{
cv::dnn::LayerParams activation_param;
if (type == "relu")
+ {
+ activation_param.type = "ReLU";
+ }
+ else if (type == "leaky")
{
activation_param.set<float>("negative_slope", 0.1f);
activation_param.type = "ReLU";
}
std::string activation = getParam<std::string>(layer_params, "activation", "linear");
- if (activation == "leaky")
- {
- setParams.setActivation("relu");
- }
- else if (activation == "swish")
- {
- setParams.setActivation("swish");
- }
- else if (activation == "mish")
- {
- setParams.setActivation("mish");
- }
- else if (activation == "logistic")
- {
- setParams.setActivation("logistic");
- }
- else if (activation != "linear")
- CV_Error(cv::Error::StsParseError, "Unsupported activation: " + activation);
+ if (activation != "linear")
+ setParams.setActivation(activation);
net->out_channels_vec[layers_counter] = tensor_shape[0];
}
testDarknetLayer("connected", true);
}
+TEST_P(Test_Darknet_layers, relu)
+{
+ testDarknetLayer("relu");
+}
+
INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_layers, dnnBackendsAndTargets());
}} // namespace