The hardware KASAN mode (#3) relies on hardware to perform the checks but
still requires a compiler version that supports memory tagging instructions.
-This mode is supported in GCC 10+ and Clang 11+.
+This mode is supported in GCC 10+ and Clang 12+.
Both software KASAN modes work with SLUB and SLAB memory allocators,
while the hardware tag-based KASAN currently only supports SLUB.
Asymmetric mode: a bad access is detected synchronously on reads and
asynchronously on writes.
+- ``kasan.vmalloc=off`` or ``=on`` disables or enables tagging of vmalloc
+ allocations (default: ``on``).
+
- ``kasan.stacktrace=off`` or ``=on`` disables or enables alloc and free stack
traces collection (default: ``on``).
pointers with the 0xFF pointer tag are not checked). The value 0xFE is currently
reserved to tag freed memory regions.
-Software tag-based KASAN currently only supports tagging of slab and page_alloc
-memory.
+Software tag-based KASAN currently only supports tagging of slab, page_alloc,
+and vmalloc memory.
Hardware tag-based KASAN
~~~~~~~~~~~~~~~~~~~~~~~~
pointers with the 0xFF pointer tag are not checked). The value 0xFE is currently
reserved to tag freed memory regions.
-Hardware tag-based KASAN currently only supports tagging of slab and page_alloc
-memory.
+Hardware tag-based KASAN currently only supports tagging of slab, page_alloc,
+and VM_ALLOC-based vmalloc memory.
If the hardware does not support MTE (pre ARMv8.5), hardware tag-based KASAN
will not be enabled. In this case, all KASAN boot parameters are ignored.
Shadow memory
-------------
+The contents of this section are only applicable to software KASAN modes.
+
The kernel maps memory in several different parts of the address space.
The range of kernel virtual addresses is large: there is not enough real
memory to support a real shadow region for every address that could be
With ``CONFIG_KASAN_VMALLOC``, KASAN can cover vmalloc space at the
cost of greater memory usage. Currently, this is supported on x86,
-riscv, s390, and powerpc.
+arm64, riscv, s390, and powerpc.
This works by hooking into vmalloc and vmap and dynamically
allocating real shadow memory to back the mappings.