}
};
-G_API_OP(Transpose,
- <cv::GMat(cv::GMat)>,
- "sample.custom.mtcnn.transpose") {
- static cv::GMatDesc outMeta(const cv::GMatDesc in) {
- return in.withSize(cv::Size(in.size.height, in.size.width));
- }
-};
-
//Custom kernels implementation
GAPI_OCV_KERNEL(OCVBuildFaces, BuildFaces) {
static void run(const cv::Mat & in_scores,
}
};// GAPI_OCV_KERNEL(SwapFaces)
-GAPI_OCV_KERNEL(OCVTranspose, Transpose) {
- static void run(const cv::Mat &in_mat,
- cv::Mat &out_mat) {
- cv::transpose(in_mat, out_mat);
- }
-};// GAPI_OCV_KERNEL(Transpose)
} // anonymous namespace
} // namespace custom
//The very first PNet pyramid layer to init total_faces[0]
in_resized[0] = cv::gapi::resize(in_originalRGB, level_size[0]);
- in_transposed[0] = custom::Transpose::on(in_resized[0]);
+ in_transposed[0] = cv::gapi::transpose(in_resized[0]);
std::tie(regressions[0], scores[0]) = run_mtcnn_p(in_transposed[0], get_pnet_level_name(level_size[0]));
cv::GArray<custom::Face> faces0 = custom::BuildFaces::on(scores[0], regressions[0], static_cast<float>(scales[0]), conf_thresh_p);
cv::GArray<custom::Face> final_p_faces_for_bb2squares = custom::ApplyRegression::on(faces0, true);
for (int i = 1; i < pyramid_levels; ++i)
{
in_resized[i] = cv::gapi::resize(in_originalRGB, level_size[i]);
- in_transposed[i] = custom::Transpose::on(in_resized[i]);
+ in_transposed[i] = cv::gapi::transpose(in_resized[i]);
std::tie(regressions[i], scores[i]) = run_mtcnn_p(in_transposed[i], get_pnet_level_name(level_size[i]));
cv::GArray<custom::Face> faces = custom::BuildFaces::on(scores[i], regressions[i], static_cast<float>(scales[i]), conf_thresh_p);
cv::GArray<custom::Face> final_p_faces_for_bb2squares_i = custom::ApplyRegression::on(faces, true);
//Refinement part of MTCNN graph
cv::GArray<cv::Rect> faces_roi_pnet = custom::R_O_NetPreProcGetROIs::on(final_faces_pnet, in_sz);
cv::GArray<cv::GMat> regressionsRNet, scoresRNet;
- cv::GMat in_originalRGB_transposed = custom::Transpose::on(in_originalRGB);
+ cv::GMat in_originalRGB_transposed = cv::gapi::transpose(in_originalRGB);
std::tie(regressionsRNet, scoresRNet) = cv::gapi::infer<custom::MTCNNRefinement>(faces_roi_pnet, in_originalRGB_transposed);
//Refinement post-processing
, custom::OCVRNetPostProc
, custom::OCVONetPostProc
, custom::OCVSwapFaces
- , custom::OCVTranspose
>();
auto mtcnn_args = cv::compile_args(networks_mtcnn, kernels_mtcnn);
if (streaming_queue_capacity != 0)