         */
-        SAMPLE_MEAN = 100,
-        /**
-         * Top random dimensions to consider
-         *
-         * When creating random trees, the dimension on which to subdivide is
-         * selected at random from among the top RAND_DIM dimensions with the
-         * highest variance.  A value of 5 works well.
-         */
-        RAND_DIM=5
-    };
-
-
-    /**
-     * Number of randomized trees that are used
-     */
-    int trees_;
-
-    /**
-     *  Array of indices to vectors in the dataset.
-     */
-    std::vector<int> vind_;
-
-    /**
-     * The dataset used by this index
-     */
-    const Matrix<ElementType> dataset_;
-
-    IndexParams index_params_;
-
-    size_t size_;
-    size_t veclen_;
-
-
-    DistanceType* mean_;
-    DistanceType* var_;
-
-
-    /**
-     * Array of k-d trees used to find neighbours.
-     */
-    NodePtr* tree_roots_;
-
-    /**
-     * Pooled memory allocator.
-     *
-     * Using a pooled memory allocator is more efficient
-     * than allocating memory directly when there is a large
-     * number small of memory allocations.
-     */
-    PooledAllocator pool_;
-
-    Distance distance_;
-
-
-};   // class KDTreeForest
-
-}
-
-#endif //OPENCV_FLANN_KDTREE_INDEX_H_
+                       checked[node->divfeat] = true;
+
+                       result.addPoint(dataset[node->divfeat],node->divfeat);
+                       return;
+               }
+
+               /* Which child branch should be taken first? */
+               ELEM_TYPE val = vec[node->divfeat];
+               DIST_TYPE diff = val - node->divval;
+               Tree bestChild = (diff < 0) ? node->child1 : node->child2;
+               Tree otherChild = (diff < 0) ? node->child2 : node->child1;
+
+               /* Create a branch record for the branch not taken.  Add distance
+                       of this feature boundary (we don't attempt to correct for any
+                       use of this feature in a parent node, which is unlikely to
+                       happen and would have only a small effect).  Don't bother
+                       adding more branches to heap after halfway point, as cost of
+                       adding exceeds their value.
+               */
+
+               DIST_TYPE new_distsq = (DIST_TYPE)flann_dist(&val, &val+1, &node->divval, mindistsq);
+//             if (2 * checkCount < maxCheck  ||  !result.full()) {
+               if (new_distsq < result.worstDist() ||  !result.full()) {
+                       heap->insert( BranchSt::make_branch(otherChild, new_distsq) );
+               }
+
+               /* Call recursively to search next level down. */
+               searchLevel(result, vec, bestChild, mindistsq, checkCount, maxCheck, heap, checked);
+       }
+
+       /**
+        * Performs an exact search in the tree starting from a node.
+        */
+       void searchLevelExact(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec, Tree node, float mindistsq)
+       {
+               if (mindistsq>result.worstDist()) {
+                       return;
+               }
+
+               /* If this is a leaf node, then do check and return. */
+               if (node->child1 == NULL  &&  node->child2 == NULL) {
+
+                       /* Do not check same node more than once when searching multiple trees.
+                               Once a vector is checked, we set its location in vind to the
+                               current checkID.
+                       */
+//                     if (vind[node->divfeat] == checkID)
+//                             return;
+//                     vind[node->divfeat] = checkID;
+
+                       result.addPoint(dataset[node->divfeat],node->divfeat);
+                       return;
+               }
+
+               /* Which child branch should be taken first? */
+               ELEM_TYPE val = vec[node->divfeat];
+               DIST_TYPE diff = val - node->divval;
+               Tree bestChild = (diff < 0) ? node->child1 : node->child2;
+               Tree otherChild = (diff < 0) ? node->child2 : node->child1;
+
+
+               /* Call recursively to search next level down. */
+               searchLevelExact(result, vec, bestChild, mindistsq);
+               DIST_TYPE new_distsq = (DIST_TYPE)flann_dist(&val, &val+1, &node->divval, mindistsq);
+               searchLevelExact(result, vec, otherChild, new_distsq);
+       }
+
+};   // class KDTree
+
+} // namespace cvflann
+
+#endif //_OPENCV_KDTREE_H_
diff --git a/modules/flann/include/opencv2/flann/kdtree_single_index.h b/modules/flann/include/opencv2/flann/kdtree_single_index.h
deleted file mode 100644 (file)
index f890af5..0000000
+++ /dev/null
@@ -1,642 +0,0 @@
-/***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
- * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
- *
- * THE BSD LICENSE
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- *    notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice, this list of conditions and the following disclaimer in the
- *    documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
-
-#ifndef OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
-#define OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
-
-#include <algorithm>
-#include <map>
-#include <cassert>
-#include <cstring>
-
-#include "general.h"
-#include "nn_index.h"
-#include "matrix.h"
-#include "result_set.h"
-#include "heap.h"
-#include "allocator.h"
-#include "random.h"
-#include "saving.h"
-
-namespace cvflann
-{
-
-struct KDTreeSingleIndexParams : public IndexParams
-{
-    KDTreeSingleIndexParams(int leaf_max_size = 10, bool reorder = true, int dim = -1)
-    {
-        (*this)["algorithm"] = FLANN_INDEX_KDTREE_SINGLE;
-        (*this)["leaf_max_size"] = leaf_max_size;
-        (*this)["reorder"] = reorder;
-        (*this)["dim"] = dim;
-    }
-};
-
-
-/**
- * Randomized kd-tree index
- *
- * Contains the k-d trees and other information for indexing a set of points
- * for nearest-neighbor matching.
- */
-template <typename Distance>
-class KDTreeSingleIndex : public NNIndex<Distance>
-{
-public:
-    typedef typename Distance::ElementType ElementType;
-    typedef typename Distance::ResultType DistanceType;
-
-
-    /**
-     * KDTree constructor
-     *
-     * Params:
-     *          inputData = dataset with the input features
-     *          params = parameters passed to the kdtree algorithm
-     */
-    KDTreeSingleIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeSingleIndexParams(),
-                      Distance d = Distance() ) :
-        dataset_(inputData), index_params_(params), distance_(d)
-    {
-        size_ = dataset_.rows;
-        dim_ = dataset_.cols;
-        int dim_param = get_param(params,"dim",-1);
-        if (dim_param>0) dim_ = dim_param;
-        leaf_max_size_ = get_param(params,"leaf_max_size",10);
-        reorder_ = get_param(params,"reorder",true);
-
-        // Create a permutable array of indices to the input vectors.
-        vind_.resize(size_);
-        for (size_t i = 0; i < size_; i++) {
-            vind_[i] = i;
-        }
-    }
-
-    KDTreeSingleIndex(const KDTreeSingleIndex&);
-    KDTreeSingleIndex& operator=(const KDTreeSingleIndex&);
-
-    /**
-     * Standard destructor
-     */
-    ~KDTreeSingleIndex()
-    {
-        if (reorder_) delete[] data_.data;
-    }
-
-    /**
-     * Builds the index
-     */
-    void buildIndex()
-    {
-        computeBoundingBox(root_bbox_);
-        root_node_ = divideTree(0, size_, root_bbox_ );   // construct the tree
-
-        if (reorder_) {
-            delete[] data_.data;
-            data_ = cvflann::Matrix<ElementType>(new ElementType[size_*dim_], size_, dim_);
-            for (size_t i=0; i<size_; ++i) {
-                for (size_t j=0; j<dim_; ++j) {
-                    data_[i][j] = dataset_[vind_[i]][j];
-                }
-            }
-        }
-        else {
-            data_ = dataset_;
-        }
-    }
-
-    flann_algorithm_t getType() const
-    {
-        return FLANN_INDEX_KDTREE_SINGLE;
-    }
-
-
-    void saveIndex(FILE* stream)
-    {
-        save_value(stream, size_);
-        save_value(stream, dim_);
-        save_value(stream, root_bbox_);
-        save_value(stream, reorder_);
-        save_value(stream, leaf_max_size_);
-        save_value(stream, vind_);
-        if (reorder_) {
-            save_value(stream, data_);
-        }
-        save_tree(stream, root_node_);
-    }
-
-
-    void loadIndex(FILE* stream)
-    {
-        load_value(stream, size_);
-        load_value(stream, dim_);
-        load_value(stream, root_bbox_);
-        load_value(stream, reorder_);
-        load_value(stream, leaf_max_size_);
-        load_value(stream, vind_);
-        if (reorder_) {
-            load_value(stream, data_);
-        }
-        else {
-            data_ = dataset_;
-        }
-        load_tree(stream, root_node_);
-
-
-        index_params_["algorithm"] = getType();
-        index_params_["leaf_max_size"] = leaf_max_size_;
-        index_params_["reorder"] = reorder_;
-    }
-
-    /**
-     *  Returns size of index.
-     */
-    size_t size() const
-    {
-        return size_;
-    }
-
-    /**
-     * Returns the length of an index feature.
-     */
-    size_t veclen() const
-    {
-        return dim_;
-    }
-
-    /**
-     * Computes the inde memory usage
-     * Returns: memory used by the index
-     */
-    int usedMemory() const
-    {
-        return pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int);  // pool memory and vind array memory
-    }
-
-
-    /**
-     * \brief Perform k-nearest neighbor search
-     * \param[in] queries The query points for which to find the nearest neighbors
-     * \param[out] indices The indices of the nearest neighbors found
-     * \param[out] dists Distances to the nearest neighbors found
-     * \param[in] knn Number of nearest neighbors to return
-     * \param[in] params Search parameters
-     */
-    void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
-    {
-        assert(queries.cols == veclen());
-        assert(indices.rows >= queries.rows);
-        assert(dists.rows >= queries.rows);
-        assert(int(indices.cols) >= knn);
-        assert(int(dists.cols) >= knn);
-
-        KNNSimpleResultSet<DistanceType> resultSet(knn);
-        for (size_t i = 0; i < queries.rows; i++) {
-            resultSet.init(indices[i], dists[i]);
-            findNeighbors(resultSet, queries[i], params);
-        }
-    }
-
-    IndexParams getParameters() const
-    {
-        return index_params_;
-    }
-
-    /**
-     * Find set of nearest neighbors to vec. Their indices are stored inside
-     * the result object.
-     *
-     * Params:
-     *     result = the result object in which the indices of the nearest-neighbors are stored
-     *     vec = the vector for which to search the nearest neighbors
-     *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
-     */
-    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
-    {
-        float epsError = 1+get_param(searchParams,"eps",0.0f);
-
-        std::vector<DistanceType> dists(dim_,0);
-        DistanceType distsq = computeInitialDistances(vec, dists);
-        searchLevel(result, vec, root_node_, distsq, dists, epsError);
-    }
-
-private:
-
-
-    /*--------------------- Internal Data Structures --------------------------*/
-    struct Node
-    {
-        union {
-            struct
-            {
-                /**
-                 * Indices of points in leaf node
-                 */
-                int left, right;
-            };
-            struct
-            {
-                /**
-                 * Dimension used for subdivision.
-                 */
-                int divfeat;
-                /**
-                 * The values used for subdivision.
-                 */
-                DistanceType divlow, divhigh;
-            };
-        };
-        /**
-         * The child nodes.
-         */
-        Node* child1, * child2;
-    };
-    typedef Node* NodePtr;
-
-
-    struct Interval
-    {
-        ElementType low, high;
-    };
-
-    typedef std::vector<Interval> BoundingBox;
-
-    typedef BranchStruct<NodePtr, DistanceType> BranchSt;
-    typedef BranchSt* Branch;
-
-
-
-
-    void save_tree(FILE* stream, NodePtr tree)
-    {
-        save_value(stream, *tree);
-        if (tree->child1!=NULL) {
-            save_tree(stream, tree->child1);
-        }
-        if (tree->child2!=NULL) {
-            save_tree(stream, tree->child2);
-        }
-    }
-
-
-    void load_tree(FILE* stream, NodePtr& tree)
-    {
-        tree = pool_.allocate<Node>();
-        load_value(stream, *tree);
-        if (tree->child1!=NULL) {
-            load_tree(stream, tree->child1);
-        }
-        if (tree->child2!=NULL) {
-            load_tree(stream, tree->child2);
-        }
-    }
-
-
-    void computeBoundingBox(BoundingBox& bbox)
-    {
-        bbox.resize(dim_);
-        for (size_t i=0; i<dim_; ++i) {
-            bbox[i].low = dataset_[0][i];
-            bbox[i].high = dataset_[0][i];
-        }
-        for (size_t k=1; k<dataset_.rows; ++k) {
-            for (size_t i=0; i<dim_; ++i) {
-                if (dataset_[k][i]<bbox[i].low) bbox[i].low = dataset_[k][i];
-                if (dataset_[k][i]>bbox[i].high) bbox[i].high = dataset_[k][i];
-            }
-        }
-    }
-
-
-    /**
-     * Create a tree node that subdivides the list of vecs from vind[first]
-     * to vind[last].  The routine is called recursively on each sublist.
-     * Place a pointer to this new tree node in the location pTree.
-     *
-     * Params: pTree = the new node to create
-     *                  first = index of the first vector
-     *                  last = index of the last vector
-     */
-    NodePtr divideTree(int left, int right, BoundingBox& bbox)
-    {
-        NodePtr node = pool_.allocate<Node>(); // allocate memory
-
-        /* If too few exemplars remain, then make this a leaf node. */
-        if ( (right-left) <= leaf_max_size_) {
-            node->child1 = node->child2 = NULL;    /* Mark as leaf node. */
-            node->left = left;
-            node->right = right;
-
-            // compute bounding-box of leaf points
-            for (size_t i=0; i<dim_; ++i) {
-                bbox[i].low = dataset_[vind_[left]][i];
-                bbox[i].high = dataset_[vind_[left]][i];
-            }
-            for (int k=left+1; k<right; ++k) {
-                for (size_t i=0; i<dim_; ++i) {
-                    if (bbox[i].low>dataset_[vind_[k]][i]) bbox[i].low=dataset_[vind_[k]][i];
-                    if (bbox[i].high<dataset_[vind_[k]][i]) bbox[i].high=dataset_[vind_[k]][i];
-                }
-            }
-        }
-        else {
-            int idx;
-            int cutfeat;
-            DistanceType cutval;
-            middleSplit_(&vind_[0]+left, right-left, idx, cutfeat, cutval, bbox);
-
-            node->divfeat = cutfeat;
-
-            BoundingBox left_bbox(bbox);
-            left_bbox[cutfeat].high = cutval;
-            node->child1 = divideTree(left, left+idx, left_bbox);
-
-            BoundingBox right_bbox(bbox);
-            right_bbox[cutfeat].low = cutval;
-            node->child2 = divideTree(left+idx, right, right_bbox);
-
-            node->divlow = left_bbox[cutfeat].high;
-            node->divhigh = right_bbox[cutfeat].low;
-
-            for (size_t i=0; i<dim_; ++i) {
-                bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
-                bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
-            }
-        }
-
-        return node;
-    }
-
-    void computeMinMax(int* ind, int count, int dim, ElementType& min_elem, ElementType& max_elem)
-    {
-        min_elem = dataset_[ind[0]][dim];
-        max_elem = dataset_[ind[0]][dim];
-        for (int i=1; i<count; ++i) {
-            ElementType val = dataset_[ind[i]][dim];
-            if (val<min_elem) min_elem = val;
-            if (val>max_elem) max_elem = val;
-        }
-    }
-
-    void middleSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
-    {
-        // find the largest span from the approximate bounding box
-        ElementType max_span = bbox[0].high-bbox[0].low;
-        cutfeat = 0;
-        cutval = (bbox[0].high+bbox[0].low)/2;
-        for (size_t i=1; i<dim_; ++i) {
-            ElementType span = bbox[i].low-bbox[i].low;
-            if (span>max_span) {
-                max_span = span;
-                cutfeat = i;
-                cutval = (bbox[i].high+bbox[i].low)/2;
-            }
-        }
-
-        // compute exact span on the found dimension
-        ElementType min_elem, max_elem;
-        computeMinMax(ind, count, cutfeat, min_elem, max_elem);
-        cutval = (min_elem+max_elem)/2;
-        max_span = max_elem - min_elem;
-
-        // check if a dimension of a largest span exists
-        size_t k = cutfeat;
-        for (size_t i=0; i<dim_; ++i) {
-            if (i==k) continue;
-            ElementType span = bbox[i].high-bbox[i].low;
-            if (span>max_span) {
-                computeMinMax(ind, count, i, min_elem, max_elem);
-                span = max_elem - min_elem;
-                if (span>max_span) {
-                    max_span = span;
-                    cutfeat = i;
-                    cutval = (min_elem+max_elem)/2;
-                }
-            }
-        }
-        int lim1, lim2;
-        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
-
-        if (lim1>count/2) index = lim1;
-        else if (lim2<count/2) index = lim2;
-        else index = count/2;
-    }
-
-
-    void middleSplit_(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
-    {
-        const float EPS=0.00001f;
-        ElementType max_span = bbox[0].high-bbox[0].low;
-        for (size_t i=1; i<dim_; ++i) {
-            ElementType span = bbox[i].high-bbox[i].low;
-            if (span>max_span) {
-                max_span = span;
-            }
-        }
-        ElementType max_spread = -1;
-        cutfeat = 0;
-        for (size_t i=0; i<dim_; ++i) {
-            ElementType span = bbox[i].high-bbox[i].low;
-            if (span>(ElementType)((1-EPS)*max_span)) {
-                ElementType min_elem, max_elem;
-                computeMinMax(ind, count, cutfeat, min_elem, max_elem);
-                ElementType spread = max_elem-min_elem;
-                if (spread>max_spread) {
-                    cutfeat = i;
-                    max_spread = spread;
-                }
-            }
-        }
-        // split in the middle
-        DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2;
-        ElementType min_elem, max_elem;
-        computeMinMax(ind, count, cutfeat, min_elem, max_elem);
-
-        if (split_val<min_elem) cutval = min_elem;
-        else if (split_val>max_elem) cutval = max_elem;
-        else cutval = split_val;
-
-        int lim1, lim2;
-        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
-
-        if (lim1>count/2) index = lim1;
-        else if (lim2<count/2) index = lim2;
-        else index = count/2;
-    }
-
-
-    /**
-     *  Subdivide the list of points by a plane perpendicular on axe corresponding
-     *  to the 'cutfeat' dimension at 'cutval' position.
-     *
-     *  On return:
-     *  dataset[ind[0..lim1-1]][cutfeat]<cutval
-     *  dataset[ind[lim1..lim2-1]][cutfeat]==cutval
-     *  dataset[ind[lim2..count]][cutfeat]>cutval
-     */
-    void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
-    {
-        /* Move vector indices for left subtree to front of list. */
-        int left = 0;
-        int right = count-1;
-        for (;; ) {
-            while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
-            while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
-            if (left>right) break;
-            std::swap(ind[left], ind[right]); ++left; --right;
-        }
-        /* If either list is empty, it means that all remaining features
-         * are identical. Split in the middle to maintain a balanced tree.
-         */
-        lim1 = left;
-        right = count-1;
-        for (;; ) {
-            while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
-            while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
-            if (left>right) break;
-            std::swap(ind[left], ind[right]); ++left; --right;
-        }
-        lim2 = left;
-    }
-
-    DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists)
-    {
-        DistanceType distsq = 0.0;
-
-        for (size_t i = 0; i < dim_; ++i) {
-            if (vec[i] < root_bbox_[i].low) {
-                dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, i);
-                distsq += dists[i];
-            }
-            if (vec[i] > root_bbox_[i].high) {
-                dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].high, i);
-                distsq += dists[i];
-            }
-        }
-
-        return distsq;
-    }
-
-    /**
-     * Performs an exact search in the tree starting from a node.
-     */
-    void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq,
-                     std::vector<DistanceType>& dists, const float epsError)
-    {
-        /* If this is a leaf node, then do check and return. */
-        if ((node->child1 == NULL)&&(node->child2 == NULL)) {
-            DistanceType worst_dist = result_set.worstDist();
-            for (int i=node->left; i<node->right; ++i) {
-                int index = reorder_ ? i : vind_[i];
-                DistanceType dist = distance_(vec, data_[index], dim_, worst_dist);
-                if (dist<worst_dist) {
-                    result_set.addPoint(dist,vind_[i]);
-                }
-            }
-            return;
-        }
-
-        /* Which child branch should be taken first? */
-        int idx = node->divfeat;
-        ElementType val = vec[idx];
-        DistanceType diff1 = val - node->divlow;
-        DistanceType diff2 = val - node->divhigh;
-
-        NodePtr bestChild;
-        NodePtr otherChild;
-        DistanceType cut_dist;
-        if ((diff1+diff2)<0) {
-            bestChild = node->child1;
-            otherChild = node->child2;
-            cut_dist = distance_.accum_dist(val, node->divhigh, idx);
-        }
-        else {
-            bestChild = node->child2;
-            otherChild = node->child1;
-            cut_dist = distance_.accum_dist( val, node->divlow, idx);
-        }
-
-        /* Call recursively to search next level down. */
-        searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError);
-
-        DistanceType dst = dists[idx];
-        mindistsq = mindistsq + cut_dist - dst;
-        dists[idx] = cut_dist;
-        if (mindistsq*epsError<=result_set.worstDist()) {
-            searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError);
-        }
-        dists[idx] = dst;
-    }
-
-private:
-
-    /**
-     * The dataset used by this index
-     */
-    const Matrix<ElementType> dataset_;
-
-    IndexParams index_params_;
-
-    int leaf_max_size_;
-    bool reorder_;
-
-
-    /**
-     *  Array of indices to vectors in the dataset.
-     */
-    std::vector<int> vind_;
-
-    Matrix<ElementType> data_;
-
-    size_t size_;
-    size_t dim_;
-
-    /**
-     * Array of k-d trees used to find neighbours.
-     */
-    NodePtr root_node_;
-
-    BoundingBox root_bbox_;
-
-    /**
-     * Pooled memory allocator.
-     *
-     * Using a pooled memory allocator is more efficient
-     * than allocating memory directly when there is a large
-     * number small of memory allocations.
-     */
-    PooledAllocator pool_;
-
-    Distance distance_;
-};   // class KDTree
-
-}
-
-#endif //OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
index 624c27a..67abba5 100644 (file)
@@ -28,8 +28,8 @@
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef OPENCV_FLANN_KMEANS_INDEX_H_
-#define OPENCV_FLANN_KMEANS_INDEX_H_
+#ifndef _OPENCV_KMEANSTREE_H_
+#define _OPENCV_KMEANSTREE_H_
 
 #include <algorithm>
 #include <string>
 #include <limits>
 #include <cmath>
 
-#include "general.h"
-#include "nn_index.h"
-#include "dist.h"
-#include "matrix.h"
-#include "result_set.h"
-#include "heap.h"
-#include "allocator.h"
-#include "random.h"
-#include "saving.h"
-#include "logger.h"
+#include "opencv2/flann/general.h"
+#include "opencv2/flann/nn_index.h"
+#include "opencv2/flann/matrix.h"
+#include "opencv2/flann/result_set.h"
+#include "opencv2/flann/heap.h"
+#include "opencv2/flann/allocator.h"
+#include "opencv2/flann/random.h"
 
 
 namespace cvflann
 {
 
-struct KMeansIndexParams : public IndexParams
-{
-    KMeansIndexParams(int branching = 32, int iterations = 11,
-                      flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 )
-    {
-        (*this)["algorithm"] = FLANN_INDEX_KMEANS;
-        // branching factor
-        (*this)["branching"] = branching;
-        // max iterations to perform in one kmeans clustering (kmeans tree)
-        (*this)["iterations"] = iterations;
-        // algorithm used for picking the initial cluster centers for kmeans tree
-        (*this)["centers_init"] = centers_init;
-        // cluster boundary index. Used when searching the kmeans tree
-        (*this)["cb_index"] = cb_index;
-    }
+struct CV_EXPORTS KMeansIndexParams : public IndexParams {
+       KMeansIndexParams(int branching_ = 32, int iterations_ = 11,
+                       flann_centers_init_t centers_init_ = FLANN_CENTERS_RANDOM, float cb_index_ = 0.2 ) :
+               IndexParams(FLANN_INDEX_KMEANS),
+               branching(branching_),
+               iterations(iterations_),
+               centers_init(centers_init_),
+               cb_index(cb_index_) {};
+
+       int branching;             // branching factor (for kmeans tree)
+       int iterations;            // max iterations to perform in one kmeans clustering (kmeans tree)
+       flann_centers_init_t centers_init;          // algorithm used for picking the initial cluster centers for kmeans tree
+    float cb_index;            // cluster boundary index. Used when searching the kmeans tree
+
+       void print() const
+       {
+               logger().info("Index type: %d\n",(int)algorithm);
+               logger().info("Branching: %d\n", branching);
+               logger().info("Iterations: %d\n", iterations);
+               logger().info("Centres initialisation: %d\n", centers_init);
+               logger().info("Cluster boundary weight: %g\n", cb_index);
+       }
+
 };
 
 
@@ -77,40 +82,145 @@ struct KMeansIndexParams : public IndexParams
  * Contains a tree constructed through a hierarchical kmeans clustering
  * and other information for indexing a set of points for nearest-neighbour matching.
  */
-template <typename Distance>
-class KMeansIndex : public NNIndex<Distance>
+template <typename ELEM_TYPE, typename DIST_TYPE = typename DistType<ELEM_TYPE>::type >
+class KMeansIndex : public NNIndex<ELEM_TYPE>
 {
-public:
-    typedef typename Distance::ElementType ElementType;
-    typedef typename Distance::ResultType DistanceType;
+
+       /**
+        * The branching factor used in the hierarchical k-means clustering
+        */
+       int branching;
+
+       /**
+        * Maximum number of iterations to use when performing k-means
+        * clustering
+        */
+       int max_iter;
+
+     /**
+     * Cluster border index. This is used in the tree search phase when determining
+     * the closest cluster to explore next. A zero value takes into account only
+     * the cluster centres, a value greater then zero also take into account the size
+     * of the cluster.
+     */
+    float cb_index;
+
+       /**
+        * The dataset used by this index
+        */
+    const Matrix<ELEM_TYPE> dataset;
+
+    const IndexParams& index_params;
+
+    /**
+    * Number of features in the dataset.
+    */
+    size_t size_;
+
+    /**
+    * Length of each feature.
+    */
+    size_t veclen_;
 
 
+       /**
+        * Struture representing a node in the hierarchical k-means tree.
+        */
+       struct KMeansNodeSt     {
+               /**
+                * The cluster center.
+                */
+               DIST_TYPE* pivot;
+               /**
+                * The cluster radius.
+                */
+               DIST_TYPE radius;
+               /**
+                * The cluster mean radius.
+                */
+               DIST_TYPE mean_radius;
+               /**
+                * The cluster variance.
+                */
+               DIST_TYPE variance;
+               /**
+                * The cluster size (number of points in the cluster)
+                */
+               int size;
+               /**
+                * Child nodes (only for non-terminal nodes)
+                */
+               KMeansNodeSt** childs;
+               /**
+                * Node points (only for terminal nodes)
+                */
+               int* indices;
+               /**
+                * Level
+                */
+               int level;
+       };
+    typedef KMeansNodeSt* KMeansNode;
+
 
-    typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&);
 
     /**
-     * The function used for choosing the cluster centers.
+     * Alias definition for a nicer syntax.
      */
+    typedef BranchStruct<KMeansNode> BranchSt;
+
+
+       /**
+        * The root node in the tree.
+        */
+       KMeansNode root;
+
+       /**
+        *  Array of indices to vectors in the dataset.
+        */
+       int* indices;
+
+
+       /**
+        * Pooled memory allocator.
+        *
+        * Using a pooled memory allocator is more efficient
+        * than allocating memory directly when there is a large
+        * number small of memory allocations.
+        */
+       PooledAllocator pool;
+
+       /**
+        * Memory occupied by the index.
+        */
+       int memoryCounter;
+
+
+       typedef void (KMeansIndex::*centersAlgFunction)(int, int*, int, int*, int&);
+
+    /**
+    * The function used for choosing the cluster centers.
+    */
     centersAlgFunction chooseCenters;
 
 
 
     /**
-     * Chooses the initial centers in the k-means clustering in a random manner.
-     *
-     * Params:
-     *     k = number of centers
-     *     vecs = the dataset of points
-     *     indices = indices in the dataset
-     *     indices_length = length of indices vector
-     *
-     */
+    * Chooses the initial centers in the k-means clustering in a random manner.
+    *
+    * Params:
+    *     k = number of centers
+    *     vecs = the dataset of points
+    *     indices = indices in the dataset
+    *     indices_length = length of indices vector
+    *
+    */
     void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length)
     {
         UniqueRandom r(indices_length);
 
         int index;
-        for (index=0; index<k; ++index) {
+        for (index=0;index<k;++index) {
             bool duplicate = true;
             int rnd;
             while (duplicate) {
@@ -123,8 +233,8 @@ public:
 
                 centers[index] = indices[rnd];
 
-                for (int j=0; j<index; ++j) {
-                    DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols);
+                for (int j=0;j<index;++j) {
+                    float sq = (float)flann_dist(dataset[centers[index]],dataset[centers[index]]+dataset.cols,dataset[centers[j]]);
                     if (sq<1e-16) {
                         duplicate = true;
                     }
@@ -137,15 +247,15 @@ public:
 
 
     /**
-     * Chooses the initial centers in the k-means using Gonzales' algorithm
-     * so that the centers are spaced apart from each other.
-     *
-     * Params:
-     *     k = number of centers
-     *     vecs = the dataset of points
-     *     indices = indices in the dataset
-     * Returns:
-     */
+    * Chooses the initial centers in the k-means using Gonzales' algorithm
+    * so that the centers are spaced apart from each other.
+    *
+    * Params:
+    *     k = number of centers
+    *     vecs = the dataset of points
+    *     indices = indices in the dataset
+    * Returns:
+    */
     void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length)
     {
         int n = indices_length;
@@ -159,11 +269,11 @@ public:
         for (index=1; index<k; ++index) {
 
             int best_index = -1;
-            DistanceType best_val = 0;
-            for (int j=0; j<n; ++j) {
-                DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols);
-                for (int i=1; i<index; ++i) {
-                    DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols);
+            float best_val = 0;
+            for (int j=0;j<n;++j) {
+                float dist = (float)flann_dist(dataset[centers[0]],dataset[centers[0]]+dataset.cols,dataset[indices[j]]);
+                for (int i=1;i<index;++i) {
+                        float tmp_dist = (float)flann_dist(dataset[centers[i]],dataset[centers[i]]+dataset.cols,dataset[indices[j]]);
                     if (tmp_dist<dist) {
                         dist = tmp_dist;
                     }
@@ -185,24 +295,24 @@ public:
 
 
     /**
-     * Chooses the initial centers in the k-means using the algorithm
-     * proposed in the KMeans++ paper:
-     * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
-     *
-     * Implementation of this function was converted from the one provided in Arthur's code.
-     *
-     * Params:
-     *     k = number of centers
-     *     vecs = the dataset of points
-     *     indices = indices in the dataset
-     * Returns:
-     */
+    * Chooses the initial centers in the k-means using the algorithm
+    * proposed in the KMeans++ paper:
+    * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
+    *
+    * Implementation of this function was converted from the one provided in Arthur's code.
+    *
+    * Params:
+    *     k = number of centers
+    *     vecs = the dataset of points
+    *     indices = indices in the dataset
+    * Returns:
+    */
     void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length)
     {
         int n = indices_length;
 
         double currentPot = 0;
-        DistanceType* closestDistSq = new DistanceType[n];
+        double* closestDistSq = new double[n];
 
         // Choose one random center and set the closestDistSq values
         int index = rand_int(n);
@@ -210,7 +320,7 @@ public:
         centers[0] = indices[index];
 
         for (int i = 0; i < n; i++) {
-            closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
+            closestDistSq[i] = flann_dist(dataset[indices[i]], dataset[indices[i]] + dataset.cols, dataset[indices[index]]);
             currentPot += closestDistSq[i];
         }
 
@@ -228,18 +338,21 @@ public:
 
                 // Choose our center - have to be slightly careful to return a valid answer even accounting
                 // for possible rounding errors
-                double randVal = rand_double(currentPot);
+            double randVal = rand_double(currentPot);
                 for (index = 0; index < n-1; index++) {
-                    if (randVal <= closestDistSq[index]) break;
-                    else randVal -= closestDistSq[index];
+                    if (randVal <= closestDistSq[index])
+                        break;
+                    else
+                        randVal -= closestDistSq[index];
                 }
 
                 // Compute the new potential
                 double newPot = 0;
-                for (int i = 0; i < n; i++) newPot += std::min( distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols), closestDistSq[i] );
+                for (int i = 0; i < n; i++)
+                    newPot += std::min( flann_dist(dataset[indices[i]], dataset[indices[i]] + dataset.cols, dataset[indices[index]]), closestDistSq[i] );
 
                 // Store the best result
-                if ((bestNewPot < 0)||(newPot < bestNewPot)) {
+                if (bestNewPot < 0 || newPot < bestNewPot) {
                     bestNewPot = newPot;
                     bestNewIndex = index;
                 }
@@ -248,93 +361,90 @@ public:
             // Add the appropriate center
             centers[centerCount] = indices[bestNewIndex];
             currentPot = bestNewPot;
-            for (int i = 0; i < n; i++) closestDistSq[i] = std::min( distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols), closestDistSq[i] );
+            for (int i = 0; i < n; i++)
+                closestDistSq[i] = std::min( flann_dist(dataset[indices[i]], dataset[indices[i]]+dataset.cols, dataset[indices[bestNewIndex]]), closestDistSq[i] );
         }
 
         centers_length = centerCount;
 
-        delete[] closestDistSq;
+       delete[] closestDistSq;
     }
 
 
 
 public:
 
+
     flann_algorithm_t getType() const
     {
         return FLANN_INDEX_KMEANS;
     }
 
-    /**
-     * Index constructor
-     *
-     * Params:
-     *          inputData = dataset with the input features
-     *          params = parameters passed to the hierarchical k-means algorithm
-     */
-    KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(),
-                Distance d = Distance())
-        : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d)
-    {
-        memoryCounter_ = 0;
-
-        size_ = dataset_.rows;
-        veclen_ = dataset_.cols;
-
-        branching_ = get_param(params,"branching",32);
-        iterations_ = get_param(params,"iterations",11);
-        if (iterations_<0) {
-            iterations_ = (std::numeric_limits<int>::max)();
+       /**
+        * Index constructor
+        *
+        * Params:
+        *              inputData = dataset with the input features
+        *              params = parameters passed to the hierarchical k-means algorithm
+        */
+       KMeansIndex(const Matrix<ELEM_TYPE>& inputData, const KMeansIndexParams& params = KMeansIndexParams() )
+               : dataset(inputData), index_params(params), root(NULL), indices(NULL)
+       {
+               memoryCounter = 0;
+
+        size_ = dataset.rows;
+        veclen_ = dataset.cols;
+
+        branching = params.branching;
+        max_iter = params.iterations;
+        if (max_iter<0) {
+               max_iter = (std::numeric_limits<int>::max)();
         }
-        centers_init_  = get_param(params,"centers_init",FLANN_CENTERS_RANDOM);
+        flann_centers_init_t centersInit = params.centers_init;
 
-        if (centers_init_==FLANN_CENTERS_RANDOM) {
-            chooseCenters = &KMeansIndex::chooseCentersRandom;
-        }
-        else if (centers_init_==FLANN_CENTERS_GONZALES) {
-            chooseCenters = &KMeansIndex::chooseCentersGonzales;
-        }
-        else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
-            chooseCenters = &KMeansIndex::chooseCentersKMeanspp;
+        if (centersInit==FLANN_CENTERS_RANDOM) {
+               chooseCenters = &KMeansIndex::chooseCentersRandom;
         }
-        else {
-            throw FLANNException("Unknown algorithm for choosing initial centers.");
+        else if (centersInit==FLANN_CENTERS_GONZALES) {
+               chooseCenters = &KMeansIndex::chooseCentersGonzales;
         }
-        cb_index_ = 0.4f;
-
-    }
-
-
-    KMeansIndex(const KMeansIndex&);
-    KMeansIndex& operator=(const KMeansIndex&);
-
-
-    /**
-     * Index destructor.
-     *
-     * Release the memory used by the index.
-     */
-    virtual ~KMeansIndex()
-    {
-        if (root_ != NULL) {
-            free_centers(root_);
+        else if (centersInit==FLANN_CENTERS_KMEANSPP) {
+                       chooseCenters = &KMeansIndex::chooseCentersKMeanspp;
         }
-        if (indices_!=NULL) {
-            delete[] indices_;
+               else {
+                       throw FLANNException("Unknown algorithm for choosing initial centers.");
+               }
+        cb_index = 0.4f;
+
+       }
+
+
+       /**
+        * Index destructor.
+        *
+        * Release the memory used by the index.
+        */
+       virtual ~KMeansIndex()
+       {
+               if (root != NULL) {
+                       free_centers(root);
+               }
+        if (indices!=NULL) {
+                 delete[] indices;
         }
-    }
+       }
 
     /**
-     *  Returns size of index.
-     */
-    size_t size() const
+    *  Returns size of index.
+    */
+       size_t size() const
     {
         return size_;
     }
 
     /**
-     * Returns the length of an index feature.
-     */
+    * Returns the length of an index feature.
+    */
     size_t veclen() const
     {
         return veclen_;
@@ -343,73 +453,67 @@ public:
 
     void set_cb_index( float index)
     {
-        cb_index_ = index;
+        cb_index = index;
     }
 
-    /**
-     * Computes the inde memory usage
-     * Returns: memory used by the index
-     */
-    int usedMemory() const
-    {
-        return pool_.usedMemory+pool_.wastedMemory+memoryCounter_;
-    }
 
-    /**
-     * Builds the index
-     */
-    void buildIndex()
-    {
-        if (branching_<2) {
-            throw FLANNException("Branching factor must be at least 2");
-        }
+       /**
+        * Computes the inde memory usage
+        * Returns: memory used by the index
+        */
+       int usedMemory() const
+       {
+               return  pool.usedMemory+pool.wastedMemory+memoryCounter;
+       }
 
-        indices_ = new int[size_];
-        for (size_t i=0; i<size_; ++i) {
-            indices_[i] = int(i);
-        }
+       /**
+        * Builds the index
+        */
+       void buildIndex()
+       {
+               if (branching<2) {
+                       throw FLANNException("Branching factor must be at least 2");
+               }
 
-        root_ = pool_.allocate<KMeansNode>();
-        computeNodeStatistics(root_, indices_, (int)size_);
-        computeClustering(root_, indices_, (int)size_, branching_,0);
-    }
+               indices = new int[size_];
+               for (size_t i=0;i<size_;++i) {
+                       indices[i] = (int)i;
+               }
+
+               root = pool.allocate<KMeansNodeSt>();
+               computeNodeStatistics(root, indices, (int)size_);
+               computeClustering(root, indices, (int)size_, branching,0);
+       }
 
 
     void saveIndex(FILE* stream)
     {
-        save_value(stream, branching_);
-        save_value(stream, iterations_);
-        save_value(stream, memoryCounter_);
-        save_value(stream, cb_index_);
-        save_value(stream, *indices_, (int)size_);
+       save_value(stream, branching);
+       save_value(stream, max_iter);
+       save_value(stream, memoryCounter);
+       save_value(stream, cb_index);
+       save_value(stream, *indices, (int)size_);
 
-        save_tree(stream, root_);
+               save_tree(stream, root);
     }
 
 
     void loadIndex(FILE* stream)
     {
-        load_value(stream, branching_);
-        load_value(stream, iterations_);
-        load_value(stream, memoryCounter_);
-        load_value(stream, cb_index_);
-        if (indices_!=NULL) {
-            delete[] indices_;
-        }
-        indices_ = new int[size_];
-        load_value(stream, *indices_, size_);
-
-        if (root_!=NULL) {
-            free_centers(root_);
-        }
-        load_tree(stream, root_);
-
-        index_params_["algorithm"] = getType();
-        index_params_["branching"] = branching_;
-        index_params_["iterations"] = iterations_;
-        index_params_["centers_init"] = centers_init_;
-        index_params_["cb_index"] = cb_index_;
-
+       load_value(stream, branching);
+       load_value(stream, max_iter);
+       load_value(stream, memoryCounter);
+       load_value(stream, cb_index);
+       if (indices!=NULL) {
+               delete[] indices;
+       }
+               indices = new int[size_];
+       load_value(stream, *indices, (int)size_);
+
+       if (root!=NULL) {
+               free_centers(root);
+       }
+               load_tree(stream, root);
     }
 
 
@@ -422,24 +526,25 @@ public:
      *     vec = the vector for which to search the nearest neighbors
      *     searchParams = parameters that influence the search algorithm (checks, cb_index)
      */
-    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
+    void findNeighbors(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec, const SearchParams& searchParams)
     {
 
-        int maxChecks = get_param(searchParams,"checks",32);
+        int maxChecks = searchParams.checks;
 
-        if (maxChecks==FLANN_CHECKS_UNLIMITED) {
-            findExactNN(root_, result, vec);
+        if (maxChecks<0) {
+            findExactNN(root, result, vec);
         }
         else {
-            // Priority queue storing intermediate branches in the best-bin-first search
+             // Priority queue storing intermediate branches in the best-bin-first search
             Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
 
             int checks = 0;
-            findNN(root_, result, vec, checks, maxChecks, heap);
+
+            findNN(root, result, vec, checks, maxChecks, heap);
 
             BranchSt branch;
             while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
-                KMeansNodePtr node = branch.node;
+                KMeansNode node = branch.node;
                 findNN(node, result, vec, checks, maxChecks, heap);
             }
             assert(result.full());
@@ -449,6 +554,7 @@ public:
 
     }
 
+
     /**
      * Clustering function that takes a cut in the hierarchical k-means
      * tree and return the clusters centers of that clustering.
@@ -456,377 +562,332 @@ public:
      *     numClusters = number of clusters to have in the clustering computed
      * Returns: number of cluster centers
      */
-    int getClusterCenters(Matrix<DistanceType>& centers)
+    int getClusterCenters(Matrix<DIST_TYPE>& centers)
     {
         int numClusters = centers.rows;
         if (numClusters<1) {
             throw FLANNException("Number of clusters must be at least 1");
         }
 
-        DistanceType variance;
-        KMeansNodePtr* clusters = new KMeansNodePtr[numClusters];
+        float variance;
+        KMeansNode* clusters = new KMeansNode[numClusters];
 
-        int clusterCount = getMinVarianceClusters(root_, clusters, numClusters, variance);
+        int clusterCount = getMinVarianceClusters(root, clusters, numClusters, variance);
 
-        Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount);
+//         logger().info("Clusters requested: %d, returning %d\n",numClusters, clusterCount);
 
-        for (int i=0; i<clusterCount; ++i) {
-            DistanceType* center = clusters[i]->pivot;
-            for (size_t j=0; j<veclen_; ++j) {
+
+        for (int i=0;i<clusterCount;++i) {
+            DIST_TYPE* center = clusters[i]->pivot;
+            for (size_t j=0;j<veclen_;++j) {
                 centers[i][j] = center[j];
             }
         }
-        delete[] clusters;
+               delete[] clusters;
 
         return clusterCount;
     }
 
-    IndexParams getParameters() const
-    {
-        return index_params_;
-    }
+       const IndexParams* getParameters() const
+       {
+               return &index_params;
+       }
 
 
 private:
-    /**
-     * Struture representing a node in the hierarchical k-means tree.
-     */
-    struct KMeansNode
-    {
-        /**
-         * The cluster center.
-         */
-        DistanceType* pivot;
-        /**
-         * The cluster radius.
-         */
-        DistanceType radius;
-        /**
-         * The cluster mean radius.
-         */
-        DistanceType mean_radius;
-        /**
-         * The cluster variance.
-         */
-        DistanceType variance;
-        /**
-         * The cluster size (number of points in the cluster)
-         */
-        int size;
-        /**
-         * Child nodes (only for non-terminal nodes)
-         */
-        KMeansNode** childs;
-        /**
-         * Node points (only for terminal nodes)
-         */
-        int* indices;
-        /**
-         * Level
-         */
-        int level;
-    };
-    typedef KMeansNode* KMeansNodePtr;
 
-    /**
-     * Alias definition for a nicer syntax.
-     */
-    typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt;
+       KMeansIndex& operator=(const KMeansIndex&);
+       KMeansIndex(const KMeansIndex&);
 
-
-
-
-    void save_tree(FILE* stream, KMeansNodePtr node)
+    void save_tree(FILE* stream, KMeansNode node)
     {
-        save_value(stream, *node);
-        save_value(stream, *(node->pivot), (int)veclen_);
-        if (node->childs==NULL) {
-            int indices_offset = (int)(node->indices - indices_);
-            save_value(stream, indices_offset);
-        }
-        else {
-            for(int i=0; i<branching_; ++i) {
-                save_tree(stream, node->childs[i]);
-            }
-        }
+       save_value(stream, *node);
+       save_value(stream, *(node->pivot), (int)veclen_);
+       if (node->childs==NULL) {
+               int indices_offset = (int)(node->indices - indices);
+               save_value(stream, indices_offset);
+       }
+       else {
+               for(int i=0; i<branching; ++i) {
+                       save_tree(stream, node->childs[i]);
+               }
+       }
     }
 
 
-    void load_tree(FILE* stream, KMeansNodePtr& node)
+    void load_tree(FILE* stream, KMeansNode& node)
     {
-        node = pool_.allocate<KMeansNode>();
-        load_value(stream, *node);
-        node->pivot = new DistanceType[veclen_];
-        load_value(stream, *(node->pivot), (int)veclen_);
-        if (node->childs==NULL) {
-            int indices_offset;
-            load_value(stream, indices_offset);
-            node->indices = indices_ + indices_offset;
-        }
-        else {
-            node->childs = pool_.allocate<KMeansNodePtr>(branching_);
-            for(int i=0; i<branching_; ++i) {
-                load_tree(stream, node->childs[i]);
-            }
-        }
+       node = pool.allocate<KMeansNodeSt>();
+       load_value(stream, *node);
+       node->pivot = new DIST_TYPE[veclen_];
+       load_value(stream, *(node->pivot), (int)veclen_);
+       if (node->childs==NULL) {
+               int indices_offset;
+               load_value(stream, indices_offset);
+               node->indices = indices + indices_offset;
+       }
+       else {
+               node->childs = pool.allocate<KMeansNode>(branching);
+               for(int i=0; i<branching; ++i) {
+                       load_tree(stream, node->childs[i]);
+               }
+       }
     }
 
 
     /**
-     * Helper function
-     */
-    void free_centers(KMeansNodePtr node)
+    * Helper function
+    */
+    void free_centers(KMeansNode node)
     {
         delete[] node->pivot;
         if (node->childs!=NULL) {
-            for (int k=0; k<branching_; ++k) {
+            for (int k=0;k<branching;++k) {
                 free_centers(node->childs[k]);
             }
         }
     }
 
-    /**
-     * Computes the statistics of a node (mean, radius, variance).
-     *
-     * Params:
-     *     node = the node to use
-     *     indices = the indices of the points belonging to the node
-     */
-    void computeNodeStatistics(KMeansNodePtr node, int* indices, int indices_length)
-    {
-
-        DistanceType radius = 0;
-        DistanceType variance = 0;
-        DistanceType* mean = new DistanceType[veclen_];
-        memoryCounter_ += int(veclen_*sizeof(DistanceType));
-
-        memset(mean,0,veclen_*sizeof(DistanceType));
-
-        for (size_t i=0; i<size_; ++i) {
-            ElementType* vec = dataset_[indices[i]];
-            for (size_t j=0; j<veclen_; ++j) {
+       /**
+        * Computes the statistics of a node (mean, radius, variance).
+        *
+        * Params:
+        *     node = the node to use
+        *     indices = the indices of the points belonging to the node
+        */
+       void computeNodeStatistics(KMeansNode node, int* indices, int indices_length) {
+
+               double radius = 0;
+               double variance = 0;
+               DIST_TYPE* mean = new DIST_TYPE[veclen_];
+               memoryCounter += (int)(veclen_*sizeof(DIST_TYPE));
+
+        memset(mean,0,veclen_*sizeof(float));
+
+               for (size_t i=0;i<size_;++i) {
+                       ELEM_TYPE* vec = dataset[indices[i]];
+            for (size_t j=0;j<veclen_;++j) {
                 mean[j] += vec[j];
             }
-            variance += distance_(vec, ZeroIterator<ElementType>(), veclen_);
-        }
-        for (size_t j=0; j<veclen_; ++j) {
-            mean[j] /= size_;
-        }
-        variance /= size_;
-        variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_);
-
-        DistanceType tmp = 0;
-        for (int i=0; i<indices_length; ++i) {
-            tmp = distance_(mean, dataset_[indices[i]], veclen_);
-            if (tmp>radius) {
-                radius = tmp;
-            }
-        }
-
-        node->variance = variance;
-        node->radius = radius;
-        node->pivot = mean;
-    }
-
-
-    /**
-     * The method responsible with actually doing the recursive hierarchical
-     * clustering
-     *
-     * Params:
-     *     node = the node to cluster
-     *     indices = indices of the points belonging to the current node
-     *     branching = the branching factor to use in the clustering
-     *
-     * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
-     */
-    void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level)
-    {
-        node->size = indices_length;
-        node->level = level;
-
-        if (indices_length < branching) {
-            node->indices = indices;
+                       variance += flann_dist(vec,vec+veclen_,zero());
+               }
+               for (size_t j=0;j<veclen_;++j) {
+                       mean[j] /= size_;
+               }
+               variance /= size_;
+               variance -= flann_dist(mean,mean+veclen_,zero());
+
+               double tmp = 0;
+               for (int i=0;i<indices_length;++i) {
+                       tmp = flann_dist(mean, mean + veclen_, dataset[indices[i]]);
+                       if (tmp>radius) {
+                               radius = tmp;
+                       }
+               }
+
+               node->variance = (DIST_TYPE)variance;
+               node->radius = (DIST_TYPE)radius;
+               node->pivot = mean;
+       }
+
+
+       /**
+        * The method responsible with actually doing the recursive hierarchical
+        * clustering
+        *
+        * Params:
+        *     node = the node to cluster
+        *     indices = indices of the points belonging to the current node
+        *     branching = the branching factor to use in the clustering
+        *
+        * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
+        */
+       void computeClustering(KMeansNode node, int* indices, int indices_length, int branching, int level)
+       {
+               node->size = indices_length;
+               node->level = level;
+
+               if (indices_length < branching) {
+                       node->indices = indices;
             std::sort(node->indices,node->indices+indices_length);
             node->childs = NULL;
-            return;
-        }
+                       return;
+               }
 
-        int* centers_idx = new int[branching];
+               int* centers_idx = new int[branching];
         int centers_length;
-        (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length);
+               (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length);
 
-        if (centers_length<branching) {
+               if (centers_length<branching) {
             node->indices = indices;
             std::sort(node->indices,node->indices+indices_length);
             node->childs = NULL;
-            delete [] centers_idx;
-            return;
-        }
+                       return;
+               }
 
 
-        Matrix<double> dcenters(new double[branching*veclen_],branching,veclen_);
+        Matrix<double> dcenters(new double[branching*veclen_],branching,(long)veclen_);
         for (int i=0; i<centers_length; ++i) {
-            ElementType* vec = dataset_[centers_idx[i]];
+               ELEM_TYPE* vec = dataset[centers_idx[i]];
             for (size_t k=0; k<veclen_; ++k) {
                 dcenters[i][k] = double(vec[k]);
             }
         }
-        delete[] centers_idx;
+               delete[] centers_idx;
 
-        DistanceType* radiuses = new DistanceType[branching];
-        int* count = new int[branching];
-        for (int i=0; i<branching; ++i) {
+               float* radiuses = new float[branching];
+               int* count = new int[branching];
+        for (int i=0;i<branching;++i) {
             radiuses[i] = 0;
             count[i] = 0;
         }
 
         //     assign points to clusters
-        int* belongs_to = new int[indices_length];
-        for (int i=0; i<indices_length; ++i) {
-
-            DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_);
-            belongs_to[i] = 0;
-            for (int j=1; j<branching; ++j) {
-                DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_);
-                if (sq_dist>new_sq_dist) {
-                    belongs_to[i] = j;
-                    sq_dist = new_sq_dist;
-                }
-            }
+               int* belongs_to = new int[indices_length];
+               for (int i=0;i<indices_length;++i) {
+
+                       double sq_dist = flann_dist(dataset[indices[i]], dataset[indices[i]] + veclen_ ,dcenters[0]);
+                       belongs_to[i] = 0;
+                       for (int j=1;j<branching;++j) {
+                               double new_sq_dist = flann_dist(dataset[indices[i]], dataset[indices[i]]+veclen_, dcenters[j]);
+                               if (sq_dist>new_sq_dist) {
+                                       belongs_to[i] = j;
+                                       sq_dist = new_sq_dist;
+                               }
+                       }
             if (sq_dist>radiuses[belongs_to[i]]) {
-                radiuses[belongs_to[i]] = sq_dist;
+                radiuses[belongs_to[i]] = (float)sq_dist;
             }
-            count[belongs_to[i]]++;
-        }
+                       count[belongs_to[i]]++;
+               }
 
-        bool converged = false;
-        int iteration = 0;
-        while (!converged && iteration<iterations_) {
-            converged = true;
-            iteration++;
+               bool converged = false;
+               int iteration = 0;
+               while (!converged && iteration<max_iter) {
+                       converged = true;
+                       iteration++;
 
-            // compute the new cluster centers
-            for (int i=0; i<branching; ++i) {
+                       // compute the new cluster centers
+                       for (int i=0;i<branching;++i) {
                 memset(dcenters[i],0,sizeof(double)*veclen_);
                 radiuses[i] = 0;
-            }
-            for (int i=0; i<indices_length; ++i) {
-                ElementType* vec = dataset_[indices[i]];
-                double* center = dcenters[belongs_to[i]];
-                for (size_t k=0; k<veclen_; ++k) {
-                    center[k] += vec[k];
-                }
-            }
-            for (int i=0; i<branching; ++i) {
+                       }
+            for (int i=0;i<indices_length;++i) {
+                               ELEM_TYPE* vec = dataset[indices[i]];
+                               double* center = dcenters[belongs_to[i]];
+                               for (size_t k=0;k<veclen_;++k) {
+                                       center[k] += vec[k];
+                               }
+                       }
+                       for (int i=0;i<branching;++i) {
                 int cnt = count[i];
-                for (size_t k=0; k<veclen_; ++k) {
+                for (size_t k=0;k<veclen_;++k) {
                     dcenters[i][k] /= cnt;
                 }
-            }
-
-            // reassign points to clusters
-            for (int i=0; i<indices_length; ++i) {
-                DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_);
-                int new_centroid = 0;
-                for (int j=1; j<branching; ++j) {
-                    DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_);
-                    if (sq_dist>new_sq_dist) {
-                        new_centroid = j;
-                        sq_dist = new_sq_dist;
-                    }
-                }
-                if (sq_dist>radiuses[new_centroid]) {
-                    radiuses[new_centroid] = sq_dist;
-                }
-                if (new_centroid != belongs_to[i]) {
-                    count[belongs_to[i]]--;
-                    count[new_centroid]++;
-                    belongs_to[i] = new_centroid;
-
-                    converged = false;
-                }
-            }
-
-            for (int i=0; i<branching; ++i) {
-                // if one cluster converges to an empty cluster,
-                // move an element into that cluster
-                if (count[i]==0) {
-                    int j = (i+1)%branching;
-                    while (count[j]<=1) {
-                        j = (j+1)%branching;
-                    }
-
-                    for (int k=0; k<indices_length; ++k) {
-                        if (belongs_to[k]==j) {
-                            belongs_to[k] = i;
-                            count[j]--;
-                            count[i]++;
-                            break;
-                        }
-                    }
-                    converged = false;
-                }
-            }
-
-        }
-
-        DistanceType** centers = new DistanceType*[branching];
+                       }
+
+                       // reassign points to clusters
+                       for (int i=0;i<indices_length;++i) {
+                               float sq_dist = (float)flann_dist(dataset[indices[i]], dataset[indices[i]]+veclen_ ,dcenters[0]);
+                               int new_centroid = 0;
+                               for (int j=1;j<branching;++j) {
+                                       float new_sq_dist = (float)flann_dist(dataset[indices[i]], dataset[indices[i]]+veclen_,dcenters[j]);
+                                       if (sq_dist>new_sq_dist) {
+                                               new_centroid = j;
+                                               sq_dist = new_sq_dist;
+                                       }
+                               }
+                               if (sq_dist>radiuses[new_centroid]) {
+                                       radiuses[new_centroid] = sq_dist;
+                               }
+                               if (new_centroid != belongs_to[i]) {
+                                       count[belongs_to[i]]--;
+                                       count[new_centroid]++;
+                                       belongs_to[i] = new_centroid;
+
+                                       converged = false;
+                               }
+                       }
+
+                       for (int i=0;i<branching;++i) {
+                               // if one cluster converges to an empty cluster,
+                               // move an element into that cluster
+                               if (count[i]==0) {
+                                       int j = (i+1)%branching;
+                                       while (count[j]<=1) {
+                                               j = (j+1)%branching;
+                                       }
+
+                                       for (int k=0;k<indices_length;++k) {
+                                               if (belongs_to[k]==j) {
+                                                       belongs_to[k] = i;
+                                                       count[j]--;
+                                                       count[i]++;
+                                                       break;
+                                               }
+                                       }
+                                       converged = false;
+                               }
+                       }
+
+               }
+
+        DIST_TYPE** centers = new DIST_TYPE*[branching];
 
         for (int i=0; i<branching; ++i) {
-            centers[i] = new DistanceType[veclen_];
-            memoryCounter_ += veclen_*sizeof(DistanceType);
+                       centers[i] = new DIST_TYPE[veclen_];
+                       memoryCounter += (int)(veclen_*sizeof(DIST_TYPE));
             for (size_t k=0; k<veclen_; ++k) {
-                centers[i][k] = (DistanceType)dcenters[i][k];
+                centers[i][k] = (DIST_TYPE)dcenters[i][k];
             }
-        }
-
-
-        // compute kmeans clustering for each of the resulting clusters
-        node->childs = pool_.allocate<KMeansNodePtr>(branching);
-        int start = 0;
-        int end = start;
-        for (int c=0; c<branching; ++c) {
-            int s = count[c];
-
-            DistanceType variance = 0;
-            DistanceType mean_radius =0;
-            for (int i=0; i<indices_length; ++i) {
-                if (belongs_to[i]==c) {
-                    DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_);
-                    variance += d;
-                    mean_radius += sqrt(d);
+               }
+
+
+               // compute kmeans clustering for each of the resulting clusters
+               node->childs = pool.allocate<KMeansNode>(branching);
+               int start = 0;
+               int end = start;
+               for (int c=0;c<branching;++c) {
+                       int s = count[c];
+
+                       double variance = 0;
+                   double mean_radius =0;
+                       for (int i=0;i<indices_length;++i) {
+                               if (belongs_to[i]==c) {
+                                       double d = flann_dist(dataset[indices[i]],dataset[indices[i]]+veclen_,zero());
+                                       variance += d;
+                                       mean_radius += sqrt(d);
                     std::swap(indices[i],indices[end]);
                     std::swap(belongs_to[i],belongs_to[end]);
-                    end++;
-                }
-            }
-            variance /= s;
-            mean_radius /= s;
-            variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_);
-
-            node->childs[c] = pool_.allocate<KMeansNode>();
-            node->childs[c]->radius = radiuses[c];
-            node->childs[c]->pivot = centers[c];
-            node->childs[c]->variance = variance;
-            node->childs[c]->mean_radius = mean_radius;
-            node->childs[c]->indices = NULL;
-            computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
-            start=end;
-        }
-
-        delete[] dcenters.data;
-        delete[] centers;
-        delete[] radiuses;
-        delete[] count;
-        delete[] belongs_to;
-    }
-
-
-
-    /**
-     * Performs one descent in the hierarchical k-means tree. The branches not
-     * visited are stored in a priority queue.
+                                       end++;
+                               }
+                       }
+                       variance /= s;
+                       mean_radius /= s;
+                       variance -= flann_dist(centers[c],centers[c]+veclen_,zero());
+
+                       node->childs[c] = pool.allocate<KMeansNodeSt>();
+                       node->childs[c]->radius = radiuses[c];
+                       node->childs[c]->pivot = centers[c];
+                       node->childs[c]->variance = (float)variance;
+                       node->childs[c]->mean_radius = (float)mean_radius;
+                       node->childs[c]->indices = NULL;
+                       computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
+                       start=end;
+               }
+
+               delete[] dcenters.data;
+               delete[] centers;
+               delete[] radiuses;
+               delete[] count;
+               delete[] belongs_to;
+       }
+
+
+
+       /**
+        * Performs one descent in the hierarchical k-means tree. The branches not
+        * visited are stored in a priority queue.
      *
      * Params:
      *      node = node to explore
@@ -837,279 +898,218 @@ private:
      */
 
 
-    void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
-                Heap<BranchSt>* heap)
-    {
-        // Ignore those clusters that are too far away
-        {
-            DistanceType bsq = distance_(vec, node->pivot, veclen_);
-            DistanceType rsq = node->radius;
-            DistanceType wsq = result.worstDist();
-
-            DistanceType val = bsq-rsq-wsq;
-            DistanceType val2 = val*val-4*rsq*wsq;
-
-            //if (val>0) {
-            if ((val>0)&&(val2>0)) {
-                return;
-            }
-        }
+       void findNN(KMeansNode node, ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec, int& checks, int maxChecks,
+                       Heap<BranchSt>* heap)
+       {
+               // Ignore those clusters that are too far away
+               {
+                       DIST_TYPE bsq = (DIST_TYPE)flann_dist(vec, vec+veclen_, node->pivot);
+                       DIST_TYPE rsq = node->radius;
+                       DIST_TYPE wsq = result.worstDist();
+
+                       DIST_TYPE val = bsq-rsq-wsq;
+                       DIST_TYPE val2 = val*val-4*rsq*wsq;
+
+                       //if (val>0) {
+                       if (val>0 && val2>0) {
+                               return;
+                       }
+               }
 
-        if (node->childs==NULL) {
+               if (node->childs==NULL) {
             if (checks>=maxChecks) {
                 if (result.full()) return;
             }
             checks += node->size;
-            for (int i=0; i<node->size; ++i) {
-                int index = node->indices[i];
-                DistanceType dist = distance_(dataset_[index], vec, veclen_);
-                result.addPoint(dist, index);
-            }
-        }
-        else {
-            DistanceType* domain_distances = new DistanceType[branching_];
-            int closest_center = exploreNodeBranches(node, vec, domain_distances, heap);
-            delete[] domain_distances;
-            findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap);
-        }
-    }
-
-    /**
-     * Helper function that computes the nearest childs of a node to a given query point.
-     * Params:
-     *     node = the node
-     *     q = the query point
-     *     distances = array with the distances to each child node.
-     * Returns:
-     */
-    int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, Heap<BranchSt>* heap)
-    {
-
-        int best_index = 0;
-        domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_);
-        for (int i=1; i<branching_; ++i) {
-            domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_);
-            if (domain_distances[i]<domain_distances[best_index]) {
-                best_index = i;
-            }
-        }
-
-        //             float* best_center = node->childs[best_index]->pivot;
-        for (int i=0; i<branching_; ++i) {
-            if (i != best_index) {
-                domain_distances[i] -= cb_index_*node->childs[i]->variance;
-
-                //                             float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q);
-                //                             if (domain_distances[i]<dist_to_border) {
-                //                                     domain_distances[i] = dist_to_border;
-                //                             }
-                heap->insert(BranchSt(node->childs[i],domain_distances[i]));
-            }
-        }
-
-        return best_index;
-    }
-
-
-    /**
-     * Function the performs exact nearest neighbor search by traversing the entire tree.
-     */
-    void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec)
-    {
-        // Ignore those clusters that are too far away
-        {
-            DistanceType bsq = distance_(vec, node->pivot, veclen_);
-            DistanceType rsq = node->radius;
-            DistanceType wsq = result.worstDist();
-
-            DistanceType val = bsq-rsq-wsq;
-            DistanceType val2 = val*val-4*rsq*wsq;
-
-            //                  if (val>0) {
-            if ((val>0)&&(val2>0)) {
-                return;
-            }
-        }
-
-
-        if (node->childs==NULL) {
-            for (int i=0; i<node->size; ++i) {
-                int index = node->indices[i];
-                DistanceType dist = distance_(dataset_[index], vec, veclen_);
-                result.addPoint(dist, index);
-            }
-        }
-        else {
-            int* sort_indices = new int[branching_];
-
-            getCenterOrdering(node, vec, sort_indices);
-
-            for (int i=0; i<branching_; ++i) {
-                findExactNN(node->childs[sort_indices[i]],result,vec);
-            }
-
-            delete[] sort_indices;
-        }
-    }
-
-
-    /**
-     * Helper function.
-     *
-     * I computes the order in which to traverse the child nodes of a particular node.
-     */
-    void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices)
-    {
-        DistanceType* domain_distances = new DistanceType[branching_];
-        for (int i=0; i<branching_; ++i) {
-            DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_);
-
-            int j=0;
-            while (domain_distances[j]<dist && j<i) j++;
-            for (int k=i; k>j; --k) {
-                domain_distances[k] = domain_distances[k-1];
-                sort_indices[k] = sort_indices[k-1];
-            }
-            domain_distances[j] = dist;
-            sort_indices[j] = i;
-        }
-        delete[] domain_distances;
-    }
-
-    /**
-     * Method that computes the squared distance from the query point q
-     * from inside region with center c to the border between this
-     * region and the region with center p
-     */
-    DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q)
-    {
-        DistanceType sum = 0;
-        DistanceType sum2 = 0;
-
-        for (int i=0; i<veclen_; ++i) {
-            DistanceType t = c[i]-p[i];
-            sum += t*(q[i]-(c[i]+p[i])/2);
-            sum2 += t*t;
-        }
-
-        return sum*sum/sum2;
-    }
-
-
-    /**
-     * Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize
-     * the overall variance of the clustering.
-     * Params:
-     *     root = root node
-     *     clusters = array with clusters centers (return value)
-     *     varianceValue = variance of the clustering (return value)
-     * Returns:
-     */
-    int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue)
-    {
-        int clusterCount = 1;
-        clusters[0] = root;
-
-        DistanceType meanVariance = root->variance*root->size;
-
-        while (clusterCount<clusters_length) {
-            DistanceType minVariance = (std::numeric_limits<DistanceType>::max)();
-            int splitIndex = -1;
-
-            for (int i=0; i<clusterCount; ++i) {
-                if (clusters[i]->childs != NULL) {
-
-                    DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size;
-
-                    for (int j=0; j<branching_; ++j) {
-                        variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size;
-                    }
-                    if (variance<minVariance) {
-                        minVariance = variance;
-                        splitIndex = i;
-                    }
-                }
-            }
-
-            if (splitIndex==-1) break;
-            if ( (branching_+clusterCount-1) > clusters_length) break;
-
-            meanVariance = minVariance;
-
-            // split node
-            KMeansNodePtr toSplit = clusters[splitIndex];
-            clusters[splitIndex] = toSplit->childs[0];
-            for (int i=1; i<branching_; ++i) {
-                clusters[clusterCount++] = toSplit->childs[i];
-            }
-        }
-
-        varianceValue = meanVariance/root->size;
-        return clusterCount;
-    }
-
-private:
-    /** The branching factor used in the hierarchical k-means clustering */
-    int branching_;
-
-    /** Maximum number of iterations to use when performing k-means clustering */
-    int iterations_;
-
-    /** Algorithm for choosing the cluster centers */
-    flann_centers_init_t centers_init_;
-
-    /**
-     * Cluster border index. This is used in the tree search phase when determining
-     * the closest cluster to explore next. A zero value takes into account only
-     * the cluster centres, a value greater then zero also take into account the size
-     * of the cluster.
-     */
-    float cb_index_;
-
-    /**
-     * The dataset used by this index
-     */
-    const Matrix<ElementType> dataset_;
-
-    /** Index parameters */
-    IndexParams index_params_;
-
-    /**
-     * Number of features in the dataset.
-     */
-    size_t size_;
-
-    /**
-     * Length of each feature.
-     */
-    size_t veclen_;
-
-    /**
-     * The root node in the tree.
-     */
-    KMeansNodePtr root_;
-
-    /**
-     *  Array of indices to vectors in the dataset.
-     */
-    int* indices_;
+                       for (int i=0;i<node->size;++i) {
+                               result.addPoint(dataset[node->indices[i]], node->indices[i]);
+                       }
+               }
+               else {
+                       float* domain_distances = new float[branching];
+                       int closest_center = exploreNodeBranches(node, vec, domain_distances, heap);
+                       delete[] domain_distances;
+                       findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap);
+               }
+       }
+
+       /**
+        * Helper function that computes the nearest childs of a node to a given query point.
+        * Params:
+        *     node = the node
+        *     q = the query point
+        *     distances = array with the distances to each child node.
+        * Returns:
+        */
+       int exploreNodeBranches(KMeansNode node, const ELEM_TYPE* q, float* domain_distances, Heap<BranchSt>* heap)
+       {
+
+               int best_index = 0;
+               domain_distances[best_index] = (float)flann_dist(q,q+veclen_,node->childs[best_index]->pivot);
+               for (int i=1;i<branching;++i) {
+                       domain_distances[i] = (float)flann_dist(q,q+veclen_,node->childs[i]->pivot);
+                       if (domain_distances[i]<domain_distances[best_index]) {
+                               best_index = i;
+                       }
+               }
+
+//             float* best_center = node->childs[best_index]->pivot;
+               for (int i=0;i<branching;++i) {
+                       if (i != best_index) {
+                               domain_distances[i] -= cb_index*node->childs[i]->variance;
+
+//                             float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q);
+//                             if (domain_distances[i]<dist_to_border) {
+//                                     domain_distances[i] = dist_to_border;
+//                             }
+                               heap->insert(BranchSt::make_branch(node->childs[i],domain_distances[i]));
+                       }
+               }
+
+               return best_index;
+       }
+
+
+       /**
+        * Function the performs exact nearest neighbor search by traversing the entire tree.
+        */
+       void findExactNN(KMeansNode node, ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec)
+       {
+               // Ignore those clusters that are too far away
+               {
+                       float bsq = (float)flann_dist(vec, vec+veclen_, node->pivot);
+                       float rsq = node->radius;
+                       float wsq = result.worstDist();
+
+                       float val = bsq-rsq-wsq;
+                       float val2 = val*val-4*rsq*wsq;
+
+       //              if (val>0) {
+                       if (val>0 && val2>0) {
+                               return;
+                       }
+               }
+
+
+               if (node->childs==NULL) {
+                       for (int i=0;i<node->size;++i) {
+                               result.addPoint(dataset[node->indices[i]], node->indices[i]);
+                       }
+               }
+               else {
+                       int* sort_indices = new int[branching];
+
+                       getCenterOrdering(node, vec, sort_indices);
+
+                       for (int i=0; i<branching; ++i) {
+                               findExactNN(node->childs[sort_indices[i]],result,vec);
+                       }
+
+                       delete[] sort_indices;
+               }
+       }
+
+
+       /**
+        * Helper function.
+        *
+        * I computes the order in which to traverse the child nodes of a particular node.
+        */
+       void getCenterOrdering(KMeansNode node, const ELEM_TYPE* q, int* sort_indices)
+       {
+               float* domain_distances = new float[branching];
+               for (int i=0;i<branching;++i) {
+                       float dist = (float)flann_dist(q, q+veclen_, node->childs[i]->pivot);
+
+                       int j=0;
+                       while (domain_distances[j]<dist && j<i) j++;
+                       for (int k=i;k>j;--k) {
+                               domain_distances[k] = domain_distances[k-1];
+                               sort_indices[k] = sort_indices[k-1];
+                       }
+                       domain_distances[j] = dist;
+                       sort_indices[j] = i;
+               }
+               delete[] domain_distances;
+       }
+
+       /**
+        * Method that computes the squared distance from the query point q
+        * from inside region with center c to the border between this
+        * region and the region with center p
+        */
+       float getDistanceToBorder(float* p, float* c, float* q)
+       {
+               float sum = 0;
+               float sum2 = 0;
+
+               for (int i=0;i<veclen_; ++i) {
+                       float t = c[i]-p[i];
+                       sum += t*(q[i]-(c[i]+p[i])/2);
+                       sum2 += t*t;
+               }
+
+               return sum*sum/sum2;
+       }
+
+
+       /**
+        * Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize
+        * the overall variance of the clustering.
+        * Params:
+        *     root = root node
+        *     clusters = array with clusters centers (return value)
+        *     varianceValue = variance of the clustering (return value)
+        * Returns:
+        */
+       int getMinVarianceClusters(KMeansNode root, KMeansNode* clusters, int clusters_length, float& varianceValue)
+       {
+               int clusterCount = 1;
+               clusters[0] = root;
+
+               float meanVariance = root->variance*root->size;
+
+               while (clusterCount<clusters_length) {
+                       float minVariance = (std::numeric_limits<float>::max)();
+                       int splitIndex = -1;
+
+                       for (int i=0;i<clusterCount;++i) {
+                               if (clusters[i]->childs != NULL) {
+
+                                       float variance = meanVariance - clusters[i]->variance*clusters[i]->size;
+
+                                       for (int j=0;j<branching;++j) {
+                                               variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size;
+                                       }
+                                       if (variance<minVariance) {
+                                               minVariance = variance;
+                                               splitIndex = i;
+                                       }
+                               }
+                       }
+
+                       if (splitIndex==-1) break;
+                       if ( (branching+clusterCount-1) > clusters_length) break;
+
+                       meanVariance = minVariance;
+
+                       // split node
+                       KMeansNode toSplit = clusters[splitIndex];
+                       clusters[splitIndex] = toSplit->childs[0];
+                       for (int i=1;i<branching;++i) {
+                               clusters[clusterCount++] = toSplit->childs[i];
+                       }
+               }
+
+               varianceValue = meanVariance/root->size;
+               return clusterCount;
+       }
+};
 
-    /**
-     * The distance
-     */
-    Distance distance_;
 
-    /**
-     * Pooled memory allocator.
-     */
-    PooledAllocator pool_;
 
-    /**
-     * Memory occupied by the index.
-     */
-    int memoryCounter_;
-};
+//register_index(KMEANS,KMeansTree)
 
-}
+} // namespace cvflann
 
-#endif //OPENCV_FLANN_KMEANS_INDEX_H_
+#endif //_OPENCV_KMEANSTREE_H_
index ecb99f2..3a17ade 100644 (file)
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef OPENCV_FLANN_LINEAR_INDEX_H_
-#define OPENCV_FLANN_LINEAR_INDEX_H_
+#ifndef _OPENCV_LINEARSEARCH_H_
+#define _OPENCV_LINEARSEARCH_H_
+
+#include "opencv2/flann/general.h"
+#include "opencv2/flann/nn_index.h"
 
-#include "general.h"
-#include "nn_index.h"
 
 namespace cvflann
 {
 
-struct LinearIndexParams : public IndexParams
-{
-    LinearIndexParams()
-    {
-        (* this)["algorithm"] = FLANN_INDEX_LINEAR;
-    }
+struct CV_EXPORTS LinearIndexParams : public IndexParams {
+       LinearIndexParams() : IndexParams(FLANN_INDEX_LINEAR) {};
+
+       void print() const
+       {
+               logger().info("Index type: %d\n",(int)algorithm);
+       }
 };
 
-template <typename Distance>
-class LinearIndex : public NNIndex<Distance>
-{
-public:
 
-    typedef typename Distance::ElementType ElementType;
-    typedef typename Distance::ResultType DistanceType;
+template <typename ELEM_TYPE, typename DIST_TYPE = typename DistType<ELEM_TYPE>::type >
+class LinearIndex : public NNIndex<ELEM_TYPE>
+{
+       const Matrix<ELEM_TYPE> dataset;
+       const LinearIndexParams& index_params;
 
+       LinearIndex(const LinearIndex&);
+       LinearIndex& operator=(const LinearIndex&);
 
-    LinearIndex(const Matrix<ElementType>& inputData, const IndexParams& params = LinearIndexParams(),
-                Distance d = Distance()) :
-        dataset_(inputData), index_params_(params), distance_(d)
-    {
-    }
+public:
 
-    LinearIndex(const LinearIndex&);
-    LinearIndex& operator=(const LinearIndex&);
+       LinearIndex(const Matrix<ELEM_TYPE>& inputData, const LinearIndexParams& params = LinearIndexParams() ) :
+               dataset(inputData), index_params(params)
+       {
+       }
 
     flann_algorithm_t getType() const
     {
@@ -69,64 +70,52 @@ public:
     }
 
 
-    size_t size() const
-    {
-        return dataset_.rows;
-    }
+       size_t size() const
+       {
+               return dataset.rows;
+       }
 
-    size_t veclen() const
-    {
-        return dataset_.cols;
-    }
+       size_t veclen() const
+       {
+               return dataset.cols;
+       }
 
 
-    int usedMemory() const
-    {
-        return 0;
-    }
+       int usedMemory() const
+       {
+               return 0;
+       }
 
-    void buildIndex()
-    {
-        /* nothing to do here for linear search */
-    }
+       void buildIndex()
+       {
+               /* nothing to do here for linear search */
+       }
 
     void saveIndex(FILE*)
     {
-        /* nothing to do here for linear search */
+               /* nothing to do here for linear search */
     }
 
 
     void loadIndex(FILE*)
     {
-        /* nothing to do here for linear search */
-
-        index_params_["algorithm"] = getType();
-    }
-
-    void findNeighbors(ResultSet<DistanceType>& resultSet, const ElementType* vec, const SearchParams& /*searchParams*/)
-    {
-        ElementType* data = dataset_.data;
-        for (size_t i = 0; i < dataset_.rows; ++i, data += dataset_.cols) {
-            DistanceType dist = distance_(data, vec, dataset_.cols);
-            resultSet.addPoint(dist, i);
-        }
+               /* nothing to do here for linear search */
     }
 
-    IndexParams getParameters() const
-    {
-        return index_params_;
-    }
+       void findNeighbors(ResultSet<ELEM_TYPE>& resultSet, const ELEM_TYPE*, const SearchParams&)
+       {
+               for (size_t i=0;i<dataset.rows;++i) {
+                       resultSet.addPoint(dataset[i],(int)i);
+               }
+       }
 
-private:
-    /** The dataset */
-    const Matrix<ElementType> dataset_;
-    /** Index parameters */
-    IndexParams index_params_;
-    /** Index distance */
-    Distance distance_;
+       const IndexParams* getParameters() const
+       {
+               return &index_params;
+       }
 
 };
 
-}
+} // namespace cvflann
 
-#endif // OPENCV_FLANN_LINEAR_INDEX_H_
+#endif // _OPENCV_LINEARSEARCH_H_
index 303f0c9..979756d 100644 (file)
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef FLANN_LOGGER_H
-#define FLANN_LOGGER_H
+#ifndef _OPENCV_LOGGER_H_
+#define _OPENCV_LOGGER_H_
 
-#include <stdio.h>
+#include <cstdio>
 #include <stdarg.h>
 
-#include "defines.h"
-
-
 namespace cvflann
 {
-
-class Logger
+    
+enum flann_log_level_t {
+    FLANN_LOG_NONE = 0,
+    FLANN_LOG_FATAL = 1,
+    FLANN_LOG_ERROR = 2,
+    FLANN_LOG_WARN = 3,
+    FLANN_LOG_INFO = 4
+};
+    
+class CV_EXPORTS Logger
 {
-    Logger() : stream(stdout), logLevel(FLANN_LOG_WARN) {}
+    FILE* stream;
+    int logLevel;
+
+public:
+
+    Logger() : stream(stdout), logLevel(FLANN_LOG_WARN) {};
 
     ~Logger()
     {
-        if ((stream!=NULL)&&(stream!=stdout)) {
+        if (stream!=NULL && stream!=stdout) {
             fclose(stream);
         }
     }
 
-    static Logger& instance()
-    {
-        static Logger logger;
-        return logger;
-    }
-
-    void _setDestination(const char* name)
+    void setDestination(const char* name)
     {
         if (name==NULL) {
             stream = stdout;
@@ -70,61 +74,23 @@ class Logger
         }
     }
 
-    int _log(int level, const char* fmt, va_list arglist)
-    {
-        if (level > logLevel ) return -1;
-        int ret = vfprintf(stream, fmt, arglist);
-        return ret;
-    }
+    void setLevel(int level) { logLevel = level; }
 
-public:
-    /**
-     * Sets the logging level. All messages with lower priority will be ignored.
-     * @param level Logging level
-     */
-    static void setLevel(int level) { instance().logLevel = level; }
-
-    /**
-     * Sets the logging destination
-     * @param name Filename or NULL for console
-     */
-    static void setDestination(const char* name) { instance()._setDestination(name); }
-
-    /**
-     * Print log message
-     * @param level Log level
-     * @param fmt Message format
-     * @return
-     */
-    static int log(int level, const char* fmt, ...)
-    {
-        va_list arglist;
-        va_start(arglist, fmt);
-        int ret = instance()._log(level,fmt,arglist);
-        va_end(arglist);
-        return ret;
-    }
+    int log(int level, const char* fmt, ...);
 
-#define LOG_METHOD(NAME,LEVEL) \
-    static int NAME(const char* fmt, ...) \
-    { \
-        va_list ap; \
-        va_start(ap, fmt); \
-        int ret = instance()._log(LEVEL, fmt, ap); \
-        va_end(ap); \
-        return ret; \
-    }
+    int log(int level, const char* fmt, va_list arglist);
 
-    LOG_METHOD(fatal, FLANN_LOG_FATAL)
-    LOG_METHOD(error, FLANN_LOG_ERROR)
-    LOG_METHOD(warn, FLANN_LOG_WARN)
-    LOG_METHOD(info, FLANN_LOG_INFO)
+    int fatal(const char* fmt, ...);
 
-private:
-    FILE* stream;
-    int logLevel;
+    int error(const char* fmt, ...);
+
+    int warn(const char* fmt, ...);
+
+    int info(const char* fmt, ...);
 };
 
-}
+CV_EXPORTS Logger& logger();
+
+} // namespace cvflann
 
-#endif //FLANN_LOGGER_H
+#endif //_OPENCV_LOGGER_H_
diff --git a/modules/flann/include/opencv2/flann/lsh_index.h b/modules/flann/include/opencv2/flann/lsh_index.h
deleted file mode 100644 (file)
index a777990..0000000
+++ /dev/null
@@ -1,388 +0,0 @@
-/***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
- * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
- *
- * THE BSD LICENSE
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- *    notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice, this list of conditions and the following disclaimer in the
- *    documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
-
-/***********************************************************************
- * Author: Vincent Rabaud
- *************************************************************************/
-
-#ifndef OPENCV_FLANN_LSH_INDEX_H_
-#define OPENCV_FLANN_LSH_INDEX_H_
-
-#include <algorithm>
-#include <cassert>
-#include <cstring>
-#include <map>
-#include <vector>
-
-#include "general.h"
-#include "nn_index.h"
-#include "matrix.h"
-#include "result_set.h"
-#include "heap.h"
-#include "lsh_table.h"
-#include "allocator.h"
-#include "random.h"
-#include "saving.h"
-
-namespace cvflann
-{
-
-struct LshIndexParams : public IndexParams
-{
-    LshIndexParams(unsigned int table_number, unsigned int key_size, unsigned int multi_probe_level)
-    {
-        (* this)["algorithm"] = FLANN_INDEX_LSH;
-        // The number of hash tables to use
-        (*this)["table_number"] = table_number;
-        // The length of the key in the hash tables
-        (*this)["key_size"] = key_size;
-        // Number of levels to use in multi-probe (0 for standard LSH)
-        (*this)["multi_probe_level"] = multi_probe_level;
-    }
-};
-
-/**
- * Randomized kd-tree index
- *
- * Contains the k-d trees and other information for indexing a set of points
- * for nearest-neighbor matching.
- */
-template<typename Distance>
-class LshIndex : public NNIndex<Distance>
-{
-public:
-    typedef typename Distance::ElementType ElementType;
-    typedef typename Distance::ResultType DistanceType;
-
-    /** Constructor
-     * @param input_data dataset with the input features
-     * @param params parameters passed to the LSH algorithm
-     * @param d the distance used
-     */
-    LshIndex(const Matrix<ElementType>& input_data, const IndexParams& params = LshIndexParams(),
-             Distance d = Distance()) :
-        dataset_(input_data), index_params_(params), distance_(d)
-    {
-        table_number_ = get_param<unsigned int>(index_params_,"table_number",12);
-        key_size_ = get_param<unsigned int>(index_params_,"key_size",20);
-        multi_probe_level_ = get_param<unsigned int>(index_params_,"multi_probe_level",2);
-
-        feature_size_ = dataset_.cols;
-        fill_xor_mask(0, key_size_, multi_probe_level_, xor_masks_);
-    }
-
-
-    LshIndex(const LshIndex&);
-    LshIndex& operator=(const LshIndex&);
-
-    /**
-     * Builds the index
-     */
-    void buildIndex()
-    {
-        tables_.resize(table_number_);
-        for (unsigned int i = 0; i < table_number_; ++i) {
-            lsh::LshTable<ElementType>& table = tables_[i];
-            table = lsh::LshTable<ElementType>(feature_size_, key_size_);
-
-            // Add the features to the table
-            table.add(dataset_);
-        }
-    }
-
-    flann_algorithm_t getType() const
-    {
-        return FLANN_INDEX_LSH;
-    }
-
-
-    void saveIndex(FILE* stream)
-    {
-        save_value(stream,table_number_);
-        save_value(stream,key_size_);
-        save_value(stream,multi_probe_level_);
-        save_value(stream, dataset_);
-    }
-
-    void loadIndex(FILE* stream)
-    {
-        load_value(stream, table_number_);
-        load_value(stream, key_size_);
-        load_value(stream, multi_probe_level_);
-        load_value(stream, dataset_);
-        // Building the index is so fast we can afford not storing it
-        buildIndex();
-
-        index_params_["algorithm"] = getType();
-        index_params_["table_number"] = table_number_;
-        index_params_["key_size"] = key_size_;
-        index_params_["multi_probe_level"] = multi_probe_level_;
-    }
-
-    /**
-     *  Returns size of index.
-     */
-    size_t size() const
-    {
-        return dataset_.rows;
-    }
-
-    /**
-     * Returns the length of an index feature.
-     */
-    size_t veclen() const
-    {
-        return feature_size_;
-    }
-
-    /**
-     * Computes the index memory usage
-     * Returns: memory used by the index
-     */
-    int usedMemory() const
-    {
-        return dataset_.rows * sizeof(int);
-    }
-
-
-    IndexParams getParameters() const
-    {
-        return index_params_;
-    }
-
-    /**
-     * \brief Perform k-nearest neighbor search
-     * \param[in] queries The query points for which to find the nearest neighbors
-     * \param[out] indices The indices of the nearest neighbors found
-     * \param[out] dists Distances to the nearest neighbors found
-     * \param[in] knn Number of nearest neighbors to return
-     * \param[in] params Search parameters
-     */
-    virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
-    {
-        assert(queries.cols == veclen());
-        assert(indices.rows >= queries.rows);
-        assert(dists.rows >= queries.rows);
-        assert(int(indices.cols) >= knn);
-        assert(int(dists.cols) >= knn);
-
-
-        KNNUniqueResultSet<DistanceType> resultSet(knn);
-        for (size_t i = 0; i < queries.rows; i++) {
-            resultSet.clear();
-            findNeighbors(resultSet, queries[i], params);
-            if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn);
-            else resultSet.copy(indices[i], dists[i], knn);
-        }
-    }
-
-
-    /**
-     * Find set of nearest neighbors to vec. Their indices are stored inside
-     * the result object.
-     *
-     * Params:
-     *     result = the result object in which the indices of the nearest-neighbors are stored
-     *     vec = the vector for which to search the nearest neighbors
-     *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
-     */
-    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& /*searchParams*/)
-    {
-        getNeighbors(vec, result);
-    }
-
-private:
-    /** Defines the comparator on score and index
-     */
-    typedef std::pair<float, unsigned int> ScoreIndexPair;
-    struct SortScoreIndexPairOnSecond
-    {
-        bool operator()(const ScoreIndexPair& left, const ScoreIndexPair& right) const
-        {
-            return left.second < right.second;
-        }
-    };
-
-    /** Fills the different xor masks to use when getting the neighbors in multi-probe LSH
-     * @param key the key we build neighbors from
-     * @param lowest_index the lowest index of the bit set
-     * @param level the multi-probe level we are at
-     * @param xor_masks all the xor mask
-     */
-    void fill_xor_mask(lsh::BucketKey key, int lowest_index, unsigned int level,
-                       std::vector<lsh::BucketKey>& xor_masks)
-    {
-        xor_masks.push_back(key);
-        if (level == 0) return;
-        for (int index = lowest_index - 1; index >= 0; --index) {
-            // Create a new key
-            lsh::BucketKey new_key = key | (1 << index);
-            fill_xor_mask(new_key, index, level - 1, xor_masks);
-        }
-    }
-
-    /** Performs the approximate nearest-neighbor search.
-     * @param vec the feature to analyze
-     * @param do_radius flag indicating if we check the radius too
-     * @param radius the radius if it is a radius search
-     * @param do_k flag indicating if we limit the number of nn
-     * @param k_nn the number of nearest neighbors
-     * @param checked_average used for debugging
-     */
-    void getNeighbors(const ElementType* vec, bool do_radius, float radius, bool do_k, unsigned int k_nn,
-                      float& checked_average)
-    {
-        static std::vector<ScoreIndexPair> score_index_heap;
-
-        if (do_k) {
-            unsigned int worst_score = std::numeric_limits<unsigned int>::max();
-            typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
-            typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
-            for (; table != table_end; ++table) {
-                size_t key = table->getKey(vec);
-                std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
-                std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
-                for (; xor_mask != xor_mask_end; ++xor_mask) {
-                    size_t sub_key = key ^ (*xor_mask);
-                    const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
-                    if (bucket == 0) continue;
-
-                    // Go over each descriptor index
-                    std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
-                    std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
-                    DistanceType hamming_distance;
-
-                    // Process the rest of the candidates
-                    for (; training_index < last_training_index; ++training_index) {
-                        hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
-
-                        if (hamming_distance < worst_score) {
-                            // Insert the new element
-                            score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
-                            std::push_heap(score_index_heap.begin(), score_index_heap.end());
-
-                            if (score_index_heap.size() > (unsigned int)k_nn) {
-                                // Remove the highest distance value as we have too many elements
-                                std::pop_heap(score_index_heap.begin(), score_index_heap.end());
-                                score_index_heap.pop_back();
-                                // Keep track of the worst score
-                                worst_score = score_index_heap.front().first;
-                            }
-                        }
-                    }
-                }
-            }
-        }
-        else {
-            typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
-            typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
-            for (; table != table_end; ++table) {
-                size_t key = table->getKey(vec);
-                std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
-                std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
-                for (; xor_mask != xor_mask_end; ++xor_mask) {
-                    size_t sub_key = key ^ (*xor_mask);
-                    const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
-                    if (bucket == 0) continue;
-
-                    // Go over each descriptor index
-                    std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
-                    std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
-                    DistanceType hamming_distance;
-
-                    // Process the rest of the candidates
-                    for (; training_index < last_training_index; ++training_index) {
-                        // Compute the Hamming distance
-                        hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
-                        if (hamming_distance < radius) score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
-                    }
-                }
-            }
-        }
-    }
-
-    /** Performs the approximate nearest-neighbor search.
-     * This is a slower version than the above as it uses the ResultSet
-     * @param vec the feature to analyze
-     */
-    void getNeighbors(const ElementType* vec, ResultSet<DistanceType>& result)
-    {
-        typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
-        typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
-        for (; table != table_end; ++table) {
-            size_t key = table->getKey(vec);
-            std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
-            std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
-            for (; xor_mask != xor_mask_end; ++xor_mask) {
-                size_t sub_key = key ^ (*xor_mask);
-                const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
-                if (bucket == 0) continue;
-
-                // Go over each descriptor index
-                std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
-                std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
-                DistanceType hamming_distance;
-
-                // Process the rest of the candidates
-                for (; training_index < last_training_index; ++training_index) {
-                    // Compute the Hamming distance
-                    hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
-                    result.addPoint(hamming_distance, *training_index);
-                }
-            }
-        }
-    }
-
-    /** The different hash tables */
-    std::vector<lsh::LshTable<ElementType> > tables_;
-
-    /** The data the LSH tables where built from */
-    Matrix<ElementType> dataset_;
-
-    /** The size of the features (as ElementType[]) */
-    unsigned int feature_size_;
-
-    IndexParams index_params_;
-
-    /** table number */
-    unsigned int table_number_;
-    /** key size */
-    unsigned int key_size_;
-    /** How far should we look for neighbors in multi-probe LSH */
-    unsigned int multi_probe_level_;
-
-    /** The XOR masks to apply to a key to get the neighboring buckets */
-    std::vector<lsh::BucketKey> xor_masks_;
-
-    Distance distance_;
-};
-}
-
-#endif //OPENCV_FLANN_LSH_INDEX_H_
diff --git a/modules/flann/include/opencv2/flann/lsh_table.h b/modules/flann/include/opencv2/flann/lsh_table.h
deleted file mode 100644 (file)
index c74baab..0000000
+++ /dev/null
@@ -1,477 +0,0 @@
-/***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
- * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
- *
- * THE BSD LICENSE
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- *    notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice, this list of conditions and the following disclaimer in the
- *    documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
-
-/***********************************************************************
- * Author: Vincent Rabaud
- *************************************************************************/
-
-#ifndef OPENCV_FLANN_LSH_TABLE_H_
-#define OPENCV_FLANN_LSH_TABLE_H_
-
-#include <algorithm>
-#include <iostream>
-#include <iomanip>
-#include <limits.h>
-// TODO as soon as we use C++0x, use the code in USE_UNORDERED_MAP
-#if USE_UNORDERED_MAP
-#include <unordered_map>
-#else
-#include <map>
-#endif
-#include <math.h>
-#include <stddef.h>
-
-#include "dynamic_bitset.h"
-#include "matrix.h"
-
-namespace cvflann
-{
-
-namespace lsh
-{
-
-////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-
-/** What is stored in an LSH bucket
- */
-typedef uint32_t FeatureIndex;
-/** The id from which we can get a bucket back in an LSH table
- */
-typedef unsigned int BucketKey;
-
-/** A bucket in an LSH table
- */
-typedef std::vector<FeatureIndex> Bucket;
-
-////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-
-/** POD for stats about an LSH table
- */
-struct LshStats
-{
-    std::vector<unsigned int> bucket_sizes_;
-    size_t n_buckets_;
-    size_t bucket_size_mean_;
-    size_t bucket_size_median_;
-    size_t bucket_size_min_;
-    size_t bucket_size_max_;
-    size_t bucket_size_std_dev;
-    /** Each contained vector contains three value: beginning/end for interval, number of elements in the bin
-     */
-    std::vector<std::vector<unsigned int> > size_histogram_;
-};
-
-/** Overload the << operator for LshStats
- * @param out the streams
- * @param stats the stats to display
- * @return the streams
- */
-inline std::ostream& operator <<(std::ostream& out, const LshStats& stats)
-{
-    size_t w = 20;
-    out << "Lsh Table Stats:\n" << std::setw(w) << std::setiosflags(std::ios::right) << "N buckets : "
-    << stats.n_buckets_ << "\n" << std::setw(w) << std::setiosflags(std::ios::right) << "mean size : "
-    << std::setiosflags(std::ios::left) << stats.bucket_size_mean_ << "\n" << std::setw(w)
-    << std::setiosflags(std::ios::right) << "median size : " << stats.bucket_size_median_ << "\n" << std::setw(w)
-    << std::setiosflags(std::ios::right) << "min size : " << std::setiosflags(std::ios::left)
-    << stats.bucket_size_min_ << "\n" << std::setw(w) << std::setiosflags(std::ios::right) << "max size : "
-    << std::setiosflags(std::ios::left) << stats.bucket_size_max_;
-
-    // Display the histogram
-    out << std::endl << std::setw(w) << std::setiosflags(std::ios::right) << "histogram : "
-    << std::setiosflags(std::ios::left);
-    for (std::vector<std::vector<unsigned int> >::const_iterator iterator = stats.size_histogram_.begin(), end =
-             stats.size_histogram_.end(); iterator != end; ++iterator) out << (*iterator)[0] << "-" << (*iterator)[1] << ": " << (*iterator)[2] << ",  ";
-
-    return out;
-}
-
-
-////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-
-/** Lsh hash table. As its key is a sub-feature, and as usually
- * the size of it is pretty small, we keep it as a continuous memory array.
- * The value is an index in the corpus of features (we keep it as an unsigned
- * int for pure memory reasons, it could be a size_t)
- */
-template<typename ElementType>
-class LshTable
-{
-public:
-    /** A container of all the feature indices. Optimized for space
-     */
-#if USE_UNORDERED_MAP
-    typedef std::unordered_map<BucketKey, Bucket> BucketsSpace;
-#else
-    typedef std::map<BucketKey, Bucket> BucketsSpace;
-#endif
-
-    /** A container of all the feature indices. Optimized for speed
-     */
-    typedef std::vector<Bucket> BucketsSpeed;
-
-    /** Default constructor
-     */
-    LshTable()
-    {
-    }
-
-    /** Default constructor
-     * Create the mask and allocate the memory
-     * @param feature_size is the size of the feature (considered as a ElementType[])
-     * @param key_size is the number of bits that are turned on in the feature
-     */
-    LshTable(unsigned int /*feature_size*/, unsigned int /*key_size*/)
-    {
-        std::cerr << "LSH is not implemented for that type" << std::endl;
-        throw;
-    }
-
-    /** Add a feature to the table
-     * @param value the value to store for that feature
-     * @param feature the feature itself
-     */
-    void add(unsigned int value, const ElementType* feature)
-    {
-        // Add the value to the corresponding bucket
-        BucketKey key = getKey(feature);
-
-        switch (speed_level_) {
-        case kArray:
-            // That means we get the buckets from an array
-            buckets_speed_[key].push_back(value);
-            break;
-        case kBitsetHash:
-            // That means we can check the bitset for the presence of a key
-            key_bitset_.set(key);
-            buckets_space_[key].push_back(value);
-            break;
-        case kHash:
-        {
-            // That means we have to check for the hash table for the presence of a key
-            buckets_space_[key].push_back(value);
-            break;
-        }
-        }
-    }
-
-    /** Add a set of features to the table
-     * @param dataset the values to store
-     */
-    void add(Matrix<ElementType> dataset)
-    {
-#if USE_UNORDERED_MAP
-        if (!use_speed_) buckets_space_.rehash((buckets_space_.size() + dataset.rows) * 1.2);
-#endif
-        // Add the features to the table
-        for (unsigned int i = 0; i < dataset.rows; ++i) add(i, dataset[i]);
-        // Now that the table is full, optimize it for speed/space
-        optimize();
-    }
-
-    /** Get a bucket given the key
-     * @param key
-     * @return
-     */
-    inline const Bucket* getBucketFromKey(BucketKey key) const
-    {
-        // Generate other buckets
-        switch (speed_level_) {
-        case kArray:
-            // That means we get the buckets from an array
-            return &buckets_speed_[key];
-            break;
-        case kBitsetHash:
-            // That means we can check the bitset for the presence of a key
-            if (key_bitset_.test(key)) return &buckets_space_.at(key);
-            else return 0;
-            break;
-        case kHash:
-        {
-            // That means we have to check for the hash table for the presence of a key
-            BucketsSpace::const_iterator bucket_it, bucket_end = buckets_space_.end();
-            bucket_it = buckets_space_.find(key);
-            // Stop here if that bucket does not exist
-            if (bucket_it == bucket_end) return 0;
-            else return &bucket_it->second;
-            break;
-        }
-        }
-        return 0;
-    }
-
-    /** Compute the sub-signature of a feature
-     */
-    size_t getKey(const ElementType* /*feature*/) const
-    {
-        std::cerr << "LSH is not implemented for that type" << std::endl;
-        throw;
-        return 1;
-    }
-
-    /** Get statistics about the table
-     * @return
-     */
-    LshStats getStats() const;
-
-private:
-    /** defines the speed fo the implementation
-     * kArray uses a vector for storing data
-     * kBitsetHash uses a hash map but checks for the validity of a key with a bitset
-     * kHash uses a hash map only
-     */
-    enum SpeedLevel
-    {
-        kArray, kBitsetHash, kHash
-    };
-
-    /** Initialize some variables
-     */
-    void initialize(size_t key_size)
-    {
-        speed_level_ = kHash;
-        key_size_ = key_size;
-    }
-
-    /** Optimize the table for speed/space
-     */
-    void optimize()
-    {
-        // If we are already using the fast storage, no need to do anything
-        if (speed_level_ == kArray) return;
-
-        // Use an array if it will be more than half full
-        if (buckets_space_.size() > (unsigned int)((1 << key_size_) / 2)) {
-            speed_level_ = kArray;
-            // Fill the array version of it
-            buckets_speed_.resize(1 << key_size_);
-            for (BucketsSpace::const_iterator key_bucket = buckets_space_.begin(); key_bucket != buckets_space_.end(); ++key_bucket) buckets_speed_[key_bucket->first] = key_bucket->second;
-
-            // Empty the hash table
-            buckets_space_.clear();
-            return;
-        }
-
-        // If the bitset is going to use less than 10% of the RAM of the hash map (at least 1 size_t for the key and two
-        // for the vector) or less than 512MB (key_size_ <= 30)
-        if (((std::max(buckets_space_.size(), buckets_speed_.size()) * CHAR_BIT * 3 * sizeof(BucketKey)) / 10
-             >= size_t(1 << key_size_)) || (key_size_ <= 32)) {
-            speed_level_ = kBitsetHash;
-            key_bitset_.resize(1 << key_size_);
-            key_bitset_.reset();
-            // Try with the BucketsSpace
-            for (BucketsSpace::const_iterator key_bucket = buckets_space_.begin(); key_bucket != buckets_space_.end(); ++key_bucket) key_bitset_.set(key_bucket->first);
-        }
-        else {
-            speed_level_ = kHash;
-            key_bitset_.clear();
-        }
-    }
-
-    /** The vector of all the buckets if they are held for speed
-     */
-    BucketsSpeed buckets_speed_;
-
-    /** The hash table of all the buckets in case we cannot use the speed version
-     */
-    BucketsSpace buckets_space_;
-
-    /** What is used to store the data */
-    SpeedLevel speed_level_;
-
-    /** If the subkey is small enough, it will keep track of which subkeys are set through that bitset
-     * That is just a speedup so that we don't look in the hash table (which can be mush slower that checking a bitset)
-     */
-    DynamicBitset key_bitset_;
-
-    /** The size of the sub-signature in bits
-     */
-    unsigned int key_size_;
-
-    // Members only used for the unsigned char specialization
-    /** The mask to apply to a feature to get the hash key
-     * Only used in the unsigned char case
-     */
-    std::vector<size_t> mask_;
-};
-
-////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-// Specialization for unsigned char
-
-template<>
-inline LshTable<unsigned char>::LshTable(unsigned int feature_size, unsigned int subsignature_size)
-{
-    initialize(subsignature_size);
-    // Allocate the mask
-    mask_ = std::vector<size_t>((size_t)ceil((float)(feature_size * sizeof(char)) / (float)sizeof(size_t)), 0);
-
-    // A bit brutal but fast to code
-    std::vector<size_t> indices(feature_size * CHAR_BIT);
-    for (size_t i = 0; i < feature_size * CHAR_BIT; ++i) indices[i] = i;
-    std::random_shuffle(indices.begin(), indices.end());
-
-    // Generate a random set of order of subsignature_size_ bits
-    for (unsigned int i = 0; i < key_size_; ++i) {
-        size_t index = indices[i];
-
-        // Set that bit in the mask
-        size_t divisor = CHAR_BIT * sizeof(size_t);
-        size_t idx = index / divisor; //pick the right size_t index
-        mask_[idx] |= size_t(1) << (index % divisor); //use modulo to find the bit offset
-    }
-
-    // Set to 1 if you want to display the mask for debug
-#if 0
-    {
-        size_t bcount = 0;
-        BOOST_FOREACH(size_t mask_block, mask_){
-            out << std::setw(sizeof(size_t) * CHAR_BIT / 4) << std::setfill('0') << std::hex << mask_block
-                << std::endl;
-            bcount += __builtin_popcountll(mask_block);
-        }
-        out << "bit count : " << std::dec << bcount << std::endl;
-        out << "mask size : " << mask_.size() << std::endl;
-        return out;
-    }
-#endif
-}
-
-/** Return the Subsignature of a feature
- * @param feature the feature to analyze
- */
-template<>
-inline size_t LshTable<unsigned char>::getKey(const unsigned char* feature) const
-{
-    // no need to check if T is dividable by sizeof(size_t) like in the Hamming
-    // distance computation as we have a mask
-    const size_t* feature_block_ptr = reinterpret_cast<const size_t*> (feature);
-
-    // Figure out the subsignature of the feature
-    // Given the feature ABCDEF, and the mask 001011, the output will be
-    // 000CEF
-    size_t subsignature = 0;
-    size_t bit_index = 1;
-
-    for (std::vector<size_t>::const_iterator pmask_block = mask_.begin(); pmask_block != mask_.end(); ++pmask_block) {
-        // get the mask and signature blocks
-        size_t feature_block = *feature_block_ptr;
-        size_t mask_block = *pmask_block;
-        while (mask_block) {
-            // Get the lowest set bit in the mask block
-            size_t lowest_bit = mask_block & (-(ptrdiff_t)mask_block);
-            // Add it to the current subsignature if necessary
-            subsignature += (feature_block & lowest_bit) ? bit_index : 0;
-            // Reset the bit in the mask block
-            mask_block ^= lowest_bit;
-            // increment the bit index for the subsignature
-            bit_index <<= 1;
-        }
-        // Check the next feature block
-        ++feature_block_ptr;
-    }
-    return subsignature;
-}
-
-template<>
-inline LshStats LshTable<unsigned char>::getStats() const
-{
-    LshStats stats;
-    stats.bucket_size_mean_ = 0;
-    if ((buckets_speed_.empty()) && (buckets_space_.empty())) {
-        stats.n_buckets_ = 0;
-        stats.bucket_size_median_ = 0;
-        stats.bucket_size_min_ = 0;
-        stats.bucket_size_max_ = 0;
-        return stats;
-    }
-
-    if (!buckets_speed_.empty()) {
-        for (BucketsSpeed::const_iterator pbucket = buckets_speed_.begin(); pbucket != buckets_speed_.end(); ++pbucket) {
-            stats.bucket_sizes_.push_back(pbucket->size());
-            stats.bucket_size_mean_ += pbucket->size();
-        }
-        stats.bucket_size_mean_ /= buckets_speed_.size();
-        stats.n_buckets_ = buckets_speed_.size();
-    }
-    else {
-        for (BucketsSpace::const_iterator x = buckets_space_.begin(); x != buckets_space_.end(); ++x) {
-            stats.bucket_sizes_.push_back(x->second.size());
-            stats.bucket_size_mean_ += x->second.size();
-        }
-        stats.bucket_size_mean_ /= buckets_space_.size();
-        stats.n_buckets_ = buckets_space_.size();
-    }
-
-    std::sort(stats.bucket_sizes_.begin(), stats.bucket_sizes_.end());
-
-    //  BOOST_FOREACH(int size, stats.bucket_sizes_)
-    //          std::cout << size << " ";
-    //  std::cout << std::endl;
-    stats.bucket_size_median_ = stats.bucket_sizes_[stats.bucket_sizes_.size() / 2];
-    stats.bucket_size_min_ = stats.bucket_sizes_.front();
-    stats.bucket_size_max_ = stats.bucket_sizes_.back();
-
-    // TODO compute mean and std
-    /*float mean, stddev;
-       stats.bucket_size_mean_ = mean;
-       stats.bucket_size_std_dev = stddev;*/
-
-    // Include a histogram of the buckets
-    unsigned int bin_start = 0;
-    unsigned int bin_end = 20;
-    bool is_new_bin = true;
-    for (std::vector<unsigned int>::iterator iterator = stats.bucket_sizes_.begin(), end = stats.bucket_sizes_.end(); iterator
-         != end; )
-        if (*iterator < bin_end) {
-            if (is_new_bin) {
-                stats.size_histogram_.push_back(std::vector<unsigned int>(3, 0));
-                stats.size_histogram_.back()[0] = bin_start;
-                stats.size_histogram_.back()[1] = bin_end - 1;
-                is_new_bin = false;
-            }
-            ++stats.size_histogram_.back()[2];
-            ++iterator;
-        }
-        else {
-            bin_start += 20;
-            bin_end += 20;
-            is_new_bin = true;
-        }
-
-    return stats;
-}
-
-// End the two namespaces
-}
-}
-
-////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-
-#endif /* OPENCV_FLANN_LSH_TABLE_H_ */
index 51b6c63..170dc6d 100644 (file)
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef OPENCV_FLANN_DATASET_H_
-#define OPENCV_FLANN_DATASET_H_
+#ifndef _OPENCV_DATASET_H_
+#define _OPENCV_DATASET_H_
 
 #include <stdio.h>
 
-#include "general.h"
+#include "opencv2/flann/general.h"
 
-namespace cvflann
+
+namespace cvflann 
 {
 
 /**
- * Class that implements a simple rectangular matrix stored in a memory buffer and
- * provides convenient matrix-like access using the [] operators.
- */
+* Class that implements a simple rectangular matrix stored in a memory buffer and
+* provides convenient matrix-like access using the [] operators.
+*/
 template <typename T>
-class Matrix
-{
+class Matrix {
 public:
-    typedef T type;
-
     size_t rows;
     size_t cols;
-    size_t stride;
     T* data;
 
-    Matrix() : rows(0), cols(0), stride(0), data(NULL)
+    Matrix() : rows(0), cols(0), data(NULL)
     {
     }
 
-    Matrix(T* data_, size_t rows_, size_t cols_, size_t stride_ = 0) :
-        rows(rows_), cols(cols_),  stride(stride_), data(data_)
-    {
-        if (stride==0) stride = cols;
-    }
+    Matrix(T* data_, long rows_, long cols_) :
+        rows(rows_), cols(cols_), data(data_)
+       {
+       }
 
     /**
      * Convenience function for deallocating the storage data.
      */
-    FLANN_DEPRECATED void free()
+    void release()
     {
-        fprintf(stderr, "The cvflann::Matrix<T>::free() method is deprecated "
-                "and it does not do any memory deallocation any more.  You are"
-                "responsible for deallocating the matrix memory (by doing"
-                "'delete[] matrix.data' for example)");
+        if (data!=NULL) delete[] data;
     }
 
+       ~Matrix()
+       {
+       }
+
     /**
-     * Operator that return a (pointer to a) row of the data.
-     */
+    * Operator that return a (pointer to a) row of the data.
+    */
+    T* operator[](size_t index)
+    {
+        return data+index*cols;
+    }
+
     T* operator[](size_t index) const
     {
-        return data+index*stride;
+        return data+index*cols;
     }
 };
 
@@ -93,7 +95,7 @@ public:
     flann_datatype_t type;
 
     UntypedMatrix(void* data_, long rows_, long cols_) :
-        rows(rows_), cols(cols_), data(data_)
+        rows(rows_), cols(cols_), data(data_)
     {
     }
 
@@ -111,6 +113,6 @@ public:
 
 
 
-}
+} // namespace cvflann
 
-#endif //OPENCV_FLANN_DATASET_H_
+#endif //_OPENCV_DATASET_H_
index da4dd7f..081f9af 100644 (file)
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef FLANN_NNINDEX_H
-#define FLANN_NNINDEX_H
+#ifndef _OPENCV_NNINDEX_H_
+#define _OPENCV_NNINDEX_H_
 
 #include <string>
 
-#include "general.h"
-#include "matrix.h"
-#include "result_set.h"
-#include "params.h"
+#include "opencv2/flann/general.h"
+#include "opencv2/flann/matrix.h"
 
 namespace cvflann
 {
 
+
+template <typename ELEM_TYPE>
+class ResultSet;
+
 /**
- * Nearest-neighbour index base class
- */
-template <typename Distance>
+* Nearest-neighbour index base class
+*/
+template <typename ELEM_TYPE>
 class NNIndex
 {
-    typedef typename Distance::ElementType ElementType;
-    typedef typename Distance::ResultType DistanceType;
-
 public:
 
-    virtual ~NNIndex() {}
-
-    /**
-     * \brief Builds the index
-     */
-    virtual void buildIndex() = 0;
-
-    /**
-     * \brief Perform k-nearest neighbor search
-     * \param[in] queries The query points for which to find the nearest neighbors
-     * \param[out] indices The indices of the nearest neighbors found
-     * \param[out] dists Distances to the nearest neighbors found
-     * \param[in] knn Number of nearest neighbors to return
-     * \param[in] params Search parameters
-     */
-    virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
-    {
-        assert(queries.cols == veclen());
-        assert(indices.rows >= queries.rows);
-        assert(dists.rows >= queries.rows);
-        assert(int(indices.cols) >= knn);
-        assert(int(dists.cols) >= knn);
-
-#if 0
-        KNNResultSet<DistanceType> resultSet(knn);
-        for (size_t i = 0; i < queries.rows; i++) {
-            resultSet.init(indices[i], dists[i]);
-            findNeighbors(resultSet, queries[i], params);
-        }
-#else
-        KNNUniqueResultSet<DistanceType> resultSet(knn);
-        for (size_t i = 0; i < queries.rows; i++) {
-            resultSet.clear();
-            findNeighbors(resultSet, queries[i], params);
-            if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn);
-            else resultSet.copy(indices[i], dists[i], knn);
-        }
-#endif
-    }
-
-    /**
-     * \brief Perform radius search
-     * \param[in] query The query point
-     * \param[out] indices The indinces of the neighbors found within the given radius
-     * \param[out] dists The distances to the nearest neighbors found
-     * \param[in] radius The radius used for search
-     * \param[in] params Search parameters
-     * \returns Number of neighbors found
-     */
-    virtual int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params)
-    {
-        if (query.rows != 1) {
-            fprintf(stderr, "I can only search one feature at a time for range search\n");
-            return -1;
-        }
-        assert(query.cols == veclen());
-        assert(indices.cols == dists.cols);
-
-        int n = 0;
-        int* indices_ptr = NULL;
-        DistanceType* dists_ptr = NULL;
-        if (indices.cols > 0) {
-            n = indices.cols;
-            indices_ptr = indices[0];
-            dists_ptr = dists[0];
-        }
-
-        RadiusUniqueResultSet<DistanceType> resultSet(radius);
-        resultSet.clear();
-        findNeighbors(resultSet, query[0], params);
-        if (n>0) {
-            if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices_ptr, dists_ptr, n);
-            else resultSet.copy(indices_ptr, dists_ptr, n);
-        }
-
-        return resultSet.size();
-    }
-
-    /**
-     * \brief Saves the index to a stream
-     * \param stream The stream to save the index to
-     */
-    virtual void saveIndex(FILE* stream) = 0;
-
-    /**
-     * \brief Loads the index from a stream
-     * \param stream The stream from which the index is loaded
-     */
-    virtual void loadIndex(FILE* stream) = 0;
-
-    /**
-     * \returns number of features in this index.
-     */
-    virtual size_t size() const = 0;
-
-    /**
-     * \returns The dimensionality of the features in this index.
-     */
-    virtual size_t veclen() const = 0;
-
-    /**
-     * \returns The amount of memory (in bytes) used by the index.
-     */
-    virtual int usedMemory() const = 0;
-
-    /**
-     * \returns The index type (kdtree, kmeans,...)
-     */
-    virtual flann_algorithm_t getType() const = 0;
-
-    /**
-     * \returns The index parameters
-     */
-    virtual IndexParams getParameters() const = 0;
-
-
-    /**
-     * \brief Method that searches for nearest-neighbours
-     */
-    virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) = 0;
+       virtual ~NNIndex() {};
+
+       /**
+       Method responsible with building the index.
+       */
+       virtual void buildIndex() = 0;
+
+       /**
+       Saves the index to a stream
+       */
+       virtual void saveIndex(FILE* stream) = 0;
+
+       /**
+       Loads the index from a stream
+       */
+       virtual void loadIndex(FILE* stream) = 0;
+
+       /**
+       Method that searches for nearest-neighbors
+       */
+       virtual void findNeighbors(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec, const SearchParams& searchParams) = 0;
+
+       /**
+       Number of features in this index.
+       */
+       virtual size_t size() const = 0;
+
+       /**
+       The length of each vector in this index.
+       */
+       virtual size_t veclen() const = 0;
+
+       /**
+       The amount of memory (in bytes) this index uses.
+       */
+       virtual int usedMemory() const = 0;
+
+       /**
+       * Algorithm name
+       */
+       virtual flann_algorithm_t getType() const = 0;
+
+       /**
+        * Returns the parameters used for the index
+        */
+       virtual const IndexParams* getParameters() const = 0;
+
 };
 
-}
 
-#endif //FLANN_NNINDEX_H
+} // namespace cvflann
+
+#endif //_OPENCV_NNINDEX_H_
index 7f971c5..5c51e0d 100644 (file)
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef OPENCV_FLANN_OBJECT_FACTORY_H_
-#define OPENCV_FLANN_OBJECT_FACTORY_H_
+#ifndef _OPENCV_OBJECT_FACTORY_H_
+#define _OPENCV_OBJECT_FACTORY_H_
 
+#include "opencv2/core/types_c.h"
 #include <map>
 
 namespace cvflann
 {
 
-class CreatorNotFound
+template<typename BaseClass, typename DerivedClass>
+BaseClass* createObject()
 {
-};
+       return new DerivedClass();
+}
 
-template<typename BaseClass,
-         typename UniqueIdType,
-         typename ObjectCreator = BaseClass* (*)()>
+template<typename BaseClass, typename UniqueIdType>
 class ObjectFactory
 {
-    typedef ObjectFactory<BaseClass,UniqueIdType,ObjectCreator> ThisClass;
-    typedef std::map<UniqueIdType, ObjectCreator> ObjectRegistry;
+       typedef BaseClass* (*CreateObjectFunc)();
+       std::map<UniqueIdType, CreateObjectFunc> object_registry;
 
-    // singleton class, private constructor
-    ObjectFactory() {}
+       // singleton class, private constructor
+       //ObjectFactory() {};
 
 public:
+   typedef typename std::map<UniqueIdType, CreateObjectFunc>::iterator Iterator;
+
+
+   template<typename DerivedClass>
+   bool register_(UniqueIdType id)
+   {
+      if (object_registry.find(id) != object_registry.end())
+               return false;
+
+      object_registry[id] = &createObject<BaseClass, DerivedClass>;
+      return true;
+   }
+
+   bool unregister(UniqueIdType id)
+   {
+      return (object_registry.erase(id) == 1);
+   }
+
+   BaseClass* create(UniqueIdType id)
+   {
+      Iterator iter = object_registry.find(id);
+
+      if (iter == object_registry.end())
+         return NULL;
+
+      return ((*iter).second)();
+   }
+
+   /*static ObjectFactory<BaseClass,UniqueIdType>& instance()
+   {
+          static ObjectFactory<BaseClass,UniqueIdType> the_factory;
+          return the_factory;
+   }*/
 
-    bool subscribe(UniqueIdType id, ObjectCreator creator)
-    {
-        if (object_registry.find(id) != object_registry.end()) return false;
-
-        object_registry[id] = creator;
-        return true;
-    }
-
-    bool unregister(UniqueIdType id)
-    {
-        return object_registry.erase(id) == 1;
-    }
-
-    ObjectCreator create(UniqueIdType id)
-    {
-        typename ObjectRegistry::const_iterator iter = object_registry.find(id);
-
-        if (iter == object_registry.end()) {
-            throw CreatorNotFound();
-        }
-
-        return iter->second;
-    }
-
-    static ThisClass& instance()
-    {
-        static ThisClass the_factory;
-        return the_factory;
-    }
-private:
-    ObjectRegistry object_registry;
 };
 
-}
+} // namespace cvflann
 
-#endif /* OPENCV_FLANN_OBJECT_FACTORY_H_ */
+#endif /* OBJECT_FACTORY_H_ */
diff --git a/modules/flann/include/opencv2/flann/params.h b/modules/flann/include/opencv2/flann/params.h
deleted file mode 100644 (file)
index 9f3a468..0000000
+++ /dev/null
@@ -1,97 +0,0 @@
-/***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2008-2011  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
- * Copyright 2008-2011  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- *    notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice, this list of conditions and the following disclaimer in the
- *    documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
-
-
-#ifndef OPENCV_FLANN_PARAMS_H_
-#define OPENCV_FLANN_PARAMS_H_
-
-#include "any.h"
-#include "general.h"
-#include <iostream>
-#include <map>
-
-
-namespace cvflann
-{
-
-typedef cdiggins::any any;
-typedef std::map<std::string, any> IndexParams;
-
-struct SearchParams : public IndexParams
-{
-    SearchParams(int checks = 32, float eps = 0, bool sorted = true )
-    {
-        // how many leafs to visit when searching for neighbours (-1 for unlimited)
-        (*this)["checks"] = checks;
-        // search for eps-approximate neighbours (default: 0)
-        (*this)["eps"] = eps;
-        // only for radius search, require neighbours sorted by distance (default: true)
-        (*this)["sorted"] = sorted;
-    }
-};
-
-
-template<typename T>
-T get_param(const IndexParams& params, std::string name, const T& default_value)
-{
-    IndexParams::const_iterator it = params.find(name);
-    if (it != params.end()) {
-        return it->second.cast<T>();
-    }
-    else {
-        return default_value;
-    }
-}
-
-template<typename T>
-T get_param(const IndexParams& params, std::string name)
-{
-    IndexParams::const_iterator it = params.find(name);
-    if (it != params.end()) {
-        return it->second.cast<T>();
-    }
-    else {
-        throw FLANNException(std::string("Missing parameter '")+name+std::string("' in the parameters given"));
-    }
-}
-
-inline void print_params(const IndexParams& params)
-{
-    IndexParams::const_iterator it;
-
-    for(it=params.begin(); it!=params.end(); ++it) {
-        std::cout << it->first << " : " << it->second << std::endl;
-    }
-}
-
-
-
-}
-
-
-#endif /* OPENCV_FLANN_PARAMS_H_ */
index b702807..d29a123 100644 (file)
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef FLANN_RANDOM_H
-#define FLANN_RANDOM_H
+#ifndef _OPENCV_RANDOM_H_
+#define _OPENCV_RANDOM_H_
 
 #include <algorithm>
 #include <cstdlib>
-#include <vector>
+#include <cassert>
 
-#include "general.h"
 
 namespace cvflann
 {
 
 /**
  * Seeds the random number generator
- *  @param seed Random seed
  */
-inline void seed_random(unsigned int seed)
-{
-    srand(seed);
-}
+CV_EXPORTS void seed_random(unsigned int seed);
 
 /*
  * Generates a random double value.
  */
-/**
- * Generates a random double value.
- * @param high Upper limit
- * @param low Lower limit
- * @return Random double value
- */
-inline double rand_double(double high = 1.0, double low = 0)
-{
-    return low + ((high-low) * (std::rand() / (RAND_MAX + 1.0)));
-}
+CV_EXPORTS double rand_double(double high = 1.0, double low=0);
 
-/**
+/*
  * Generates a random integer value.
- * @param high Upper limit
- * @param low Lower limit
- * @return Random integer value
  */
-inline int rand_int(int high = RAND_MAX, int low = 0)
-{
-    return low + (int) ( double(high-low) * (std::rand() / (RAND_MAX + 1.0)));
-}
+CV_EXPORTS int rand_int(int high = RAND_MAX, int low = 0);
+
 
 /**
  * Random number generator that returns a distinct number from
  * the [0,n) interval each time.
+ *
+ * TODO: improve on this to use a generator function instead of an
+ * array of randomly permuted numbers
  */
-class UniqueRandom
+class CV_EXPORTS UniqueRandom
 {
-    std::vector<int> vals_;
-    int size_;
-    int counter_;
+       int* vals;
+    int size;
+       int counter;
 
 public:
-    /**
-     * Constructor.
-     * @param n Size of the interval from which to generate
-     * @return
-     */
-    UniqueRandom(int n)
-    {
-        init(n);
-    }
-
-    /**
-     * Initializes the number generator.
-     * @param n the size of the interval from which to generate random numbers.
-     */
-    void init(int n)
-    {
-        // create and initialize an array of size n
-        vals_.resize(n);
-        size_ = n;
-        for (int i = 0; i < size_; ++i) vals_[i] = i;
-
-        // shuffle the elements in the array
-        std::random_shuffle(vals_.begin(), vals_.end());
-
-        counter_ = 0;
-    }
-
-    /**
-     * Return a distinct random integer in greater or equal to 0 and less
-     * than 'n' on each call. It should be called maximum 'n' times.
-     * Returns: a random integer
-     */
-    int next()
-    {
-        if (counter_ == size_) {
-            return -1;
-        }
-        else {
-            return vals_[counter_++];
-        }
-    }
+       /**
+        * Constructor.
+        * Params:
+        *     n = the size of the interval from which to generate
+        *              random numbers.
+        */
+       UniqueRandom(int n) : vals(NULL) {
+               init(n);
+       }
+
+       ~UniqueRandom()
+       {
+               delete[] vals;
+       }
+
+       /**
+        * Initializes the number generator.
+        * Params:
+        *              n = the size of the interval from which to generate
+        *              random numbers.
+        */
+       void init(int n)
+       {
+       // create and initialize an array of size n
+               if (vals == NULL || n!=size) {
+            delete[] vals;
+               size = n;
+            vals = new int[size];
+       }
+       for(int i=0;i<size;++i) {
+                       vals[i] = i;
+               }
+
+               // shuffle the elements in the array
+        // Fisher-Yates shuffle
+               for (int i=size;i>0;--i) {
+//                     int rand = cast(int) (drand48() * n);
+                       int rnd = rand_int(i);
+                       assert(rnd >=0 && rnd < i);
+            std::swap(vals[i-1], vals[rnd]);
+               }
+
+               counter = 0;
+       }
+
+       /**
+        * Return a distinct random integer in greater or equal to 0 and less
+        * than 'n' on each call. It should be called maximum 'n' times.
+        * Returns: a random integer
+        */
+       int next() {
+               if (counter==size) {
+                       return -1;
+               } else {
+                       return vals[counter++];
+               }
+       }
 };
 
-}
-
-#endif //FLANN_RANDOM_H
-
+} // namespace cvflann
 
+#endif //_OPENCV_RANDOM_H_
index 047466f..5b1a8e2 100644 (file)
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef FLANN_RESULTSET_H
-#define FLANN_RESULTSET_H
+#ifndef _OPENCV_RESULTSET_H_
+#define _OPENCV_RESULTSET_H_
+
 
 #include <algorithm>
-#include <cstring>
-#include <iostream>
 #include <limits>
-#include <set>
 #include <vector>
+#include "opencv2/flann/dist.h"
+
 
 namespace cvflann
 {
 
 /* This record represents a branch point when finding neighbors in
-    the tree.  It contains a record of the minimum distance to the query
-    point, as well as the node at which the search resumes.
- */
+       the tree.  It contains a record of the minimum distance to the query
+       point, as well as the node at which the search resumes.
+*/
 
-template <typename T, typename DistanceType>
-struct BranchStruct
-{
-    T node;           /* Tree node at which search resumes */
-    DistanceType mindist;     /* Minimum distance to query for all nodes below. */
+template <typename T>
+struct BranchStruct {
+       T node;           /* Tree node at which search resumes */
+       float mindistsq;     /* Minimum distance to query for all nodes below. */
 
-    BranchStruct() {}
-    BranchStruct(const T& aNode, DistanceType dist) : node(aNode), mindist(dist) {}
+       bool operator<(const BranchStruct<T>& rhs)
+       {
+        return mindistsq<rhs.mindistsq;
+       }
 
-    bool operator<(const BranchStruct<T, DistanceType>& rhs) const
+    static BranchStruct<T> make_branch(const T& aNode, float dist)
     {
-        return mindist<rhs.mindist;
+        BranchStruct<T> branch;
+        branch.node = aNode;
+        branch.mindistsq = dist;
+        return branch;
     }
 };
 
 
-template <typename DistanceType>
-class ResultSet
-{
-public:
-    virtual ~ResultSet() {}
-
-    virtual bool full() const = 0;
-
-    virtual void addPoint(DistanceType dist, int index) = 0;
 
-    virtual DistanceType worstDist() const = 0;
 
-};
 
-/**
- * KNNSimpleResultSet does not ensure that the element it holds are unique.
- * Is used in those cases where the nearest neighbour algorithm used does not
- * attempt to insert the same element multiple times.
- */
-template <typename DistanceType>
-class KNNSimpleResultSet : public ResultSet<DistanceType>
+template <typename ELEM_TYPE>
+class ResultSet
 {
-    int* indices;
-    DistanceType* dists;
-    int capacity;
-    int count;
-    DistanceType worst_distance_;
+protected:
 
 public:
-    KNNSimpleResultSet(int capacity_) : capacity(capacity_), count(0)
-    {
-    }
 
-    void init(int* indices_, DistanceType* dists_)
-    {
-        indices = indices_;
-        dists = dists_;
-        count = 0;
-        worst_distance_ = (std::numeric_limits<DistanceType>::max)();
-        dists[capacity-1] = worst_distance_;
-    }
-
-    size_t size() const
-    {
-        return count;
-    }
-
-    bool full() const
-    {
-        return count == capacity;
-    }
-
-
-    void addPoint(DistanceType dist, int index)
-    {
-        if (dist >= worst_distance_) return;
-        int i;
-        for (i=count; i>0; --i) {
-#ifdef FLANN_FIRST_MATCH
-            if ( (dists[i-1]>dist) || ((dist==dists[i-1])&&(indices[i-1]>index)) )
-#else
-            if (dists[i-1]>dist)
-#endif
-            {
-                if (i<capacity) {
-                    dists[i] = dists[i-1];
-                    indices[i] = indices[i-1];
-                }
-            }
-            else break;
-        }
-        if (count < capacity) ++count;
-        dists[i] = dist;
-        indices[i] = index;
-        worst_distance_ = dists[capacity-1];
-    }
-
-    DistanceType worstDist() const
-    {
-        return worst_distance_;
-    }
-};
+       virtual ~ResultSet() {};
 
-/**
- * K-Nearest neighbour result set. Ensures that the elements inserted are unique
- */
-template <typename DistanceType>
-class KNNResultSet : public ResultSet<DistanceType>
-{
-    int* indices;
-    DistanceType* dists;
-    int capacity;
-    int count;
-    DistanceType worst_distance_;
+       virtual void init(const ELEM_TYPE* target_, int veclen_) = 0;
 
-public:
-    KNNResultSet(int capacity_) : capacity(capacity_), count(0)
-    {
-    }
+       virtual int* getNeighbors() = 0;
 
-    void init(int* indices_, DistanceType* dists_)
-    {
-        indices = indices_;
-        dists = dists_;
-        count = 0;
-        worst_distance_ = (std::numeric_limits<DistanceType>::max)();
-        dists[capacity-1] = worst_distance_;
-    }
+       virtual float* getDistances() = 0;
 
-    size_t size() const
-    {
-        return count;
-    }
+       virtual size_t size() const = 0;
 
-    bool full() const
-    {
-        return count == capacity;
-    }
+       virtual bool full() const = 0;
 
+       virtual bool addPoint(const ELEM_TYPE* point, int index) = 0;
 
-    void addPoint(DistanceType dist, int index)
-    {
-        if (dist >= worst_distance_) return;
-        int i;
-        for (i = count; i > 0; --i) {
-#ifdef FLANN_FIRST_MATCH
-            if ( (dists[i-1]<=dist) && ((dist!=dists[i-1])||(indices[i-1]<=index)) )
-#else
-            if (dists[i-1]<=dist)
-#endif
-            {
-                // Check for duplicate indices
-                int j = i - 1;
-                while ((j >= 0) && (dists[j] == dist)) {
-                    if (indices[j] == index) {
-                        return;
-                    }
-                    --j;
-                }
-                break;
-            }
-        }
-
-        if (count < capacity) ++count;
-        for (int j = count-1; j > i; --j) {
-            dists[j] = dists[j-1];
-            indices[j] = indices[j-1];
-        }
-        dists[i] = dist;
-        indices[i] = index;
-        worst_distance_ = dists[capacity-1];
-    }
+       virtual float worstDist() const = 0;
 
-    DistanceType worstDist() const
-    {
-        return worst_distance_;
-    }
 };
 
 
-/**
- * A result-set class used when performing a radius based search.
- */
-template <typename DistanceType>
-class RadiusResultSet : public ResultSet<DistanceType>
+template <typename ELEM_TYPE>
+class KNNResultSet : public ResultSet<ELEM_TYPE>
 {
-    DistanceType radius;
-    int* indices;
-    DistanceType* dists;
-    size_t capacity;
-    size_t count;
+       const ELEM_TYPE* target;
+       const ELEM_TYPE* target_end;
+    int veclen;
 
-public:
-    RadiusResultSet(DistanceType radius_, int* indices_, DistanceType* dists_, int capacity_) :
-        radius(radius_), indices(indices_), dists(dists_), capacity(capacity_)
-    {
-        init();
-    }
-
-    ~RadiusResultSet()
-    {
-    }
-
-    void init()
-    {
-        count = 0;
-    }
-
-    size_t size() const
-    {
-        return count;
-    }
-
-    bool full() const
-    {
-        return true;
-    }
-
-    void addPoint(DistanceType dist, int index)
-    {
-        if (dist<radius) {
-            if ((capacity>0)&&(count < capacity)) {
-                dists[count] = dist;
-                indices[count] = index;
-            }
-            count++;
-        }
-    }
-
-    DistanceType worstDist() const
-    {
-        return radius;
-    }
-
-};
+       int* indices;
+       float* dists;
+    int capacity;
 
-////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+       int count;
 
-/** Class that holds the k NN neighbors
- * Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
- */
-template<typename DistanceType>
-class UniqueResultSet : public ResultSet<DistanceType>
-{
 public:
-    struct DistIndex
-    {
-        DistIndex(DistanceType dist, unsigned int index) :
-            dist_(dist), index_(index)
-        {
-        }
-        bool operator<(const DistIndex dist_index) const
-        {
-            return (dist_ < dist_index.dist_) || ((dist_ == dist_index.dist_) && index_ < dist_index.index_);
-        }
-        DistanceType dist_;
-        unsigned int index_;
-    };
-
-    /** Default cosntructor */
-    UniqueResultSet() :
-        worst_distance_(std::numeric_limits<DistanceType>::max())
-    {
-    }
+       KNNResultSet(int capacity_, ELEM_TYPE* target_ = NULL, int veclen_ = 0 ) :
+                       target(target_), veclen(veclen_), capacity(capacity_), count(0)
+       {
+               target_end = target + veclen;
+
+        indices = new int[capacity_];
+        dists = new float[capacity_];
+       }
+
+       ~KNNResultSet()
+       {
+               delete[] indices;
+               delete[] dists;
+       }
+
+       void init(const ELEM_TYPE* target_, int veclen_)
+       {
+        target = target_;
+        veclen = veclen_;
+        target_end = target + veclen;
+        count = 0;
+       }
 
-    /** Check the status of the set
-     * @return true if we have k NN
-     */
-    inline bool full() const
-    {
-        return is_full_;
-    }
 
-    /** Remove all elements in the set
-     */
-    virtual void clear() = 0;
+       int* getNeighbors()
+       {
+               return indices;
+       }
 
-    /** Copy the set to two C arrays
-     * @param indices pointer to a C array of indices
-     * @param dist pointer to a C array of distances
-     * @param n_neighbors the number of neighbors to copy
-     */
-    virtual void copy(int* indices, DistanceType* dist, int n_neighbors = -1) const
+    float* getDistances()
     {
-        if (n_neighbors < 0) {
-            for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
-                     dist_indices_.end(); dist_index != dist_index_end; ++dist_index, ++indices, ++dist) {
-                *indices = dist_index->index_;
-                *dist = dist_index->dist_;
-            }
-        }
-        else {
-            int i = 0;
-            for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
-                     dist_indices_.end(); (dist_index != dist_index_end) && (i < n_neighbors); ++dist_index, ++indices, ++dist, ++i) {
-                *indices = dist_index->index_;
-                *dist = dist_index->dist_;
-            }
-        }
+        return dists;
     }
 
-    /** Copy the set to two C arrays but sort it according to the distance first
-     * @param indices pointer to a C array of indices
-     * @param dist pointer to a C array of distances
-     * @param n_neighbors the number of neighbors to copy
-     */
-    virtual void sortAndCopy(int* indices, DistanceType* dist, int n_neighbors = -1) const
-    {
-        copy(indices, dist, n_neighbors);
-    }
-
-    /** The number of neighbors in the set
-     * @return
-     */
     size_t size() const
     {
-        return dist_indices_.size();
-    }
-
-    /** The distance of the furthest neighbor
-     * If we don't have enough neighbors, it returns the max possible value
-     * @return
-     */
-    inline DistanceType worstDist() const
-    {
-        return worst_distance_;
-    }
-protected:
-    /** Flag to say if the set is full */
-    bool is_full_;
-
-    /** The worst distance found so far */
-    DistanceType worst_distance_;
-
-    /** The best candidates so far */
-    std::set<DistIndex> dist_indices_;
+       return count;
+    }
+
+       bool full() const
+       {
+               return count == capacity;
+       }
+
+
+       bool addPoint(const ELEM_TYPE* point, int index)
+       {
+               for (int i=0;i<count;++i) {
+                       if (indices[i]==index) return false;
+               }
+               float dist = (float)flann_dist(target, target_end, point);
+
+               if (count<capacity) {
+                       indices[count] = index;
+                       dists[count] = dist;
+                       ++count;
+               }
+               else if (dist < dists[count-1] || (dist == dists[count-1] && index < indices[count-1])) {
+//         else if (dist < dists[count-1]) {
+                       indices[count-1] = index;
+                       dists[count-1] = dist;
+               }
+               else {
+                       return false;
+               }
+
+               int i = count-1;
+               // bubble up
+               while (i>=1 && (dists[i]<dists[i-1] || (dists[i]==dists[i-1] && indices[i]<indices[i-1]) ) ) {
+//         while (i>=1 && (dists[i]<dists[i-1]) ) {
+            std::swap(indices[i],indices[i-1]);
+            std::swap(dists[i],dists[i-1]);
+                       i--;
+               }
+
+               return true;
+       }
+
+       float worstDist() const
+       {
+               return (count<capacity) ? (std::numeric_limits<float>::max)() : dists[count-1];
+       }
 };
 
-////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 
-/** Class that holds the k NN neighbors
- * Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
+/**
+ * A result-set class used when performing a radius based search.
  */
-template<typename DistanceType>
-class KNNUniqueResultSet : public UniqueResultSet<DistanceType>
+template <typename ELEM_TYPE>
+class RadiusResultSet : public ResultSet<ELEM_TYPE>
 {
-public:
-    /** Constructor
-     * @param capacity the number of neighbors to store at max
-     */
-    KNNUniqueResultSet(unsigned int capacity) : capacity_(capacity)
-    {
-        this->is_full_ = false;
-        this->clear();
-    }
+       const ELEM_TYPE* target;
+       const ELEM_TYPE* target_end;
+    int veclen;
 
-    /** Add a possible candidate to the best neighbors
-     * @param dist distance for that neighbor
-     * @param index index of that neighbor
-     */
-    inline void addPoint(DistanceType dist, int index)
-    {
-        // Don't do anything if we are worse than the worst
-        if (dist >= worst_distance_) return;
-        dist_indices_.insert(DistIndex(dist, index));
-
-        if (is_full_) {
-            if (dist_indices_.size() > capacity_) {
-                dist_indices_.erase(*dist_indices_.rbegin());
-                worst_distance_ = dist_indices_.rbegin()->dist_;
-            }
-        }
-        else if (dist_indices_.size() == capacity_) {
-            is_full_ = true;
-            worst_distance_ = dist_indices_.rbegin()->dist_;
-        }
-    }
+       struct Item {
+               int index;
+               float dist;
 
-    /** Remove all elements in the set
-     */
-    void clear()
-    {
-        dist_indices_.clear();
-        worst_distance_ = std::numeric_limits<DistanceType>::max();
-        is_full_ = false;
-    }
+               bool operator<(Item rhs) {
+                       return dist<rhs.dist;
+               }
+       };
 
-protected:
-    typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
-    using UniqueResultSet<DistanceType>::is_full_;
-    using UniqueResultSet<DistanceType>::worst_distance_;
-    using UniqueResultSet<DistanceType>::dist_indices_;
+    std::vector<Item> items;
+       float radius;
 
-    /** The number of neighbors to keep */
-    unsigned int capacity_;
-};
+       bool sorted;
+       int* indices;
+       float* dists;
+       size_t count;
 
-////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+private:
+       void resize_vecs()
+       {
+               if (items.size()>count) {
+                       if (indices!=NULL) delete[] indices;
+                       if (dists!=NULL) delete[] dists;
+                       count = items.size();
+                       indices = new int[count];
+                       dists = new float[count];
+               }
+       }
 
-/** Class that holds the radius nearest neighbors
- * It is more accurate than RadiusResult as it is not limited in the number of neighbors
- */
-template<typename DistanceType>
-class RadiusUniqueResultSet : public UniqueResultSet<DistanceType>
-{
 public:
-    /** Constructor
-     * @param capacity the number of neighbors to store at max
-     */
-    RadiusUniqueResultSet(DistanceType radius) :
-        radius_(radius)
-    {
-        is_full_ = true;
-    }
-
-    /** Add a possible candidate to the best neighbors
-     * @param dist distance for that neighbor
-     * @param index index of that neighbor
-     */
-    void addPoint(DistanceType dist, int index)
-    {
-        if (dist <= radius_) dist_indices_.insert(DistIndex(dist, index));
-    }
-
-    /** Remove all elements in the set
-     */
-    inline void clear()
-    {
-        dist_indices_.clear();
+       RadiusResultSet(float radius_) :
+               radius(radius_), indices(NULL), dists(NULL)
+       {
+               sorted = false;
+               items.reserve(16);
+               count = 0;
+       }
+
+       ~RadiusResultSet()
+       {
+               if (indices!=NULL) delete[] indices;
+               if (dists!=NULL) delete[] dists;
+       }
+
+       void init(const ELEM_TYPE* target_, int veclen_)
+       {
+        target = target_;
+        veclen = veclen_;
+        target_end = target + veclen;
+        items.clear();
+        sorted = false;
+       }
+
+       int* getNeighbors()
+       {
+               if (!sorted) {
+                       sorted = true;
+                       sort_heap(items.begin(), items.end());
+               }
+               resize_vecs();
+               for (size_t i=0;i<items.size();++i) {
+                       indices[i] = items[i].index;
+               }
+               return indices;
+       }
+
+    float* getDistances()
+    {
+               if (!sorted) {
+                       sorted = true;
+                       sort_heap(items.begin(), items.end());
+               }
+               resize_vecs();
+               for (size_t i=0;i<items.size();++i) {
+                       dists[i] = items[i].dist;
+               }
+        return dists;
     }
 
-
-    /** Check the status of the set
-     * @return alwys false
-     */
-    inline bool full() const
+    size_t size() const
     {
-        return true;
+       return items.size();
     }
 
-    /** The distance of the furthest neighbor
-     * If we don't have enough neighbors, it returns the max possible value
-     * @return
-     */
-    inline DistanceType worstDist() const
-    {
-        return radius_;
-    }
-private:
-    typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
-    using UniqueResultSet<DistanceType>::dist_indices_;
-    using UniqueResultSet<DistanceType>::is_full_;
+       bool full() const
+       {
+               return true;
+       }
 
-    /** The furthest distance a neighbor can be */
-    DistanceType radius_;
-};
-
-////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-
-/** Class that holds the k NN neighbors within a radius distance
- */
-template<typename DistanceType>
-class KNNRadiusUniqueResultSet : public KNNUniqueResultSet<DistanceType>
-{
-public:
-    /** Constructor
-     * @param capacity the number of neighbors to store at max
-     */
-    KNNRadiusUniqueResultSet(unsigned int capacity, DistanceType radius)
-    {
-        this->capacity_ = capacity;
-        this->radius_ = radius;
-        this->dist_indices_.reserve(capacity_);
-        this->clear();
-    }
-
-    /** Remove all elements in the set
-     */
-    void clear()
-    {
-        dist_indices_.clear();
-        worst_distance_ = radius_;
-        is_full_ = false;
-    }
-private:
-    using KNNUniqueResultSet<DistanceType>::dist_indices_;
-    using KNNUniqueResultSet<DistanceType>::is_full_;
-    using KNNUniqueResultSet<DistanceType>::worst_distance_;
+       bool addPoint(const ELEM_TYPE* point, int index)
+       {
+               Item it;
+               it.index = index;
+               it.dist = (float)flann_dist(target, target_end, point);
+               if (it.dist<=radius) {
+                       items.push_back(it);
+                       push_heap(items.begin(), items.end());
+            return true;
+               }
+        return false;
+       }
 
-    /** The maximum number of neighbors to consider */
-    unsigned int capacity_;
+       float worstDist() const
+       {
+               return radius;
+       }
 
-    /** The maximum distance of a neighbor */
-    DistanceType radius_;
 };
-}
 
-#endif //FLANN_RESULTSET_H
+} // namespace cvflann
 
+#endif //_OPENCV_RESULTSET_H_
index fd65150..95f6e15 100644 (file)
  *************************************************************************/
 
 
-#ifndef OPENCV_FLANN_SAMPLING_H_
-#define OPENCV_FLANN_SAMPLING_H_
+#ifndef _OPENCV_SAMPLING_H_
+#define _OPENCV_SAMPLING_H_
+
+
+#include "opencv2/flann/matrix.h"
+#include "opencv2/flann/random.h"
 
-#include "matrix.h"
-#include "random.h"
 
 namespace cvflann
 {
@@ -39,43 +41,54 @@ namespace cvflann
 template<typename T>
 Matrix<T> random_sample(Matrix<T>& srcMatrix, long size, bool remove = false)
 {
-    Matrix<T> newSet(new T[size * srcMatrix.cols], size,srcMatrix.cols);
+    UniqueRandom rand((int)srcMatrix.rows);
+    Matrix<T> newSet(new T[size * srcMatrix.cols], size, (long)srcMatrix.cols);
 
-    T* src,* dest;
-    for (long i=0; i<size; ++i) {
-        long r = rand_int(srcMatrix.rows-i);
+    T *src,*dest;
+    for (long i=0;i<size;++i) {
+        long r = rand.next();
         dest = newSet[i];
         src = srcMatrix[r];
-        std::copy(src, src+srcMatrix.cols, dest);
+        for (size_t j=0;j<srcMatrix.cols;++j) {
+            dest[j] = src[j];
+        }
         if (remove) {
-            src = srcMatrix[srcMatrix.rows-i-1];
-            dest = srcMatrix[r];
-            std::copy(src, src+srcMatrix.cols, dest);
+            dest = srcMatrix[srcMatrix.rows-i-1];
+            src = srcMatrix[r];
+            for (size_t j=0;j<srcMatrix.cols;++j) {
+                std::swap(*src,*dest);
+                src++;
+                dest++;
+            }
         }
     }
+
     if (remove) {
-        srcMatrix.rows -= size;
+       srcMatrix.rows -= size;
     }
+
     return newSet;
 }
 
 template<typename T>
 Matrix<T> random_sample(const Matrix<T>& srcMatrix, size_t size)
 {
-    UniqueRandom rand(srcMatrix.rows);
-    Matrix<T> newSet(new T[size * srcMatrix.cols], size,srcMatrix.cols);
+    UniqueRandom rand((int)srcMatrix.rows);
+    Matrix<T> newSet(new T[size * srcMatrix.cols], (long)size, (long)srcMatrix.cols);
 
-    T* src,* dest;
-    for (size_t i=0; i<size; ++i) {
+    T *src,*dest;
+    for (size_t i=0;i<size;++i) {
         long r = rand.next();
         dest = newSet[i];
         src = srcMatrix[r];
-        std::copy(src, src+srcMatrix.cols, dest);
+        for (size_t j=0;j<srcMatrix.cols;++j) {
+            dest[j] = src[j];
+        }
     }
+
     return newSet;
 }
 
-} // namespace
-
+} // namespace cvflann
 
-#endif /* OPENCV_FLANN_SAMPLING_H_ */
+#endif /* _OPENCV_SAMPLING_H_ */
index 08b9915..52116ec 100644 (file)
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef OPENCV_FLANN_SAVING_H_
-#define OPENCV_FLANN_SAVING_H_
+#ifndef _OPENCV_SAVING_H_
+#define _OPENCV_SAVING_H_
 
+#include "opencv2/flann/general.h"
+#include "opencv2/flann/nn_index.h"
+#include <cstdio>
 #include <cstring>
-#include <vector>
-
-#include "general.h"
-#include "nn_index.h"
-
-#define FLANN_SIGNATURE "FLANN_INDEX"
 
 namespace cvflann
 {
+template <typename T> struct Datatype {};
+template<> struct Datatype<char> { static flann_datatype_t type() { return FLANN_INT8; } };
+template<> struct Datatype<short> { static flann_datatype_t type() { return FLANN_INT16; } };
+template<> struct Datatype<int> { static flann_datatype_t type() { return FLANN_INT32; } };
+template<> struct Datatype<unsigned char> { static flann_datatype_t type() { return FLANN_UINT8; } };
+template<> struct Datatype<unsigned short> { static flann_datatype_t type() { return FLANN_UINT16; } };
+template<> struct Datatype<unsigned int> { static flann_datatype_t type() { return FLANN_UINT32; } };
+template<> struct Datatype<float> { static flann_datatype_t type() { return FLANN_FLOAT32; } };
+template<> struct Datatype<double> { static flann_datatype_t type() { return FLANN_FLOAT64; } };
 
-template <typename T>
-struct Datatype {};
-template<>
-struct Datatype<char> { static flann_datatype_t type() { return FLANN_INT8; } };
-template<>
-struct Datatype<short> { static flann_datatype_t type() { return FLANN_INT16; } };
-template<>
-struct Datatype<int> { static flann_datatype_t type() { return FLANN_INT32; } };
-template<>
-struct Datatype<unsigned char> { static flann_datatype_t type() { return FLANN_UINT8; } };
-template<>
-struct Datatype<unsigned short> { static flann_datatype_t type() { return FLANN_UINT16; } };
-template<>
-struct Datatype<unsigned int> { static flann_datatype_t type() { return FLANN_UINT32; } };
-template<>
-struct Datatype<float> { static flann_datatype_t type() { return FLANN_FLOAT32; } };
-template<>
-struct Datatype<double> { static flann_datatype_t type() { return FLANN_FLOAT64; } };
 
+CV_EXPORTS const char* FLANN_SIGNATURE();
+CV_EXPORTS const char* FLANN_VERSION();
 
 /**
  * Structure representing the index header.
  */
-struct IndexHeader
+struct CV_EXPORTS IndexHeader
 {
-    char signature[16];
-    char version[16];
-    flann_datatype_t data_type;
-    flann_algorithm_t index_type;
-    size_t rows;
-    size_t cols;
+       char signature[16];
+       char version[16];
+       flann_datatype_t data_type;
+       flann_algorithm_t index_type;
+       int rows;
+       int cols;
 };
 
 /**
@@ -79,20 +69,20 @@ struct IndexHeader
  * @param stream - Stream to save to
  * @param index - The index to save
  */
-template<typename Distance>
-void save_header(FILE* stream, const NNIndex<Distance>& index)
+template<typename ELEM_TYPE>
+void save_header(FILE* stream, const NNIndex<ELEM_TYPE>& index)
 {
-    IndexHeader header;
-    memset(header.signature, 0, sizeof(header.signature));
-    strcpy(header.signature, FLANN_SIGNATURE);
-    memset(header.version, 0, sizeof(header.version));
-    strcpy(header.version, FLANN_VERSION);
-    header.data_type = Datatype<typename Distance::ElementType>::type();
-    header.index_type = index.getType();
-    header.rows = index.size();
-    header.cols = index.veclen();
-
-    std::fwrite(&header, sizeof(header),1,stream);
+       IndexHeader header;
+       memset(header.signature, 0 , sizeof(header.signature));
+       strcpy(header.signature, FLANN_SIGNATURE());
+       memset(header.version, 0 , sizeof(header.version));
+       strcpy(header.version, FLANN_VERSION());
+       header.data_type = Datatype<ELEM_TYPE>::type();
+       header.index_type = index.getType();
+       header.rows = (int)index.size();
+       header.cols = index.veclen();
+
+       std::fwrite(&header, sizeof(header),1,stream);
 }
 
 
@@ -101,84 +91,25 @@ void save_header(FILE* stream, const NNIndex<Distance>& index)
  * @param stream - Stream to load from
  * @return Index header
  */
-inline IndexHeader load_header(FILE* stream)
-{
-    IndexHeader header;
-    int read_size = fread(&header,sizeof(header),1,stream);
-
-    if (read_size!=1) {
-        throw FLANNException("Invalid index file, cannot read");
-    }
-
-    if (strcmp(header.signature,FLANN_SIGNATURE)!=0) {
-        throw FLANNException("Invalid index file, wrong signature");
-    }
-
-    return header;
-
-}
+CV_EXPORTS IndexHeader load_header(FILE* stream);
 
 
 template<typename T>
-void save_value(FILE* stream, const T& value, size_t count = 1)
+void save_value(FILE* stream, const T& value, int count = 1)
 {
-    fwrite(&value, sizeof(value),count, stream);
+       fwrite(&value, 1, sizeof(value)*count, stream);
 }
 
-template<typename T>
-void save_value(FILE* stream, const cvflann::Matrix<T>& value)
-{
-    fwrite(&value, sizeof(value),1, stream);
-    fwrite(value.data, sizeof(T),value.rows*value.cols, stream);
-}
 
 template<typename T>
-void save_value(FILE* stream, const std::vector<T>& value)
+void load_value(FILE* stream, T& value, int count = 1)
 {
-    size_t size = value.size();
-    fwrite(&size, sizeof(size_t), 1, stream);
-    fwrite(&value[0], sizeof(T), size, stream);
+       int read_cnt = (int)fread(&value, sizeof(value),count, stream);
+       if (read_cnt!=count) {
+               throw FLANNException("Cannot read from file");
+       }
 }
 
-template<typename T>
-void load_value(FILE* stream, T& value, size_t count = 1)
-{
-    size_t read_cnt = fread(&value, sizeof(value), count, stream);
-    if (read_cnt != count) {
-        throw FLANNException("Cannot read from file");
-    }
-}
-
-template<typename T>
-void load_value(FILE* stream, cvflann::Matrix<T>& value)
-{
-    size_t read_cnt = fread(&value, sizeof(value), 1, stream);
-    if (read_cnt != 1) {
-        throw FLANNException("Cannot read from file");
-    }
-    value.data = new T[value.rows*value.cols];
-    read_cnt = fread(value.data, sizeof(T), value.rows*value.cols, stream);
-    if (read_cnt != int(value.rows*value.cols)) {
-        throw FLANNException("Cannot read from file");
-    }
-}
-
-
-template<typename T>
-void load_value(FILE* stream, std::vector<T>& value)
-{
-    size_t size;
-    size_t read_cnt = fread(&size, sizeof(size_t), 1, stream);
-    if (read_cnt!=1) {
-        throw FLANNException("Cannot read from file");
-    }
-    value.resize(size);
-    read_cnt = fread(&value[0], sizeof(T), size, stream);
-    if (read_cnt!=int(size)) {
-        throw FLANNException("Cannot read from file");
-    }
-}
-
-}
+} // namespace cvflann
 
-#endif /* OPENCV_FLANN_SAVING_H_ */
+#endif /* _OPENCV_SAVING_H_ */
index 145901a..21d3e94 100644 (file)
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
-#define OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
+#ifndef _OPENCV_SIMPLEX_DOWNHILL_H_
+#define _OPENCV_SIMPLEX_DOWNHILL_H_
 
 namespace cvflann
 {
 
 /**
     Adds val to array vals (and point to array points) and keeping the arrays sorted by vals.
- */
+*/
 template <typename T>
 void addValue(int pos, float val, float* vals, T* point, T* points, int n)
 {
     vals[pos] = val;
-    for (int i=0; i<n; ++i) {
+    for (int i=0;i<n;++i) {
         points[pos*n+i] = point[i];
     }
 
@@ -49,7 +49,7 @@ void addValue(int pos, float val, float* vals, T* point, T* points, int n)
     int j=pos;
     while (j>0 && vals[j]<vals[j-1]) {
         swap(vals[j],vals[j-1]);
-        for (int i=0; i<n; ++i) {
+        for (int i=0;i<n;++i) {
             swap(points[j*n+i],points[(j-1)*n+i]);
         }
         --j;
@@ -64,7 +64,7 @@ void addValue(int pos, float val, float* vals, T* point, T* points, int n)
                     vals is the cost function in the n+1 simplex points, if NULL it will be computed
 
     Postcondition: returns optimum value and points[0..n] are the optimum parameters
- */
+*/
 template <typename T, typename F>
 float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
 {
@@ -84,7 +84,7 @@ float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
     if (vals == NULL) {
         ownVals = true;
         vals = new float[n+1];
-        for (int i=0; i<n+1; ++i) {
+        for (int i=0;i<n+1;++i) {
             float val = func(points+i*n);
             addValue(i, val, vals, points+i*n, points, n);
         }
@@ -96,18 +96,18 @@ float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
         if (iterations++ > MAX_ITERATIONS) break;
 
         // compute average of simplex points (except the highest point)
-        for (int j=0; j<n; ++j) {
+        for (int j=0;j<n;++j) {
             p_o[j] = 0;
-            for (int i=0; i<n; ++i) {
+            for (int i=0;i<n;++i) {
                 p_o[i] += points[j*n+i];
             }
         }
-        for (int i=0; i<n; ++i) {
+        for (int i=0;i<n;++i) {
             p_o[i] /= n;
         }
 
         bool converged = true;
-        for (int i=0; i<n; ++i) {
+        for (int i=0;i<n;++i) {
             if (p_o[i] != points[nn+i]) {
                 converged = false;
             }
@@ -115,15 +115,15 @@ float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
         if (converged) break;
 
         // trying a reflection
-        for (int i=0; i<n; ++i) {
+        for (int i=0;i<n;++i) {
             p_r[i] = p_o[i] + alpha*(p_o[i]-points[nn+i]);
         }
         float val_r = func(p_r);
 
-        if ((val_r>=vals[0])&&(val_r<vals[n])) {
+        if (val_r>=vals[0] && val_r<vals[n]) {
             // reflection between second highest and lowest
             // add it to the simplex
-            Logger::info("Choosing reflection\n");
+            logger().info("Choosing reflection\n");
             addValue(n, val_r,vals, p_r, points, n);
             continue;
         }
@@ -132,37 +132,37 @@ float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
             // value is smaller than smalest in simplex
 
             // expand some more to see if it drops further
-            for (int i=0; i<n; ++i) {
+            for (int i=0;i<n;++i) {
                 p_e[i] = 2*p_r[i]-p_o[i];
             }
             float val_e = func(p_e);
 
             if (val_e<val_r) {
-                Logger::info("Choosing reflection and expansion\n");
+                logger().info("Choosing reflection and expansion\n");
                 addValue(n, val_e,vals,p_e,points,n);
             }
             else {
-                Logger::info("Choosing reflection\n");
+                logger().info("Choosing reflection\n");
                 addValue(n, val_r,vals,p_r,points,n);
             }
             continue;
         }
         if (val_r>=vals[n]) {
-            for (int i=0; i<n; ++i) {
+            for (int i=0;i<n;++i) {
                 p_e[i] = (p_o[i]+points[nn+i])/2;
             }
             float val_e = func(p_e);
 
             if (val_e<vals[n]) {
-                Logger::info("Choosing contraction\n");
+                logger().info("Choosing contraction\n");
                 addValue(n,val_e,vals,p_e,points,n);
                 continue;
             }
         }
         {
-            Logger::info("Full contraction\n");
-            for (int j=1; j<=n; ++j) {
-                for (int i=0; i<n; ++i) {
+          logger().info("Full contraction\n");
+            for (int j=1;j<=n;++j) {
+                for (int i=0;i<n;++i) {
                     points[j*n+i] = (points[j*n+i]+points[i])/2;
                 }
                 float val = func(points+j*n);
@@ -181,6 +181,6 @@ float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
     return bestVal;
 }
 
-}
+} // namespace cvflann
 
-#endif //OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
+#endif //_OPENCV_SIMPLEX_DOWNHILL_H_
index a06c5c0..db32057 100644 (file)
@@ -28,8 +28,8 @@
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *************************************************************************/
 
-#ifndef FLANN_TIMER_H
-#define FLANN_TIMER_H
+#ifndef _OPENCV_TIMER_H_
+#define _OPENCV_TIMER_H_
 
 #include <time.h>
 
@@ -42,7 +42,7 @@ namespace cvflann
  *
  * Can be used to time portions of code.
  */
-class StartStopTimer
+class CV_EXPORTS StartStopTimer
 {
     clock_t startTime;
 
@@ -64,16 +64,14 @@ public:
     /**
      * Starts the timer.
      */
-    void start()
-    {
+    void start() {
         startTime = clock();
     }
 
     /**
      * Stops the timer and updates timer value.
      */
-    void stop()
-    {
+    void stop() {
         clock_t stopTime = clock();
         value += ( (double)stopTime - startTime) / CLOCKS_PER_SEC;
     }
@@ -81,13 +79,12 @@ public:
     /**
      * Resets the timer value to 0.
      */
-    void reset()
-    {
+    void reset() {
         value = 0;
     }
 
 };
 
-}
+}// namespace cvflann
 
-#endif // FLANN_TIMER_H
+#endif // _OPENCV_TIMER_H_
index 1002d6e..30a82ea 100644 (file)
 
 #include "precomp.hpp"
 
-void cvflann::dummyfunc() {}
+namespace cvflann
+{
+// ----------------------- dist.cpp ---------------------------
+
+/** Global variable indicating the distance metric
+ * to be used.
+ */
+flann_distance_t flann_distance_type_ = FLANN_DIST_EUCLIDEAN;
+flann_distance_t flann_distance_type() { return flann_distance_type_; }
+
+/**
+ * Zero iterator that emulates a zero feature.
+ */
+ZeroIterator<float> zero_;
+ZeroIterator<float>& zero() { return zero_; }
+
+/**
+ * Order of Minkowski distance to use.
+ */
+int flann_minkowski_order_;
+int flann_minkowski_order() { return flann_minkowski_order_; }
+
+
+double euclidean_dist(const unsigned char* first1, const unsigned char* last1, unsigned char* first2, double acc)
+{
+       double distsq = acc;
+       double diff0, diff1, diff2, diff3;
+       const unsigned char* lastgroup = last1 - 3;
+
+       while (first1 < lastgroup) {
+               diff0 = first1[0] - first2[0];
+               diff1 = first1[1] - first2[1];
+               diff2 = first1[2] - first2[2];
+               diff3 = first1[3] - first2[3];
+               distsq += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
+               first1 += 4;
+               first2 += 4;
+       }
+       while (first1 < last1) {
+               diff0 = *first1++ - *first2++;
+               distsq += diff0 * diff0;
+       }
+       return distsq;
+}
+
+// ----------------------- index_testing.cpp ---------------------------
+
+int countCorrectMatches(int* neighbors, int* groundTruth, int n)
+{
+    int count = 0;
+    for (int i=0;i<n;++i) {
+        for (int k=0;k<n;++k) {
+            if (neighbors[i]==groundTruth[k]) {
+                count++;
+                break;
+            }
+        }
+    }
+    return count;
+}
+
+// ----------------------- logger.cpp ---------------------------
+
+Logger logger_;
+
+Logger& logger() { return logger_; }
+
+int Logger::log(int level, const char* fmt, ...)
+{
+    if (level > logLevel ) return -1;
+
+    int ret;
+    va_list arglist;
+    va_start(arglist, fmt);
+    ret = vfprintf(stream, fmt, arglist);
+    va_end(arglist);
+
+    return ret;
+}
+
+int Logger::log(int level, const char* fmt, va_list arglist)
+{
+    if (level > logLevel ) return -1;
+
+    int ret;
+    ret = vfprintf(stream, fmt, arglist);
+
+    return ret;
+}
+
+
+#define LOG_METHOD(NAME,LEVEL) \
+    int Logger::NAME(const char* fmt, ...) \
+    { \
+        int ret; \
+        va_list ap; \
+        va_start(ap, fmt); \
+        ret = log(LEVEL, fmt, ap); \
+        va_end(ap); \
+        return ret; \
+    }
+
+
+LOG_METHOD(fatal, FLANN_LOG_FATAL)
+LOG_METHOD(error, FLANN_LOG_ERROR)
+LOG_METHOD(warn, FLANN_LOG_WARN)
+LOG_METHOD(info, FLANN_LOG_INFO)
+
+// ----------------------- random.cpp ---------------------------
+
+void seed_random(unsigned int seed)
+{
+    srand(seed);
+}
+
+double rand_double(double high, double low)
+{
+    return low + ((high-low) * (std::rand() / (RAND_MAX + 1.0)));
+}
+
+
+int rand_int(int high, int low)
+{
+    return low + (int) ( double(high-low) * (std::rand() / (RAND_MAX + 1.0)));
+}
+
+// ----------------------- saving.cpp ---------------------------
+
+const char FLANN_SIGNATURE_[] = "FLANN_INDEX";
+const char FLANN_VERSION_[] = "1.5.0";
+
+const char* FLANN_SIGNATURE() { return FLANN_SIGNATURE_; }
+const char* FLANN_VERSION() { return FLANN_VERSION_; }
+
+IndexHeader load_header(FILE* stream)
+{
+       IndexHeader header;
+       size_t read_size = fread(&header,sizeof(header),1,stream);
+
+       if (read_size!=1) {
+               throw FLANNException("Invalid index file, cannot read");
+       }
+
+       if (strcmp(header.signature,FLANN_SIGNATURE())!=0) {
+               throw FLANNException("Invalid index file, wrong signature");
+       }
+
+       return header;
+
+}
+
+// ----------------------- flann.cpp ---------------------------
+
+
+void log_verbosity(int level)
+{
+    if (level>=0) {
+        logger().setLevel(level);
+    }
+}
+
+void set_distance_type(flann_distance_t distance_type, int order)
+{
+       flann_distance_type_ = distance_type;
+       flann_minkowski_order_ = order;
+}
+
+
+static ParamsFactory the_factory;
+
+ParamsFactory& ParamsFactory_instance()
+{
+    return the_factory;
+}
+
+class StaticInit
+{
+public:
+       StaticInit()
+       {
+               ParamsFactory_instance().register_<LinearIndexParams>(FLANN_INDEX_LINEAR);
+               ParamsFactory_instance().register_<KDTreeIndexParams>(FLANN_INDEX_KDTREE);
+               ParamsFactory_instance().register_<KMeansIndexParams>(FLANN_INDEX_KMEANS);
+               ParamsFactory_instance().register_<CompositeIndexParams>(FLANN_INDEX_COMPOSITE);
+               ParamsFactory_instance().register_<AutotunedIndexParams>(FLANN_INDEX_AUTOTUNED);
+//             ParamsFactory::instance().register_<SavedIndexParams>(FLANN_INDEX_SAVED);
+       }
+};
+StaticInit __init;
+
+
+} // namespace cvflann
+
+
+
index 5b9d10f..8c511ce 100644 (file)
@@ -7,7 +7,6 @@
 \r
 #include "opencv2/flann/dist.h"\r
 #include "opencv2/flann/index_testing.h"\r
-#include "opencv2/flann/params.h"\r
 #include "opencv2/flann/saving.h"\r
 #include "opencv2/flann/general.h"\r
 \r