+++ /dev/null
-//*****************************************************************************
-// Copyright 2017-2020 Intel Corporation
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//*****************************************************************************
-
-#pragma once
-
-#include "ngraph/op/util/logical_reduction.hpp"
-
-namespace ngraph
-{
- namespace op
- {
- namespace v0
- {
- /// \brief Logical "any" reduction operation.
- class NGRAPH_DEPRECATED(
- "This operation is deprecated and will be removed soon. Please don't use it.")
- NGRAPH_API Any : public util::LogicalReduction
- {
- NGRAPH_SUPPRESS_DEPRECATED_START
- public:
- static constexpr NodeTypeInfo type_info{"Any", 0};
- const NodeTypeInfo& get_type_info() const override { return type_info; }
- /// \brief Constructs an "any" reduction operation.
- Any() = default;
- /// \brief Constructs an "any" reduction operation.
- ///
- /// \param arg The tensor to be reduced.
- /// \param reduction_axes The axis positions (0-based) to be eliminated.
- Any(const Output<Node>& arg, const AxisSet& reduction_axes);
- /// \brief Constructs an "any" reduction operation.
- ///
- /// \param arg The tensor to be reduced.
- /// \param reduction_axes The axis positions (0-based) to be eliminated.
- Any(const Output<Node>& arg, const Output<Node>& reduction_axes);
-
- virtual std::shared_ptr<Node>
- clone_with_new_inputs(const OutputVector& new_args) const override;
- bool visit_attributes(AttributeVisitor& visitor) override { return true; }
- /// \return The default value for Any.
- virtual std::shared_ptr<Node> get_default_value() const override;
- NGRAPH_SUPPRESS_DEPRECATED_END
- };
- }
- NGRAPH_SUPPRESS_DEPRECATED_START
- using v0::Any;
- NGRAPH_SUPPRESS_DEPRECATED_END
- }
-}
NGRAPH_OP(Acosh, ngraph::op::v3, 3)
NGRAPH_OP(Add, ngraph::op::v0, 0)
NGRAPH_OP(Add, ngraph::op::v1, 1)
-NGRAPH_OP(Any, ngraph::op::v0, 0)
NGRAPH_OP(Asin, ngraph::op::v0, 0)
NGRAPH_OP(Asinh, ngraph::op::v3, 3)
NGRAPH_OP(Atan, ngraph::op::v0, 0)
#include "ngraph/op/acosh.hpp"
#include "ngraph/op/add.hpp"
#include "ngraph/op/and.hpp"
-#include "ngraph/op/any.hpp"
#include "ngraph/op/asin.hpp"
#include "ngraph/op/asinh.hpp"
#include "ngraph/op/assign.hpp"
+++ /dev/null
-//*****************************************************************************
-// Copyright 2017-2020 Intel Corporation
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//*****************************************************************************
-
-#pragma once
-
-#include <cmath>
-
-#include "ngraph/coordinate_transform.hpp"
-#include "ngraph/shape_util.hpp"
-
-namespace ngraph
-{
- namespace runtime
- {
- namespace reference
- {
- static inline void any(const char* arg,
- char* out,
- const Shape& in_shape,
- const AxisSet& reduction_axes,
- bool keep_dims)
- {
- CoordinateTransform output_transform(reduce(in_shape, reduction_axes, keep_dims));
-
- for (const Coordinate& output_coord : output_transform)
- {
- out[output_transform.index(output_coord)] = 0;
- }
-
- CoordinateTransform input_transform(in_shape);
-
- for (const Coordinate& input_coord : input_transform)
- {
- Coordinate output_coord = reduce(input_coord, reduction_axes, keep_dims);
- out[output_transform.index(output_coord)] =
- out[output_transform.index(output_coord)] ||
- arg[input_transform.index(input_coord)];
- }
- }
- }
- }
-}
#include <cmath>
#include "ngraph/coordinate_transform.hpp"
-#include "ngraph/runtime/reference/any.hpp"
#include "ngraph/shape_util.hpp"
namespace ngraph
const AxisSet& reduction_axes,
bool keep_dims)
{
- runtime::reference::any(arg, out, input_shape, reduction_axes, keep_dims);
+ CoordinateTransform output_transform(
+ reduce(input_shape, reduction_axes, keep_dims));
+
+ for (const Coordinate& output_coord : output_transform)
+ {
+ out[output_transform.index(output_coord)] = 0;
+ }
+
+ CoordinateTransform input_transform(input_shape);
+
+ for (const Coordinate& input_coord : input_transform)
+ {
+ Coordinate output_coord = reduce(input_coord, reduction_axes, keep_dims);
+ out[output_transform.index(output_coord)] =
+ out[output_transform.index(output_coord)] ||
+ arg[input_transform.index(input_coord)];
+ }
}
}
}
+++ /dev/null
-//*****************************************************************************
-// Copyright 2017-2020 Intel Corporation
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//*****************************************************************************
-
-#include "ngraph/op/any.hpp"
-#include "ngraph/graph_util.hpp"
-
-NGRAPH_SUPPRESS_DEPRECATED_START
-
-using namespace std;
-using namespace ngraph;
-
-constexpr NodeTypeInfo op::Any::type_info;
-
-op::Any::Any(const Output<Node>& arg, const AxisSet& reduction_axes)
- : LogicalReduction(arg, reduction_axes)
-{
- constructor_validate_and_infer_types();
-}
-
-op::Any::Any(const Output<Node>& arg, const Output<Node>& reduction_axes)
- : LogicalReduction(arg, reduction_axes)
-{
- constructor_validate_and_infer_types();
-}
-
-shared_ptr<Node> op::Any::clone_with_new_inputs(const OutputVector& new_args) const
-{
- check_new_args_count(this, new_args);
- return make_shared<Any>(new_args.at(0), new_args.at(1));
-}
-
-shared_ptr<Node> op::Any::get_default_value() const
-{
- return ngraph::make_constant_from_string("0", get_element_type(), get_shape());
-}
#include "constant_folding.hpp"
#include "ngraph/log.hpp"
-#include "ngraph/op/any.hpp"
#include "ngraph/op/reduce_logical_and.hpp"
#include "ngraph/op/reduce_logical_or.hpp"
-#include "ngraph/runtime/reference/any.hpp"
#include "ngraph/runtime/reference/logical_reduction.hpp"
NGRAPH_SUPPRESS_DEPRECATED_START
runtime::AlignedBuffer buffer(shape_size(reduction_node->get_shape()) * sizeof(char));
char* data_ptr = buffer.get_ptr<char>();
- if (auto any = as_type_ptr<::ngraph::op::Any>(reduction_node))
- {
- runtime::reference::any(constant->get_data_ptr<char>(),
- data_ptr,
- reduction_node->get_input_shape(0),
- any->get_reduction_axes(),
- false);
- }
- else if (auto reduce_and = as_type_ptr<::ngraph::op::v1::ReduceLogicalAnd>(reduction_node))
+ if (auto reduce_and = as_type_ptr<::ngraph::op::v1::ReduceLogicalAnd>(reduction_node))
{
const auto reduction_axes = reduce_and->get_reduction_axes();
const auto input_shape = reduce_and->get_input_shape(0);
auto constant_axes_label =
make_shared<pattern::op::Label>(element::i64, Shape{2}, pattern::has_class<op::Constant>());
auto is_supported_reduction = [](std::shared_ptr<Node> n) {
- return (pattern::has_class<::ngraph::op::Any>()(n) ||
- pattern::has_class<::ngraph::op::v1::ReduceLogicalAnd>()(n) ||
- pattern::has_class<::ngraph::op::v1::ReduceLogicalOr>()(n));
+ return pattern::has_class<::ngraph::op::v1::ReduceLogicalAnd>()(n) ||
+ pattern::has_class<::ngraph::op::v1::ReduceLogicalOr>()(n);
};
auto reduction =
std::make_shared<pattern::op::Any>(element::i32,
shape.cpp
specialize_function.cpp
tensor.cpp
- type_prop/any.cpp
type_prop/assign.cpp
type_prop/avg_pool.cpp
type_prop/batch_norm.cpp
backend/acosh.in.cpp
backend/add.in.cpp
backend/aliased_output.in.cpp
- backend/any.in.cpp
backend/api.in.cpp
backend/asin.in.cpp
backend/asinh.in.cpp
+++ /dev/null
-//*****************************************************************************
-// Copyright 2017-2020 Intel Corporation
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//*****************************************************************************
-
-#include <algorithm>
-#include <cinttypes>
-#include <cmath>
-#include <cstdlib>
-#include <string>
-
-#include "gtest/gtest.h"
-#include "ngraph/ngraph.hpp"
-#include "ngraph/runtime/tensor.hpp"
-#include "runtime/backend.hpp"
-#include "util/all_close.hpp"
-#include "util/all_close_f.hpp"
-#include "util/ndarray.hpp"
-#include "util/random.hpp"
-#include "util/test_control.hpp"
-#include "util/test_tools.hpp"
-
-NGRAPH_SUPPRESS_DEPRECATED_START
-
-using namespace std;
-using namespace ngraph;
-
-static string s_manifest = "${MANIFEST}";
-
-// Trivial case with no reduced axes.
-NGRAPH_TEST(${BACKEND_NAME}, any_trivial)
-{
- Shape shape{2, 2};
- auto A = make_shared<op::Parameter>(element::boolean, shape);
- auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{}), ParameterVector{A});
-
- auto backend = runtime::Backend::create("${BACKEND_NAME}");
-
- // Create some tensors for input/output
- auto a = backend->create_tensor(element::boolean, shape);
- copy_data(a, vector<char>{0, 1, 1, 0});
- auto result = backend->create_tensor(element::boolean, shape);
-
- auto handle = backend->compile(f);
- handle->call_with_validate({result}, {a});
- EXPECT_EQ((vector<char>{0, 1, 1, 0}), read_vector<char>(result));
-}
-
-NGRAPH_TEST(${BACKEND_NAME}, any_2x2_to_scalar_true)
-{
- Shape shape{2, 2};
- auto A = make_shared<op::Parameter>(element::boolean, shape);
- auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{0, 1}), ParameterVector{A});
-
- auto backend = runtime::Backend::create("${BACKEND_NAME}");
-
- // Create some tensors for input/output
- auto a = backend->create_tensor(element::boolean, shape);
- copy_data(a, vector<char>{0, 1, 1, 0});
- auto result = backend->create_tensor(element::boolean, Shape{});
-
- auto handle = backend->compile(f);
- handle->call_with_validate({result}, {a});
- EXPECT_EQ((vector<char>{1}), read_vector<char>(result));
-}
-
-NGRAPH_TEST(${BACKEND_NAME}, any_2x2_to_scalar_false)
-{
- Shape shape{2, 2};
- auto A = make_shared<op::Parameter>(element::boolean, shape);
- auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{0, 1}), ParameterVector{A});
-
- auto backend = runtime::Backend::create("${BACKEND_NAME}");
-
- // Create some tensors for input/output
- auto a = backend->create_tensor(element::boolean, shape);
- copy_data(a, vector<char>{0, 0, 0, 0});
- auto result = backend->create_tensor(element::boolean, Shape{});
-
- auto handle = backend->compile(f);
- handle->call_with_validate({result}, {a});
- EXPECT_EQ((vector<char>{0}), read_vector<char>(result));
-}
-
-NGRAPH_TEST(${BACKEND_NAME}, any_2x0_to_scalar)
-{
- Shape shape{2, 0};
- auto A = make_shared<op::Parameter>(element::boolean, shape);
- auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{0, 1}), ParameterVector{A});
-
- auto backend = runtime::Backend::create("${BACKEND_NAME}");
-
- // Create some tensors for input/output
- auto a = backend->create_tensor(element::boolean, shape);
- auto result = backend->create_tensor(element::boolean, Shape{});
-
- auto handle = backend->compile(f);
- handle->call_with_validate({result}, {a});
- EXPECT_EQ((vector<char>{0}), read_vector<char>(result));
-}
-
-NGRAPH_TEST(${BACKEND_NAME}, any_2x3_eliminate_col_dim)
-{
- Shape shape{2, 3};
- auto A = make_shared<op::Parameter>(element::boolean, shape);
- auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{1}), ParameterVector{A});
-
- auto backend = runtime::Backend::create("${BACKEND_NAME}");
-
- // Create some tensors for input/output
- auto a = backend->create_tensor(element::boolean, shape);
- copy_data(a, test::NDArray<char, 2>({{0, 1, 0}, {0, 0, 0}}).get_vector());
- auto result = backend->create_tensor(element::boolean, Shape{2});
-
- auto handle = backend->compile(f);
- handle->call_with_validate({result}, {a});
- EXPECT_EQ((vector<char>{1, 0}), read_vector<char>(result));
-}
-
-NGRAPH_TEST(${BACKEND_NAME}, any_2x3_eliminate_row_dim)
-{
- Shape shape{2, 3};
- auto A = make_shared<op::Parameter>(element::boolean, shape);
- auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{0}), ParameterVector{A});
-
- auto backend = runtime::Backend::create("${BACKEND_NAME}");
-
- // Create some tensors for input/output
- auto a = backend->create_tensor(element::boolean, shape);
- copy_data(a, test::NDArray<char, 2>({{0, 1, 0}, {0, 0, 1}}).get_vector());
- auto result = backend->create_tensor(element::boolean, Shape{3});
-
- auto handle = backend->compile(f);
- handle->call_with_validate({result}, {a});
- EXPECT_EQ((vector<char>{0, 1, 1}), read_vector<char>(result));
-}
-
-NGRAPH_TEST(${BACKEND_NAME}, any_2x2x3_eliminate_dim_0)
-{
- Shape shape{2, 2, 3};
- auto A = make_shared<op::Parameter>(element::boolean, shape);
- auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{0}), ParameterVector{A});
-
- auto backend = runtime::Backend::create("${BACKEND_NAME}");
-
- // Create some tensors for input/output
- auto a = backend->create_tensor(element::boolean, shape);
- copy_data(
- a, test::NDArray<char, 3>({{{0, 1, 0}, {0, 0, 1}}, {{1, 0, 1}, {0, 0, 0}}}).get_vector());
- auto result = backend->create_tensor(element::boolean, Shape{2, 3});
-
- auto handle = backend->compile(f);
- handle->call_with_validate({result}, {a});
- EXPECT_EQ((vector<char>{1, 1, 1, 0, 0, 1}), read_vector<char>(result));
-}
-
-NGRAPH_TEST(${BACKEND_NAME}, any_2x2x3_eliminate_dim_1)
-{
- Shape shape{2, 2, 3};
- auto A = make_shared<op::Parameter>(element::boolean, shape);
- auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{1}), ParameterVector{A});
-
- auto backend = runtime::Backend::create("${BACKEND_NAME}");
-
- // Create some tensors for input/output
- auto a = backend->create_tensor(element::boolean, shape);
- copy_data(
- a, test::NDArray<char, 3>({{{0, 1, 0}, {0, 0, 1}}, {{1, 0, 1}, {0, 0, 0}}}).get_vector());
- auto result = backend->create_tensor(element::boolean, Shape{2, 3});
-
- auto handle = backend->compile(f);
- handle->call_with_validate({result}, {a});
- EXPECT_EQ((vector<char>{0, 1, 1, 1, 0, 1}), read_vector<char>(result));
-}
-
-NGRAPH_TEST(${BACKEND_NAME}, any_2x2x3_eliminate_dim_2)
-{
- Shape shape{2, 2, 3};
- auto A = make_shared<op::Parameter>(element::boolean, shape);
- auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{2}), ParameterVector{A});
-
- auto backend = runtime::Backend::create("${BACKEND_NAME}");
-
- // Create some tensors for input/output
- auto a = backend->create_tensor(element::boolean, shape);
- copy_data(
- a, test::NDArray<char, 3>({{{0, 1, 0}, {0, 0, 1}}, {{1, 0, 1}, {0, 0, 0}}}).get_vector());
- auto result = backend->create_tensor(element::boolean, Shape{2, 2});
-
- auto handle = backend->compile(f);
- handle->call_with_validate({result}, {a});
- EXPECT_EQ((vector<char>{1, 1, 1, 0}), read_vector<char>(result));
-}
-
-NGRAPH_TEST(${BACKEND_NAME}, any_2x2x3_eliminate_dims_0_1)
-{
- Shape shape{2, 2, 3};
- auto A = make_shared<op::Parameter>(element::boolean, shape);
- auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{0, 1}), ParameterVector{A});
-
- auto backend = runtime::Backend::create("${BACKEND_NAME}");
-
- // Create some tensors for input/output
- auto a = backend->create_tensor(element::boolean, shape);
- copy_data(
- a, test::NDArray<char, 3>({{{0, 1, 0}, {0, 0, 1}}, {{1, 0, 1}, {0, 0, 0}}}).get_vector());
- auto result = backend->create_tensor(element::boolean, Shape{3});
-
- auto handle = backend->compile(f);
- handle->call_with_validate({result}, {a});
- EXPECT_EQ((vector<char>{1, 1, 1}), read_vector<char>(result));
-}
-
-NGRAPH_TEST(${BACKEND_NAME}, any_2x2x3_eliminate_dims_0_2)
-{
- Shape shape{2, 2, 3};
- auto A = make_shared<op::Parameter>(element::boolean, shape);
- auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{0, 2}), ParameterVector{A});
-
- auto backend = runtime::Backend::create("${BACKEND_NAME}");
-
- // Create some tensors for input/output
- auto a = backend->create_tensor(element::boolean, shape);
- copy_data(
- a, test::NDArray<char, 3>({{{0, 1, 0}, {0, 0, 1}}, {{1, 0, 1}, {0, 0, 0}}}).get_vector());
- auto result = backend->create_tensor(element::boolean, Shape{2});
-
- auto handle = backend->compile(f);
- handle->call_with_validate({result}, {a});
- EXPECT_EQ((vector<char>{1, 1}), read_vector<char>(result));
-}
-
-NGRAPH_TEST(${BACKEND_NAME}, any_2x2x3_eliminate_dims_1_2)
-{
- Shape shape{2, 2, 3};
- auto A = make_shared<op::Parameter>(element::boolean, shape);
- auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{1, 2}), ParameterVector{A});
-
- auto backend = runtime::Backend::create("${BACKEND_NAME}");
-
- // Create some tensors for input/output
- auto a = backend->create_tensor(element::boolean, shape);
- copy_data(
- a, test::NDArray<char, 3>({{{0, 1, 0}, {0, 0, 1}}, {{1, 0, 1}, {0, 0, 0}}}).get_vector());
- auto result = backend->create_tensor(element::boolean, Shape{2});
-
- auto handle = backend->compile(f);
- handle->call_with_validate({result}, {a});
- EXPECT_EQ((vector<char>{1, 1}), read_vector<char>(result));
-}
-
-NGRAPH_TEST(${BACKEND_NAME}, any_2x2x3_eliminate_dims_0_1_2)
-{
- Shape shape{2, 2, 3};
- auto A = make_shared<op::Parameter>(element::boolean, shape);
- auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{0, 1, 2}), ParameterVector{A});
-
- auto backend = runtime::Backend::create("${BACKEND_NAME}");
-
- // Create some tensors for input/output
- auto a = backend->create_tensor(element::boolean, shape);
- copy_data(
- a, test::NDArray<char, 3>({{{0, 1, 0}, {0, 0, 1}}, {{1, 0, 1}, {0, 0, 0}}}).get_vector());
- auto result = backend->create_tensor(element::boolean, Shape{});
-
- auto handle = backend->compile(f);
- handle->call_with_validate({result}, {a});
- EXPECT_EQ((vector<char>{1}), read_vector<char>(result));
-}
ASSERT_EQ(values_expected, values_out);
}
-TEST(constant_folding, const_any)
-{
- Shape input_shape{3, 3};
-
- vector<char> values_in{1, 0, 0, 1, 0, 1, 0, 0, 0};
- auto constant = op::Constant::create(element::boolean, input_shape, values_in);
- auto convert = make_shared<op::Any>(constant, AxisSet{1});
- convert->set_friendly_name("test");
- auto f = make_shared<Function>(convert, ParameterVector{});
-
- pass::Manager pass_manager;
- pass_manager.register_pass<pass::ConstantFolding>();
- pass_manager.run_passes(f);
-
- ASSERT_EQ(count_ops_of_type<op::Any>(f), 0);
- ASSERT_EQ(count_ops_of_type<op::Constant>(f), 1);
-
- auto new_const =
- as_type_ptr<op::Constant>(f->get_results().at(0)->input_value(0).get_node_shared_ptr());
- ASSERT_TRUE(new_const);
- ASSERT_EQ(new_const->get_friendly_name(), "test");
- auto values_out = new_const->get_vector<char>();
-
- vector<char> values_expected{1, 1, 0};
-
- ASSERT_EQ(values_expected, values_out);
-}
-
TEST(constant_folding, const_reduce_logical_or__no_keepdims)
{
const Shape input_shape{3, 3};
EXPECT_FALSE(op::is_binary_elementwise_logical(&node));
}
- void op_is_Any()
- {
- op::Any node;
- EXPECT_FALSE(op::is_unary_elementwise_arithmetic(&node));
- EXPECT_FALSE(op::is_binary_elementwise_arithmetic(&node));
- EXPECT_FALSE(op::is_binary_elementwise_comparison(&node));
- EXPECT_FALSE(op::is_binary_elementwise_logical(&node));
- }
-
void op_is_Asin()
{
op::Asin node;
#include "ngraph/runtime/aligned_buffer.hpp"
#include "ngraph/runtime/reference/abs.hpp"
#include "ngraph/runtime/reference/acos.hpp"
-#include "ngraph/runtime/reference/any.hpp"
#include "ngraph/runtime/reference/asin.hpp"
#include "ngraph/runtime/reference/atan.hpp"
#include "ngraph/runtime/reference/atan2.hpp"
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
- case OP_TYPEID::Any:
- {
- const op::Any* any = static_cast<const op::Any*>(&node);
- reference::any(args[0]->get_data_ptr<const char>(),
- out[0]->get_data_ptr<char>(),
- node.get_input_shape(0),
- any->get_reduction_axes(),
- false);
- break;
- }
case OP_TYPEID::Asin:
{
size_t element_count = shape_size(node.get_output_shape(0));
NGRAPH_OP(Abs, ngraph::op)
NGRAPH_OP(Acos, ngraph::op)
NGRAPH_OP(Add, ngraph::op)
-NGRAPH_OP(Any, ngraph::op)
NGRAPH_OP(Asin, ngraph::op)
NGRAPH_OP(Atan, ngraph::op)
NGRAPH_OP(AvgPool, ngraph::op::v0)
+++ /dev/null
-//*****************************************************************************
-// Copyright 2017-2020 Intel Corporation
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//*****************************************************************************
-
-#include "gtest/gtest.h"
-#include "ngraph/ngraph.hpp"
-#include "util/type_prop.hpp"
-
-NGRAPH_SUPPRESS_DEPRECATED_START
-
-using namespace std;
-using namespace ngraph;
-
-TEST(type_prop, any_deduce)
-{
- auto param_0 = make_shared<op::Parameter>(element::boolean, Shape{2, 4});
-
- auto r0 = make_shared<op::Any>(param_0, AxisSet{0});
- ASSERT_EQ(r0->get_element_type(), element::boolean);
- ASSERT_EQ(r0->get_shape(), (Shape{4}));
-
- auto r1 = make_shared<op::Any>(param_0, AxisSet{1});
- ASSERT_EQ(r1->get_element_type(), element::boolean);
- ASSERT_EQ(r1->get_shape(), (Shape{2}));
-
- auto r01 = make_shared<op::Any>(param_0, AxisSet{0, 1});
- ASSERT_EQ(r01->get_element_type(), element::boolean);
- ASSERT_EQ(r01->get_shape(), (Shape{}));
-
- auto r_none = make_shared<op::Any>(param_0, AxisSet{});
- ASSERT_EQ(r_none->get_element_type(), element::boolean);
- ASSERT_EQ(r_none->get_shape(), (Shape{2, 4}));
-}
-
-TEST(type_prop, any_deduce_et_dynamic)
-{
- auto param_0 = make_shared<op::Parameter>(element::dynamic, Shape{2, 4});
-
- auto r0 = make_shared<op::Any>(param_0, AxisSet{0});
- ASSERT_EQ(r0->get_element_type(), element::boolean);
- ASSERT_EQ(r0->get_shape(), (Shape{4}));
-
- auto r1 = make_shared<op::Any>(param_0, AxisSet{1});
- ASSERT_EQ(r1->get_element_type(), element::boolean);
- ASSERT_EQ(r1->get_shape(), (Shape{2}));
-
- auto r01 = make_shared<op::Any>(param_0, AxisSet{0, 1});
- ASSERT_EQ(r01->get_element_type(), element::boolean);
- ASSERT_EQ(r01->get_shape(), (Shape{}));
-
- auto r_none = make_shared<op::Any>(param_0, AxisSet{});
- ASSERT_EQ(r_none->get_element_type(), element::boolean);
- ASSERT_EQ(r_none->get_shape(), (Shape{2, 4}));
-}
-
-TEST(type_prop, any_et_non_boolean)
-{
- auto param_0 = make_shared<op::Parameter>(element::i32, Shape{2, 4});
-
- try
- {
- auto r = make_shared<op::Any>(param_0, AxisSet{0, 1});
- // Should have thrown, so fail if it didn't
- FAIL() << "Did not detect invalid element type for Any";
- }
- catch (const NodeValidationFailure& error)
- {
- EXPECT_HAS_SUBSTRING(error.what(), std::string("Input element type must be boolean"));
- }
- catch (...)
- {
- FAIL() << "Deduced type check failed for unexpected reason";
- }
-}
-
-TEST(type_prop, any_axis_oob)
-{
- auto param_0 = make_shared<op::Parameter>(element::boolean, Shape{2, 4});
-
- try
- {
- auto r = make_shared<op::Any>(param_0, AxisSet{0, 2, 1});
- // Should have thrown, so fail if it didn't
- FAIL() << "Did not detect out-of-bound axis for Any";
- }
- catch (const NodeValidationFailure& error)
- {
- EXPECT_HAS_SUBSTRING(error.what(), std::string("Reduction axis (2) is out of bounds"));
- }
- catch (...)
- {
- FAIL() << "Deduced type check failed for unexpected reason";
- }
-}
-
-TEST(type_prop, any_partial_rank_dynamic)
-{
- auto param = make_shared<op::Parameter>(element::boolean, PartialShape::dynamic());
- auto axes = AxisSet{2385, 0, 4404}; // arbitrary
- auto any = make_shared<op::Any>(param, axes);
-
- EXPECT_EQ(any->get_output_element_type(0), element::boolean);
- EXPECT_TRUE(any->get_output_partial_shape(0).is_dynamic());
-}
-
-TEST(type_prop, any_partial_rank_static_dynamic_ok_result_static)
-{
- auto param = make_shared<op::Parameter>(element::boolean,
- PartialShape{1, 2, Dimension::dynamic(), 4, 5});
- auto axes = AxisSet{2, 3};
- auto any = make_shared<op::Any>(param, axes);
-
- EXPECT_EQ(any->get_output_element_type(0), element::boolean);
- EXPECT_EQ(any->get_shape(), (Shape{1, 2, 5}));
-}
-
-TEST(type_prop, any_partial_rank_static_dynamic_ok_result_dynamic)
-{
- auto param = make_shared<op::Parameter>(
- element::boolean, PartialShape{1, 2, Dimension::dynamic(), 4, Dimension::dynamic()});
- auto axes = AxisSet{2, 3};
- auto any = make_shared<op::Any>(param, axes);
-
- EXPECT_EQ(any->get_output_element_type(0), element::boolean);
- EXPECT_TRUE(
- any->get_output_partial_shape(0).same_scheme(PartialShape{1, 2, Dimension::dynamic()}));
-}
-
-TEST(type_prop, any_partial_rank_static_dynamic_axes_oob)
-{
- auto param = make_shared<op::Parameter>(
- element::boolean, PartialShape{1, 2, Dimension::dynamic(), 4, Dimension::dynamic()});
- auto axes = AxisSet{2, 5, 1};
-
- try
- {
- auto any = make_shared<op::Any>(param, axes);
- // Should have thrown, so fail if it didn't
- FAIL() << "Did not detect out-of-bound axis for Any (rank-static dynamic input)";
- }
- catch (const NodeValidationFailure& error)
- {
- EXPECT_HAS_SUBSTRING(error.what(), std::string("Reduction axis (5) is out of bounds"));
- }
- catch (...)
- {
- FAIL() << "Deduced type check failed for unexpected reason";
- }
-}