drm/i915/selftests: Confirm CS_TIMESTAMP / CTX_TIMESTAMP share a clock
authorChris Wilson <chris@chris-wilson.co.uk>
Wed, 23 Dec 2020 12:23:58 +0000 (12:23 +0000)
committerChris Wilson <chris@chris-wilson.co.uk>
Wed, 23 Dec 2020 21:10:40 +0000 (21:10 +0000)
We assume that both timestamps are driven off the same clock [reported
to userspace as I915_PARAM_CS_TIMESTAMP_FREQUENCY]. Verify that this is
so by reading the timestamp registers around a busywait (on an otherwise
idle engine so there should be no preemptions).

v2: Icelake (not ehl, nor tgl) seems to be using a fixed 80ns interval
for, and only for, CTX_TIMESTAMP -- or it may be GPU frequency and the
test is always running at maximum frequency?. As far as I can tell, this
isolated change in behaviour is undocumented.

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20201223122359.22562-1-chris@chris-wilson.co.uk
drivers/gpu/drm/i915/gt/selftest_engine_pm.c

index 163a10b..d88504a 100644 (file)
  * Copyright © 2018 Intel Corporation
  */
 
-#include "intel_gpu_commands.h"
+#include <linux/sort.h>
 
 #include "i915_selftest.h"
+#include "intel_gpu_commands.h"
+#include "intel_gt_clock_utils.h"
 #include "selftest_engine.h"
 #include "selftest_engine_heartbeat.h"
 #include "selftests/igt_atomic.h"
 #include "selftests/igt_flush_test.h"
 #include "selftests/igt_spinner.h"
 
+#define COUNT 5
+
+static int cmp_u64(const void *A, const void *B)
+{
+       const u64 *a = A, *b = B;
+
+       return *a - *b;
+}
+
+static u64 trifilter(u64 *a)
+{
+       sort(a, COUNT, sizeof(*a), cmp_u64, NULL);
+       return (a[1] + 2 * a[2] + a[3]) >> 2;
+}
+
+static u32 *emit_wait(u32 *cs, u32 offset, int op, u32 value)
+{
+       *cs++ = MI_SEMAPHORE_WAIT |
+               MI_SEMAPHORE_GLOBAL_GTT |
+               MI_SEMAPHORE_POLL |
+               op;
+       *cs++ = value;
+       *cs++ = offset;
+       *cs++ = 0;
+
+       return cs;
+}
+
+static u32 *emit_store(u32 *cs, u32 offset, u32 value)
+{
+       *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
+       *cs++ = offset;
+       *cs++ = 0;
+       *cs++ = value;
+
+       return cs;
+}
+
+static u32 *emit_srm(u32 *cs, i915_reg_t reg, u32 offset)
+{
+       *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
+       *cs++ = i915_mmio_reg_offset(reg);
+       *cs++ = offset;
+       *cs++ = 0;
+
+       return cs;
+}
+
+static void write_semaphore(u32 *x, u32 value)
+{
+       WRITE_ONCE(*x, value);
+       wmb();
+}
+
+static int __measure_timestamps(struct intel_context *ce,
+                               u64 *dt, u64 *d_ring, u64 *d_ctx)
+{
+       struct intel_engine_cs *engine = ce->engine;
+       u32 *sema = memset32(engine->status_page.addr + 1000, 0, 5);
+       u32 offset = i915_ggtt_offset(engine->status_page.vma);
+       struct i915_request *rq;
+       u32 *cs;
+
+       rq = intel_context_create_request(ce);
+       if (IS_ERR(rq))
+               return PTR_ERR(rq);
+
+       cs = intel_ring_begin(rq, 28);
+       if (IS_ERR(cs)) {
+               i915_request_add(rq);
+               return PTR_ERR(cs);
+       }
+
+       /* Signal & wait for start */
+       cs = emit_store(cs, offset + 4008, 1);
+       cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_NEQ_SDD, 1);
+
+       cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4000);
+       cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4004);
+
+       /* Busy wait */
+       cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_EQ_SDD, 1);
+
+       cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4016);
+       cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4012);
+
+       intel_ring_advance(rq, cs);
+       i915_request_get(rq);
+       i915_request_add(rq);
+       intel_engine_flush_submission(engine);
+
+       /* Wait for the request to start executing, that then waits for us */
+       while (READ_ONCE(sema[2]) == 0)
+               cpu_relax();
+
+       /* Run the request for a 100us, sampling timestamps before/after */
+       preempt_disable();
+       *dt = ktime_get_raw_fast_ns();
+       write_semaphore(&sema[2], 0);
+       udelay(100);
+       write_semaphore(&sema[2], 1);
+       *dt = ktime_get_raw_fast_ns() - *dt;
+       preempt_enable();
+
+       if (i915_request_wait(rq, 0, HZ / 2) < 0) {
+               i915_request_put(rq);
+               return -ETIME;
+       }
+       i915_request_put(rq);
+
+       pr_debug("%s CTX_TIMESTAMP: [%x, %x], RING_TIMESTAMP: [%x, %x]\n",
+                engine->name, sema[1], sema[3], sema[0], sema[4]);
+
+       *d_ctx = sema[3] - sema[1];
+       *d_ring = sema[4] - sema[0];
+       return 0;
+}
+
+static int __live_engine_timestamps(struct intel_engine_cs *engine)
+{
+       u64 s_ring[COUNT], s_ctx[COUNT], st[COUNT], d_ring, d_ctx, dt;
+       struct intel_context *ce;
+       int i, err = 0;
+
+       ce = intel_context_create(engine);
+       if (IS_ERR(ce))
+               return PTR_ERR(ce);
+
+       for (i = 0; i < COUNT; i++) {
+               err = __measure_timestamps(ce, &st[i], &s_ring[i], &s_ctx[i]);
+               if (err)
+                       break;
+       }
+       intel_context_put(ce);
+       if (err)
+               return err;
+
+       dt = trifilter(st);
+       d_ring = trifilter(s_ring);
+       d_ctx = trifilter(s_ctx);
+
+       pr_info("%s elapsed:%lldns, CTX_TIMESTAMP:%dns, RING_TIMESTAMP:%dns\n",
+               engine->name, dt,
+               intel_gt_clock_interval_to_ns(engine->gt, d_ctx),
+               intel_gt_clock_interval_to_ns(engine->gt, d_ring));
+
+       d_ring = intel_gt_clock_interval_to_ns(engine->gt, d_ring);
+       if (3 * dt > 4 * d_ring || 4 * dt < 3 * d_ring) {
+               pr_err("%s Mismatch between ring timestamp and walltime!\n",
+                      engine->name);
+               return -EINVAL;
+       }
+
+       d_ring = trifilter(s_ring);
+       d_ctx = trifilter(s_ctx);
+
+       d_ctx *= RUNTIME_INFO(engine->i915)->cs_timestamp_frequency_hz;
+       if (IS_ICELAKE(engine->i915))
+               d_ring *= 12500000; /* Fixed 80ns for icl ctx timestamp? */
+       else
+               d_ring *= RUNTIME_INFO(engine->i915)->cs_timestamp_frequency_hz;
+
+       if (3 * d_ctx > 4 * d_ring || 4 * d_ctx < 3 * d_ring) {
+               pr_err("%s Mismatch between ring and context timestamps!\n",
+                      engine->name);
+               return -EINVAL;
+       }
+
+       return 0;
+}
+
+static int live_engine_timestamps(void *arg)
+{
+       struct intel_gt *gt = arg;
+       struct intel_engine_cs *engine;
+       enum intel_engine_id id;
+
+       /*
+        * Check that CS_TIMESTAMP / CTX_TIMESTAMP are in sync, i.e. share
+        * the same CS clock.
+        */
+
+       if (INTEL_GEN(gt->i915) < 8)
+               return 0;
+
+       for_each_engine(engine, gt, id) {
+               int err;
+
+               st_engine_heartbeat_disable(engine);
+               err = __live_engine_timestamps(engine);
+               st_engine_heartbeat_enable(engine);
+               if (err)
+                       return err;
+       }
+
+       return 0;
+}
+
 static int live_engine_busy_stats(void *arg)
 {
        struct intel_gt *gt = arg;
@@ -179,6 +379,7 @@ static int live_engine_pm(void *arg)
 int live_engine_pm_selftests(struct intel_gt *gt)
 {
        static const struct i915_subtest tests[] = {
+               SUBTEST(live_engine_timestamps),
                SUBTEST(live_engine_busy_stats),
                SUBTEST(live_engine_pm),
        };