}
+LInstruction* LChunkBuilder::DoDivByPowerOf2I(HDiv* instr) {
+ ASSERT(instr->representation().IsSmiOrInteger32());
+ ASSERT(instr->left()->representation().Equals(instr->representation()));
+ ASSERT(instr->right()->representation().Equals(instr->representation()));
+ LOperand* dividend = UseRegister(instr->left());
+ int32_t divisor = instr->right()->GetInteger32Constant();
+ LInstruction* result =
+ DefineAsRegister(new(zone()) LDivByPowerOf2I(dividend, divisor));
+ bool can_deopt =
+ (instr->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ instr->left()->RangeCanInclude(0) && divisor < 0) ||
+ (instr->CheckFlag(HValue::kCanOverflow) &&
+ instr->left()->RangeCanInclude(kMinInt) && divisor == -1) ||
+ (!instr->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
+ divisor != 1 && divisor != -1);
+ return can_deopt ? AssignEnvironment(result) : result;
+}
+
+
+LInstruction* LChunkBuilder::DoDivI(HBinaryOperation* instr) {
+ ASSERT(instr->representation().IsSmiOrInteger32());
+ ASSERT(instr->left()->representation().Equals(instr->representation()));
+ ASSERT(instr->right()->representation().Equals(instr->representation()));
+ LOperand* dividend = UseRegister(instr->left());
+ LOperand* divisor = UseRegister(instr->right());
+ LOperand* temp = instr->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)
+ ? NULL : TempRegister();
+ LDivI* div = new(zone()) LDivI(dividend, divisor, temp);
+ return AssignEnvironment(DefineAsRegister(div));
+}
+
+
LInstruction* LChunkBuilder::DoDiv(HDiv* instr) {
- if (instr->representation().IsInteger32()) {
- // TODO(all): Update this case to support smi inputs.
- ASSERT(instr->left()->representation().Equals(instr->representation()));
- ASSERT(instr->right()->representation().Equals(instr->representation()));
- if (instr->RightIsPowerOf2()) {
- ASSERT(!instr->CheckFlag(HValue::kCanBeDivByZero));
- LOperand* value = UseRegister(instr->left());
- LDivI* div = new(zone()) LDivI(value, UseConstant(instr->right()), NULL);
- return AssignEnvironment(DefineAsRegister(div));
- }
- LOperand* dividend = UseRegister(instr->left());
- LOperand* divisor = UseRegister(instr->right());
- LOperand* temp = instr->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)
- ? NULL : TempRegister();
- LDivI* div = new(zone()) LDivI(dividend, divisor, temp);
- return AssignEnvironment(DefineAsRegister(div));
+ if (instr->representation().IsSmiOrInteger32()) {
+ // TODO(all): Add Smi support to DoDivI and turn this into a ternary.
+ if (instr->RightIsPowerOf2()) return DoDivByPowerOf2I(instr);
+ if (instr->representation().IsInteger32()) return DoDivI(instr);
+ return DoArithmeticT(Token::DIV, instr);
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::DIV, instr);
} else {
}
-LInstruction* LChunkBuilder::DoMathFloorOfDiv(HMathFloorOfDiv* instr) {
- HValue* right = instr->right();
+LInstruction* LChunkBuilder::DoFlooringDivByPowerOf2I(HMathFloorOfDiv* instr) {
+ LOperand* dividend = UseRegisterAtStart(instr->left());
+ int32_t divisor = instr->right()->GetInteger32Constant();
+ LInstruction* result =
+ DefineSameAsFirst(new(zone()) LFlooringDivByPowerOf2I(dividend, divisor));
+ bool can_deopt =
+ (instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) ||
+ (instr->left()->RangeCanInclude(kMinInt) && divisor == -1);
+ return can_deopt ? AssignEnvironment(result) : result;
+}
+
+
+LInstruction* LChunkBuilder::DoFlooringDivI(HMathFloorOfDiv* instr) {
LOperand* dividend = UseRegister(instr->left());
- LOperand* divisor = UseRegister(right);
+ LOperand* divisor = UseRegister(instr->right());
LOperand* remainder = TempRegister();
- return AssignEnvironment(DefineAsRegister(
- new(zone()) LMathFloorOfDiv(dividend, divisor, remainder)));
+ LInstruction* result =
+ DefineAsRegister(new(zone()) LFlooringDivI(dividend, divisor, remainder));
+ return AssignEnvironment(result);
+}
+
+
+LInstruction* LChunkBuilder::DoMathFloorOfDiv(HMathFloorOfDiv* instr) {
+ if (instr->RightIsPowerOf2()) {
+ return DoFlooringDivByPowerOf2I(instr);
+ } else if (instr->right()->IsConstant()) {
+ // TODO(svenpanne) Do something more efficient in this case.
+ return DoFlooringDivI(instr);
+ } else {
+ return DoFlooringDivI(instr);
+ }
}
}
-LInstruction* LChunkBuilder::DoMod(HMod* hmod) {
- HValue* hleft = hmod->left();
- HValue* hright = hmod->right();
-
- // TODO(jbramley): Add smi support.
- if (hmod->representation().IsInteger32()) {
- ASSERT(hleft->representation().IsInteger32());
- ASSERT(hleft->representation().IsInteger32());
- LOperand* left_op;
- LOperand* right_op;
+LInstruction* LChunkBuilder::DoModByPowerOf2I(HMod* instr) {
+ ASSERT(instr->representation().IsSmiOrInteger32());
+ ASSERT(instr->left()->representation().Equals(instr->representation()));
+ ASSERT(instr->right()->representation().Equals(instr->representation()));
+ LOperand* dividend = UseRegisterAtStart(instr->left());
+ int32_t divisor = instr->right()->GetInteger32Constant();
+ LInstruction* result =
+ DefineSameAsFirst(new(zone()) LModByPowerOf2I(dividend, divisor));
+ bool can_deopt =
+ instr->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ instr->left()->CanBeNegative();
+ return can_deopt ? AssignEnvironment(result) : result;
+}
- if (hmod->RightIsPowerOf2()) {
- left_op = UseRegisterAtStart(hleft);
- right_op = UseConstant(hright);
- } else {
- right_op = UseRegister(hright);
- left_op = UseRegister(hleft);
- }
- LModI* lmod = new(zone()) LModI(left_op, right_op);
+LInstruction* LChunkBuilder::DoModI(HMod* instr) {
+ ASSERT(instr->representation().IsSmiOrInteger32());
+ ASSERT(instr->left()->representation().Equals(instr->representation()));
+ ASSERT(instr->right()->representation().Equals(instr->representation()));
+ LOperand* dividend = UseRegister(instr->left());
+ LOperand* divisor = UseRegister(instr->right());
+ LInstruction* result =
+ DefineAsRegister(new(zone()) LModI(dividend, divisor));
+ bool can_deopt = (instr->right()->CanBeZero() ||
+ (instr->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ instr->left()->CanBeNegative() && instr->CanBeZero()));
+ return can_deopt ? AssignEnvironment(result) : result;
+}
- if (hmod->right()->CanBeZero() ||
- (hmod->CheckFlag(HValue::kBailoutOnMinusZero) &&
- hmod->left()->CanBeNegative() && hmod->CanBeZero())) {
- AssignEnvironment(lmod);
- }
- return DefineAsRegister(lmod);
- } else if (hmod->representation().IsSmiOrTagged()) {
- return DoArithmeticT(Token::MOD, hmod);
+LInstruction* LChunkBuilder::DoMod(HMod* instr) {
+ if (instr->representation().IsSmiOrInteger32()) {
+ // TODO(all): Add Smi support to DoDivI and turn this into a ternary.
+ if (instr->RightIsPowerOf2()) return DoModByPowerOf2I(instr);
+ if (instr->representation().IsInteger32()) return DoModI(instr);
+ return DoArithmeticT(Token::MOD, instr);
+ } else if (instr->representation().IsDouble()) {
+ return DoArithmeticD(Token::MOD, instr);
} else {
- return DoArithmeticD(Token::MOD, hmod);
+ return DoArithmeticT(Token::MOD, instr);
}
}
V(DebugBreak) \
V(DeclareGlobals) \
V(Deoptimize) \
+ V(DivByPowerOf2I) \
V(DivI) \
V(DoubleToIntOrSmi) \
V(Drop) \
V(Dummy) \
V(DummyUse) \
+ V(FlooringDivByPowerOf2I) \
+ V(FlooringDivI) \
V(ForInCacheArray) \
V(ForInPrepareMap) \
V(FunctionLiteral) \
V(MathClz32) \
V(MathExp) \
V(MathFloor) \
- V(MathFloorOfDiv) \
V(MathLog) \
V(MathMinMax) \
V(MathPowHalf) \
V(MathRound) \
V(MathSqrt) \
+ V(ModByPowerOf2I) \
V(ModI) \
V(MulConstIS) \
V(MulI) \
};
+class LDivByPowerOf2I V8_FINAL : public LTemplateInstruction<1, 1, 0> {
+ public:
+ LDivByPowerOf2I(LOperand* dividend, int32_t divisor) {
+ inputs_[0] = dividend;
+ divisor_ = divisor;
+ }
+
+ LOperand* dividend() { return inputs_[0]; }
+ int32_t divisor() const { return divisor_; }
+
+ DECLARE_CONCRETE_INSTRUCTION(DivByPowerOf2I, "div-by-power-of-2-i")
+ DECLARE_HYDROGEN_ACCESSOR(Div)
+
+ private:
+ int32_t divisor_;
+};
+
+
class LDivI V8_FINAL : public LTemplateInstruction<1, 2, 1> {
public:
LDivI(LOperand* left, LOperand* right, LOperand* temp) {
bool is_flooring() { return hydrogen_value()->IsMathFloorOfDiv(); }
DECLARE_CONCRETE_INSTRUCTION(DivI, "div-i")
- DECLARE_HYDROGEN_ACCESSOR(Div)
+ DECLARE_HYDROGEN_ACCESSOR(BinaryOperation)
};
};
-class LMathFloorOfDiv V8_FINAL : public LTemplateInstruction<1, 2, 1> {
+class LFlooringDivByPowerOf2I V8_FINAL : public LTemplateInstruction<1, 1, 0> {
public:
- LMathFloorOfDiv(LOperand* left,
- LOperand* right,
- LOperand* temp = NULL) {
- inputs_[0] = left;
- inputs_[1] = right;
+ LFlooringDivByPowerOf2I(LOperand* dividend, int32_t divisor) {
+ inputs_[0] = dividend;
+ divisor_ = divisor;
+ }
+
+ LOperand* dividend() { return inputs_[0]; }
+ int32_t divisor() const { return divisor_; }
+
+ DECLARE_CONCRETE_INSTRUCTION(FlooringDivByPowerOf2I,
+ "flooring-div-by-power-of-2-i")
+ DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
+
+ private:
+ int32_t divisor_;
+};
+
+
+class LFlooringDivI V8_FINAL : public LTemplateInstruction<1, 2, 1> {
+ public:
+ LFlooringDivI(LOperand* dividend, LOperand* divisor, LOperand* temp) {
+ inputs_[0] = dividend;
+ inputs_[1] = divisor;
temps_[0] = temp;
}
- LOperand* left() { return inputs_[0]; }
- LOperand* right() { return inputs_[1]; }
+ LOperand* dividend() { return inputs_[0]; }
+ LOperand* divisor() { return inputs_[1]; }
LOperand* temp() { return temps_[0]; }
- DECLARE_CONCRETE_INSTRUCTION(MathFloorOfDiv, "math-floor-of-div")
+ DECLARE_CONCRETE_INSTRUCTION(FlooringDivI, "flooring-div-i")
DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
};
};
+class LModByPowerOf2I V8_FINAL : public LTemplateInstruction<1, 1, 0> {
+ public:
+ LModByPowerOf2I(LOperand* dividend, int32_t divisor) {
+ inputs_[0] = dividend;
+ divisor_ = divisor;
+ }
+
+ LOperand* dividend() { return inputs_[0]; }
+ int32_t divisor() const { return divisor_; }
+
+ DECLARE_CONCRETE_INSTRUCTION(ModByPowerOf2I, "mod-by-power-of-2-i")
+ DECLARE_HYDROGEN_ACCESSOR(Mod)
+
+ private:
+ int32_t divisor_;
+};
+
+
class LModI V8_FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LModI(LOperand* left, LOperand* right) {
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DECLARE_DO)
#undef DECLARE_DO
+ LInstruction* DoDivByPowerOf2I(HDiv* instr);
+ LInstruction* DoDivI(HBinaryOperation* instr);
+ LInstruction* DoModByPowerOf2I(HMod* instr);
+ LInstruction* DoModI(HMod* instr);
+ LInstruction* DoFlooringDivByPowerOf2I(HMathFloorOfDiv* instr);
+ LInstruction* DoFlooringDivI(HMathFloorOfDiv* instr);
+
static bool HasMagicNumberForDivision(int32_t divisor);
private:
}
-void LCodeGen::DoDivI(LDivI* instr) {
- if (!instr->is_flooring() && instr->hydrogen()->RightIsPowerOf2()) {
- HDiv* hdiv = instr->hydrogen();
- Register dividend = ToRegister32(instr->left());
- int32_t divisor = hdiv->right()->GetInteger32Constant();
- Register result = ToRegister32(instr->result());
- ASSERT(!result.is(dividend));
+void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
+ Register dividend = ToRegister32(instr->dividend());
+ int32_t divisor = instr->divisor();
+ Register result = ToRegister32(instr->result());
+ ASSERT(divisor == kMinInt || (divisor != 0 && IsPowerOf2(Abs(divisor))));
+ ASSERT(!result.is(dividend));
- // Check for (0 / -x) that will produce negative zero.
- if (hdiv->left()->RangeCanInclude(0) && divisor < 0 &&
- hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
- __ Cmp(dividend, 0);
- DeoptimizeIf(eq, instr->environment());
- }
- // Check for (kMinInt / -1).
- if (hdiv->left()->RangeCanInclude(kMinInt) && divisor == -1 &&
- hdiv->CheckFlag(HValue::kCanOverflow)) {
- __ Cmp(dividend, kMinInt);
- DeoptimizeIf(eq, instr->environment());
- }
- // Deoptimize if remainder will not be 0.
- if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
- Abs(divisor) != 1) {
- __ Tst(dividend, Abs(divisor) - 1);
- DeoptimizeIf(ne, instr->environment());
- }
- if (divisor == -1) { // Nice shortcut, not needed for correctness.
- __ Neg(result, dividend);
- return;
- }
- int32_t shift = WhichPowerOf2(Abs(divisor));
- if (shift == 0) {
- __ Mov(result, dividend);
- } else if (shift == 1) {
- __ Add(result, dividend, Operand(dividend, LSR, 31));
- } else {
- __ Mov(result, Operand(dividend, ASR, 31));
- __ Add(result, dividend, Operand(result, LSR, 32 - shift));
- }
- if (shift > 0) __ Mov(result, Operand(result, ASR, shift));
- if (divisor < 0) __ Neg(result, result);
+ // Check for (0 / -x) that will produce negative zero.
+ HDiv* hdiv = instr->hydrogen();
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ hdiv->left()->RangeCanInclude(0) && divisor < 0) {
+ __ Cmp(dividend, 0);
+ DeoptimizeIf(eq, instr->environment());
+ }
+ // Check for (kMinInt / -1).
+ if (hdiv->CheckFlag(HValue::kCanOverflow) &&
+ hdiv->left()->RangeCanInclude(kMinInt) && divisor == -1) {
+ __ Cmp(dividend, kMinInt);
+ DeoptimizeIf(eq, instr->environment());
+ }
+ // Deoptimize if remainder will not be 0.
+ if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
+ divisor != 1 && divisor != -1) {
+ int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+ __ Tst(dividend, mask);
+ DeoptimizeIf(ne, instr->environment());
+ }
+
+ if (divisor == -1) { // Nice shortcut, not needed for correctness.
+ __ Neg(result, dividend);
return;
}
+ int32_t shift = WhichPowerOf2Abs(divisor);
+ if (shift == 0) {
+ __ Mov(result, dividend);
+ } else if (shift == 1) {
+ __ Add(result, dividend, Operand(dividend, LSR, 31));
+ } else {
+ __ Mov(result, Operand(dividend, ASR, 31));
+ __ Add(result, dividend, Operand(result, LSR, 32 - shift));
+ }
+ if (shift > 0) __ Mov(result, Operand(result, ASR, shift));
+ if (divisor < 0) __ Neg(result, result);
+}
+
+void LCodeGen::DoDivI(LDivI* instr) {
Register dividend = ToRegister32(instr->left());
Register divisor = ToRegister32(instr->right());
Register result = ToRegister32(instr->result());
}
-void LCodeGen::DoMathFloorOfDiv(LMathFloorOfDiv* instr) {
- Register result = ToRegister32(instr->result());
- Register left = ToRegister32(instr->left());
- Register right = ToRegister32(instr->right());
+void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
+ Register dividend = ToRegister32(instr->dividend());
+ int32_t divisor = instr->divisor();
+ ASSERT(dividend.is(ToRegister32(instr->result())));
+
+ // If the divisor is positive, things are easy: There can be no deopts and we
+ // can simply do an arithmetic right shift.
+ if (divisor == 1) return;
+ int32_t shift = WhichPowerOf2Abs(divisor);
+ if (divisor > 1) {
+ __ Mov(dividend, Operand(dividend, ASR, shift));
+ return;
+ }
+
+ // If the divisor is negative, we have to negate and handle edge cases.
+ Label not_kmin_int, done;
+ __ Negs(dividend, dividend);
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(eq, instr->environment());
+ }
+ if (instr->hydrogen()->left()->RangeCanInclude(kMinInt)) {
+ // Note that we could emit branch-free code, but that would need one more
+ // register.
+ __ B(vc, ¬_kmin_int);
+ if (divisor == -1) {
+ Deoptimize(instr->environment());
+ } else {
+ __ Mov(dividend, kMinInt / divisor);
+ __ B(&done);
+ }
+ }
+ __ bind(¬_kmin_int);
+ __ Mov(dividend, Operand(dividend, ASR, shift));
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
+ Register dividend = ToRegister32(instr->dividend());
+ Register divisor = ToRegister32(instr->divisor());
Register remainder = ToRegister32(instr->temp());
+ Register result = ToRegister32(instr->result());
// This can't cause an exception on ARM, so we can speculatively
// execute it already now.
- __ Sdiv(result, left, right);
+ __ Sdiv(result, dividend, divisor);
// Check for x / 0.
- DeoptimizeIfZero(right, instr->environment());
+ DeoptimizeIfZero(divisor, instr->environment());
// Check for (kMinInt / -1).
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
- // The V flag will be set iff left == kMinInt.
- __ Cmp(left, 1);
- __ Ccmp(right, -1, NoFlag, vs);
+ // The V flag will be set iff dividend == kMinInt.
+ __ Cmp(dividend, 1);
+ __ Ccmp(divisor, -1, NoFlag, vs);
DeoptimizeIf(eq, instr->environment());
}
// Check for (0 / -x) that will produce negative zero.
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- __ Cmp(right, 0);
- __ Ccmp(left, 0, ZFlag, mi);
- // "right" can't be null because the code would have already been
- // deoptimized. The Z flag is set only if (right < 0) and (left == 0).
+ __ Cmp(divisor, 0);
+ __ Ccmp(dividend, 0, ZFlag, mi);
+ // "divisor" can't be null because the code would have already been
+ // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0).
// In this case we need to deoptimize to produce a -0.
DeoptimizeIf(eq, instr->environment());
}
Label done;
// If both operands have the same sign then we are done.
- __ Eor(remainder, left, right);
+ __ Eor(remainder, dividend, divisor);
__ Tbz(remainder, kWSignBit, &done);
// Check if the result needs to be corrected.
- __ Msub(remainder, result, right, left);
+ __ Msub(remainder, result, divisor, dividend);
__ Cbz(remainder, &done);
__ Sub(result, result, 1);
}
-void LCodeGen::DoModI(LModI* instr) {
+void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
+ Register dividend = ToRegister32(instr->dividend());
+ int32_t divisor = instr->divisor();
+ ASSERT(dividend.is(ToRegister32(instr->result())));
+
+ // Theoretically, a variation of the branch-free code for integer division by
+ // a power of 2 (calculating the remainder via an additional multiplication
+ // (which gets simplified to an 'and') and subtraction) should be faster, and
+ // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
+ // indicate that positive dividends are heavily favored, so the branching
+ // version performs better.
HMod* hmod = instr->hydrogen();
- HValue* hleft = hmod->left();
- HValue* hright = hmod->right();
+ int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+ Label dividend_is_not_negative, done;
+ if (hmod->left()->CanBeNegative()) {
+ __ Cmp(dividend, 0);
+ __ B(pl, ÷nd_is_not_negative);
+ // Note that this is correct even for kMinInt operands.
+ __ Neg(dividend, dividend);
+ __ And(dividend, dividend, Operand(mask));
+ __ Neg(dividend, dividend);
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(eq, instr->environment());
+ }
+ __ B(&done);
+ }
- Label done;
- Register result = ToRegister32(instr->result());
+ __ bind(÷nd_is_not_negative);
+ __ And(dividend, dividend, Operand(mask));
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoModI(LModI* instr) {
Register dividend = ToRegister32(instr->left());
+ Register divisor = ToRegister32(instr->right());
+ Register result = ToRegister32(instr->result());
- bool need_minus_zero_check = (hmod->CheckFlag(HValue::kBailoutOnMinusZero) &&
- hleft->CanBeNegative() && hmod->CanBeZero());
-
- if (hmod->RightIsPowerOf2()) {
- // Note: The code below even works when right contains kMinInt.
- int32_t divisor = Abs(hright->GetInteger32Constant());
-
- if (hleft->CanBeNegative()) {
- __ Cmp(dividend, 0);
- __ Cneg(result, dividend, mi);
- __ And(result, result, divisor - 1);
- __ Cneg(result, result, mi);
- if (need_minus_zero_check) {
- __ Cbnz(result, &done);
- // The result is 0. Deoptimize if the dividend was negative.
- DeoptimizeIf(mi, instr->environment());
- }
+ Label deopt, done;
+ // modulo = dividend - quotient * divisor
+ __ Sdiv(result, dividend, divisor);
+ if (instr->hydrogen()->right()->CanBeZero()) {
+ // Combine the deoptimization sites.
+ Label ok;
+ __ Cbnz(divisor, &ok);
+ __ Bind(&deopt);
+ Deoptimize(instr->environment());
+ __ Bind(&ok);
+ }
+ __ Msub(result, result, divisor, dividend);
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ instr->hydrogen()->left()->CanBeNegative() &&
+ instr->hydrogen()->CanBeZero()) {
+ __ Cbnz(result, &done);
+ if (deopt.is_bound()) { // TODO(all) This is a hack, remove this...
+ __ Tbnz(dividend, kWSignBit, &deopt);
} else {
- __ And(result, dividend, divisor - 1);
- }
-
- } else {
- Label deopt;
- Register divisor = ToRegister32(instr->right());
- // Compute:
- // modulo = dividend - quotient * divisor
- __ Sdiv(result, dividend, divisor);
- if (hright->CanBeZero()) {
- // Combine the deoptimization sites.
- Label ok;
- __ Cbnz(divisor, &ok);
- __ Bind(&deopt);
- Deoptimize(instr->environment());
- __ Bind(&ok);
- }
- __ Msub(result, result, divisor, dividend);
- if (need_minus_zero_check) {
- __ Cbnz(result, &done);
- if (deopt.is_bound()) {
- __ Tbnz(dividend, kWSignBit, &deopt);
- } else {
- DeoptimizeIfNegative(dividend, instr->environment());
- }
+ DeoptimizeIfNegative(dividend, instr->environment());
}
}
__ Bind(&done);
}
+LInstruction* LChunkBuilder::DoDivByPowerOf2I(HDiv* instr) {
+ ASSERT(instr->representation().IsSmiOrInteger32());
+ ASSERT(instr->left()->representation().Equals(instr->representation()));
+ ASSERT(instr->right()->representation().Equals(instr->representation()));
+ LOperand* dividend = UseRegister(instr->left());
+ int32_t divisor = instr->right()->GetInteger32Constant();
+ LInstruction* result =
+ DefineAsRegister(new(zone()) LDivByPowerOf2I(dividend, divisor));
+ bool can_deopt =
+ (instr->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ instr->left()->RangeCanInclude(0) && divisor < 0) ||
+ (instr->CheckFlag(HValue::kCanOverflow) &&
+ instr->left()->RangeCanInclude(kMinInt) && divisor == -1) ||
+ (!instr->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
+ divisor != 1 && divisor != -1);
+ return can_deopt ? AssignEnvironment(result) : result;
+}
+
+
+LInstruction* LChunkBuilder::DoDivI(HBinaryOperation* instr) {
+ ASSERT(instr->representation().IsSmiOrInteger32());
+ ASSERT(instr->left()->representation().Equals(instr->representation()));
+ ASSERT(instr->right()->representation().Equals(instr->representation()));
+ LOperand* dividend = UseRegister(instr->left());
+ LOperand* divisor = UseRegister(instr->right());
+ LOperand* temp = CpuFeatures::IsSupported(SUDIV) ? NULL : FixedTemp(d4);
+ LDivI* div = new(zone()) LDivI(dividend, divisor, temp);
+ return AssignEnvironment(DefineAsRegister(div));
+}
+
+
LInstruction* LChunkBuilder::DoDiv(HDiv* instr) {
if (instr->representation().IsSmiOrInteger32()) {
- ASSERT(instr->left()->representation().Equals(instr->representation()));
- ASSERT(instr->right()->representation().Equals(instr->representation()));
- if (instr->RightIsPowerOf2()) {
- ASSERT(!instr->CheckFlag(HValue::kCanBeDivByZero));
- LOperand* value = UseRegister(instr->left());
- LDivI* div = new(zone()) LDivI(value, UseConstant(instr->right()), NULL);
- return AssignEnvironment(DefineAsRegister(div));
- }
- LOperand* dividend = UseRegister(instr->left());
- LOperand* divisor = UseRegister(instr->right());
- LOperand* temp = CpuFeatures::IsSupported(SUDIV) ? NULL : FixedTemp(d4);
- LDivI* div = new(zone()) LDivI(dividend, divisor, temp);
- return AssignEnvironment(DefineAsRegister(div));
+ return instr->RightIsPowerOf2() ? DoDivByPowerOf2I(instr) : DoDivI(instr);
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::DIV, instr);
} else {
bool LChunkBuilder::HasMagicNumberForDivisor(int32_t divisor) {
uint32_t divisor_abs = abs(divisor);
- // Dividing by 0, 1, and powers of 2 is easy.
- // Note that IsPowerOf2(0) returns true;
- ASSERT(IsPowerOf2(0) == true);
- if (IsPowerOf2(divisor_abs)) return true;
+ // Dividing by 0 or powers of 2 is easy.
+ if (divisor == 0 || IsPowerOf2(divisor_abs)) return true;
// We have magic numbers for a few specific divisors.
// Details and proofs can be found in:
CompilerIntrinsics::CountTrailingZeros(divisor_abs);
DivMagicNumbers magic_numbers =
DivMagicNumberFor(divisor_abs >> power_of_2_factor);
- if (magic_numbers.M != InvalidDivMagicNumber.M) return true;
-
- return false;
+ return magic_numbers.M != InvalidDivMagicNumber.M;
}
-LInstruction* LChunkBuilder::DoMathFloorOfDiv(HMathFloorOfDiv* instr) {
- // LMathFloorOfDiv can only handle a subset of divisors, so fall
- // back to a flooring division in all other cases.
- HValue* right = instr->right();
- if (!right->IsInteger32Constant() ||
- (!CpuFeatures::IsSupported(SUDIV) &&
- !HasMagicNumberForDivisor(HConstant::cast(right)->Integer32Value()))) {
- LOperand* dividend = UseRegister(instr->left());
- LOperand* divisor = UseRegister(right);
- LOperand* temp = CpuFeatures::IsSupported(SUDIV) ? NULL : FixedTemp(d4);
- LDivI* div = new(zone()) LDivI(dividend, divisor, temp);
- return AssignEnvironment(DefineAsRegister(div));
- }
+LInstruction* LChunkBuilder::DoFlooringDivByPowerOf2I(HMathFloorOfDiv* instr) {
+ LOperand* dividend = UseRegisterAtStart(instr->left());
+ int32_t divisor = instr->right()->GetInteger32Constant();
+ LInstruction* result =
+ DefineSameAsFirst(
+ new(zone()) LFlooringDivByPowerOf2I(dividend, divisor));
+ bool can_deopt =
+ (instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) ||
+ (instr->left()->RangeCanInclude(kMinInt) && divisor == -1);
+ return can_deopt ? AssignEnvironment(result) : result;
+}
+
+LInstruction* LChunkBuilder::DoFlooringDivByConstI(HMathFloorOfDiv* instr) {
LOperand* dividend = UseRegister(instr->left());
LOperand* divisor = CpuFeatures::IsSupported(SUDIV)
- ? UseRegister(right)
- : UseOrConstant(right);
+ ? UseRegister(instr->right())
+ : UseOrConstant(instr->right());
LOperand* remainder = TempRegister();
- return AssignEnvironment(DefineAsRegister(
- new(zone()) LMathFloorOfDiv(dividend, divisor, remainder)));
+ LInstruction* result =
+ DefineAsRegister(
+ new(zone()) LFlooringDivByConstI(dividend, divisor, remainder));
+ return AssignEnvironment(result);
+}
+
+
+LInstruction* LChunkBuilder::DoMathFloorOfDiv(HMathFloorOfDiv* instr) {
+ if (instr->RightIsPowerOf2()) {
+ return DoFlooringDivByPowerOf2I(instr);
+ } else if (instr->right()->IsConstant()) {
+ // LMathFloorOfDiv can currently only handle a subset of divisors, so fall
+ // back to a flooring division in all other cases.
+ return (CpuFeatures::IsSupported(SUDIV) ||
+ HasMagicNumberForDivisor(instr->right()->GetInteger32Constant()))
+ ? DoFlooringDivByConstI(instr)
+ : DoDivI(instr);
+ } else {
+ return DoDivI(instr);
+ }
+}
+
+
+LInstruction* LChunkBuilder::DoModByPowerOf2I(HMod* instr) {
+ ASSERT(instr->representation().IsSmiOrInteger32());
+ ASSERT(instr->left()->representation().Equals(instr->representation()));
+ ASSERT(instr->right()->representation().Equals(instr->representation()));
+ LOperand* dividend = UseRegisterAtStart(instr->left());
+ int32_t divisor = instr->right()->GetInteger32Constant();
+ LInstruction* result =
+ DefineSameAsFirst(new(zone()) LModByPowerOf2I(dividend, divisor));
+ bool can_deopt =
+ instr->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ instr->left()->CanBeNegative();
+ return can_deopt ? AssignEnvironment(result) : result;
+}
+
+
+LInstruction* LChunkBuilder::DoModI(HMod* instr) {
+ ASSERT(instr->representation().IsSmiOrInteger32());
+ ASSERT(instr->left()->representation().Equals(instr->representation()));
+ ASSERT(instr->right()->representation().Equals(instr->representation()));
+ if (CpuFeatures::IsSupported(SUDIV)) {
+ LOperand* dividend = UseRegister(instr->left());
+ LOperand* divisor = UseRegister(instr->right());
+ LInstruction* result =
+ DefineAsRegister(new(zone()) LModI(dividend, divisor, NULL, NULL));
+ bool can_deopt = (instr->right()->CanBeZero() ||
+ (instr->left()->RangeCanInclude(kMinInt) &&
+ instr->right()->RangeCanInclude(-1) &&
+ instr->CheckFlag(HValue::kBailoutOnMinusZero)) ||
+ (instr->left()->CanBeNegative() &&
+ instr->CanBeZero() &&
+ instr->CheckFlag(HValue::kBailoutOnMinusZero)));
+ return can_deopt ? AssignEnvironment(result) : result;
+ } else {
+ LOperand* dividend = UseRegister(instr->left());
+ LOperand* divisor = UseRegister(instr->right());
+ LOperand* temp = FixedTemp(d10);
+ LOperand* temp2 = FixedTemp(d11);
+ LInstruction* result =
+ DefineAsRegister(new(zone()) LModI(dividend, divisor, temp, temp2));
+ bool can_deopt = (instr->right()->CanBeZero() ||
+ (instr->left()->CanBeNegative() &&
+ instr->CanBeZero() &&
+ instr->CheckFlag(HValue::kBailoutOnMinusZero)));
+ return can_deopt ? AssignEnvironment(result) : result;
+ }
}
LInstruction* LChunkBuilder::DoMod(HMod* instr) {
- HValue* left = instr->left();
- HValue* right = instr->right();
if (instr->representation().IsSmiOrInteger32()) {
- ASSERT(instr->left()->representation().Equals(instr->representation()));
- ASSERT(instr->right()->representation().Equals(instr->representation()));
- if (instr->RightIsPowerOf2()) {
- ASSERT(!right->CanBeZero());
- LModI* mod = new(zone()) LModI(UseRegisterAtStart(left),
- UseConstant(right));
- LInstruction* result = DefineAsRegister(mod);
- return (left->CanBeNegative() &&
- instr->CheckFlag(HValue::kBailoutOnMinusZero))
- ? AssignEnvironment(result)
- : result;
- } else if (CpuFeatures::IsSupported(SUDIV)) {
- LModI* mod = new(zone()) LModI(UseRegister(left),
- UseRegister(right));
- LInstruction* result = DefineAsRegister(mod);
- return (right->CanBeZero() ||
- (left->RangeCanInclude(kMinInt) &&
- right->RangeCanInclude(-1) &&
- instr->CheckFlag(HValue::kBailoutOnMinusZero)) ||
- (left->CanBeNegative() &&
- instr->CanBeZero() &&
- instr->CheckFlag(HValue::kBailoutOnMinusZero)))
- ? AssignEnvironment(result)
- : result;
- } else {
- LModI* mod = new(zone()) LModI(UseRegister(left),
- UseRegister(right),
- FixedTemp(d10),
- FixedTemp(d11));
- LInstruction* result = DefineAsRegister(mod);
- return (right->CanBeZero() ||
- (left->CanBeNegative() &&
- instr->CanBeZero() &&
- instr->CheckFlag(HValue::kBailoutOnMinusZero)))
- ? AssignEnvironment(result)
- : result;
- }
+ return instr->RightIsPowerOf2() ? DoModByPowerOf2I(instr) : DoModI(instr);
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::MOD, instr);
} else {
V(DebugBreak) \
V(DeclareGlobals) \
V(Deoptimize) \
+ V(DivByPowerOf2I) \
V(DivI) \
V(DoubleToI) \
V(DoubleToSmi) \
V(Drop) \
V(Dummy) \
V(DummyUse) \
+ V(FlooringDivByConstI) \
+ V(FlooringDivByPowerOf2I) \
V(ForInCacheArray) \
V(ForInPrepareMap) \
V(FunctionLiteral) \
V(MathClz32) \
V(MathExp) \
V(MathFloor) \
- V(MathFloorOfDiv) \
V(MathLog) \
V(MathMinMax) \
V(MathPowHalf) \
V(MathRound) \
V(MathSqrt) \
+ V(ModByPowerOf2I) \
V(ModI) \
V(MulI) \
V(MultiplyAddD) \
};
+class LModByPowerOf2I V8_FINAL : public LTemplateInstruction<1, 1, 0> {
+ public:
+ LModByPowerOf2I(LOperand* dividend, int32_t divisor) {
+ inputs_[0] = dividend;
+ divisor_ = divisor;
+ }
+
+ LOperand* dividend() { return inputs_[0]; }
+ int32_t divisor() const { return divisor_; }
+
+ DECLARE_CONCRETE_INSTRUCTION(ModByPowerOf2I, "mod-by-power-of-2-i")
+ DECLARE_HYDROGEN_ACCESSOR(Mod)
+
+ private:
+ int32_t divisor_;
+};
+
+
class LModI V8_FINAL : public LTemplateInstruction<1, 2, 2> {
public:
- LModI(LOperand* left,
- LOperand* right,
- LOperand* temp = NULL,
- LOperand* temp2 = NULL) {
+ LModI(LOperand* left, LOperand* right, LOperand* temp, LOperand* temp2) {
inputs_[0] = left;
inputs_[1] = right;
temps_[0] = temp;
};
+class LDivByPowerOf2I V8_FINAL : public LTemplateInstruction<1, 1, 0> {
+ public:
+ LDivByPowerOf2I(LOperand* dividend, int32_t divisor) {
+ inputs_[0] = dividend;
+ divisor_ = divisor;
+ }
+
+ LOperand* dividend() { return inputs_[0]; }
+ int32_t divisor() const { return divisor_; }
+
+ DECLARE_CONCRETE_INSTRUCTION(DivByPowerOf2I, "div-by-power-of-2-i")
+ DECLARE_HYDROGEN_ACCESSOR(Div)
+
+ private:
+ int32_t divisor_;
+};
+
+
class LDivI V8_FINAL : public LTemplateInstruction<1, 2, 1> {
public:
LDivI(LOperand* left, LOperand* right, LOperand* temp) {
bool is_flooring() { return hydrogen_value()->IsMathFloorOfDiv(); }
DECLARE_CONCRETE_INSTRUCTION(DivI, "div-i")
- DECLARE_HYDROGEN_ACCESSOR(Div)
+ DECLARE_HYDROGEN_ACCESSOR(BinaryOperation)
};
-class LMathFloorOfDiv V8_FINAL : public LTemplateInstruction<1, 2, 1> {
+class LFlooringDivByPowerOf2I V8_FINAL : public LTemplateInstruction<1, 1, 0> {
public:
- LMathFloorOfDiv(LOperand* left,
- LOperand* right,
- LOperand* temp = NULL) {
- inputs_[0] = left;
- inputs_[1] = right;
+ LFlooringDivByPowerOf2I(LOperand* dividend, int32_t divisor) {
+ inputs_[0] = dividend;
+ divisor_ = divisor;
+ }
+
+ LOperand* dividend() { return inputs_[0]; }
+ int32_t divisor() { return divisor_; }
+
+ DECLARE_CONCRETE_INSTRUCTION(FlooringDivByPowerOf2I,
+ "flooring-div-by-power-of-2-i")
+ DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
+
+ private:
+ int32_t divisor_;
+};
+
+
+class LFlooringDivByConstI V8_FINAL : public LTemplateInstruction<1, 2, 1> {
+ public:
+ LFlooringDivByConstI(LOperand* dividend, LOperand* divisor, LOperand* temp) {
+ inputs_[0] = dividend;
+ inputs_[1] = divisor;
temps_[0] = temp;
}
- LOperand* left() { return inputs_[0]; }
- LOperand* right() { return inputs_[1]; }
+ LOperand* dividend() { return inputs_[0]; }
+ LOperand* divisor() { return inputs_[1]; }
LOperand* temp() { return temps_[0]; }
- DECLARE_CONCRETE_INSTRUCTION(MathFloorOfDiv, "math-floor-of-div")
+ DECLARE_CONCRETE_INSTRUCTION(FlooringDivByConstI, "flooring-div-by-const-i")
DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
};
LInstruction* DoMathSqrt(HUnaryMathOperation* instr);
LInstruction* DoMathPowHalf(HUnaryMathOperation* instr);
LInstruction* DoMathClz32(HUnaryMathOperation* instr);
+ LInstruction* DoDivByPowerOf2I(HDiv* instr);
+ LInstruction* DoDivI(HBinaryOperation* instr);
+ LInstruction* DoModByPowerOf2I(HMod* instr);
+ LInstruction* DoModI(HMod* instr);
+ LInstruction* DoFlooringDivByPowerOf2I(HMathFloorOfDiv* instr);
+ LInstruction* DoFlooringDivByConstI(HMathFloorOfDiv* instr);
private:
enum Status {
}
-void LCodeGen::DoModI(LModI* instr) {
+void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ ASSERT(dividend.is(ToRegister(instr->result())));
+
+ // Theoretically, a variation of the branch-free code for integer division by
+ // a power of 2 (calculating the remainder via an additional multiplication
+ // (which gets simplified to an 'and') and subtraction) should be faster, and
+ // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
+ // indicate that positive dividends are heavily favored, so the branching
+ // version performs better.
HMod* hmod = instr->hydrogen();
- HValue* left = hmod->left();
- HValue* right = hmod->right();
- if (hmod->RightIsPowerOf2()) {
- // TODO(svenpanne) We should really do the strength reduction on the
- // Hydrogen level.
- Register left_reg = ToRegister(instr->left());
- Register result_reg = ToRegister(instr->result());
+ int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+ Label dividend_is_not_negative, done;
+ if (hmod->left()->CanBeNegative()) {
+ __ cmp(dividend, Operand::Zero());
+ __ b(pl, ÷nd_is_not_negative);
+ // Note that this is correct even for kMinInt operands.
+ __ rsb(dividend, dividend, Operand::Zero());
+ __ and_(dividend, dividend, Operand(mask));
+ __ rsb(dividend, dividend, Operand::Zero(), SetCC);
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(eq, instr->environment());
+ }
+ __ b(&done);
+ }
- // Note: The code below even works when right contains kMinInt.
- int32_t divisor = Abs(right->GetInteger32Constant());
+ __ bind(÷nd_is_not_negative);
+ __ and_(dividend, dividend, Operand(mask));
+ __ bind(&done);
+}
- Label left_is_not_negative, done;
- if (left->CanBeNegative()) {
- __ cmp(left_reg, Operand::Zero());
- __ b(pl, &left_is_not_negative);
- __ rsb(result_reg, left_reg, Operand::Zero());
- __ and_(result_reg, result_reg, Operand(divisor - 1));
- __ rsb(result_reg, result_reg, Operand::Zero(), SetCC);
- if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIf(eq, instr->environment());
- }
- __ b(&done);
- }
- __ bind(&left_is_not_negative);
- __ and_(result_reg, left_reg, Operand(divisor - 1));
- __ bind(&done);
- } else if (CpuFeatures::IsSupported(SUDIV)) {
+void LCodeGen::DoModI(LModI* instr) {
+ HMod* hmod = instr->hydrogen();
+ HValue* left = hmod->left();
+ HValue* right = hmod->right();
+ if (CpuFeatures::IsSupported(SUDIV)) {
CpuFeatureScope scope(masm(), SUDIV);
Register left_reg = ToRegister(instr->left());
}
-void LCodeGen::DoDivI(LDivI* instr) {
- if (!instr->is_flooring() && instr->hydrogen()->RightIsPowerOf2()) {
- Register dividend = ToRegister(instr->left());
- HDiv* hdiv = instr->hydrogen();
- int32_t divisor = hdiv->right()->GetInteger32Constant();
- Register result = ToRegister(instr->result());
- ASSERT(!result.is(dividend));
+void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ Register result = ToRegister(instr->result());
+ ASSERT(divisor == kMinInt || (divisor != 0 && IsPowerOf2(Abs(divisor))));
+ ASSERT(!result.is(dividend));
- // Check for (0 / -x) that will produce negative zero.
- if (hdiv->left()->RangeCanInclude(0) && divisor < 0 &&
- hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
- __ cmp(dividend, Operand::Zero());
- DeoptimizeIf(eq, instr->environment());
- }
- // Check for (kMinInt / -1).
- if (hdiv->left()->RangeCanInclude(kMinInt) && divisor == -1 &&
- hdiv->CheckFlag(HValue::kCanOverflow)) {
- __ cmp(dividend, Operand(kMinInt));
- DeoptimizeIf(eq, instr->environment());
- }
- // Deoptimize if remainder will not be 0.
- if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
- Abs(divisor) != 1) {
- __ tst(dividend, Operand(Abs(divisor) - 1));
- DeoptimizeIf(ne, instr->environment());
- }
- if (divisor == -1) { // Nice shortcut, not needed for correctness.
- __ rsb(result, dividend, Operand(0));
- return;
- }
- int32_t shift = WhichPowerOf2(Abs(divisor));
- if (shift == 0) {
- __ mov(result, dividend);
- } else if (shift == 1) {
- __ add(result, dividend, Operand(dividend, LSR, 31));
- } else {
- __ mov(result, Operand(dividend, ASR, 31));
- __ add(result, dividend, Operand(result, LSR, 32 - shift));
- }
- if (shift > 0) __ mov(result, Operand(result, ASR, shift));
- if (divisor < 0) __ rsb(result, result, Operand(0));
+ // Check for (0 / -x) that will produce negative zero.
+ HDiv* hdiv = instr->hydrogen();
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ hdiv->left()->RangeCanInclude(0) && divisor < 0) {
+ __ cmp(dividend, Operand::Zero());
+ DeoptimizeIf(eq, instr->environment());
+ }
+ // Check for (kMinInt / -1).
+ if (hdiv->CheckFlag(HValue::kCanOverflow) &&
+ hdiv->left()->RangeCanInclude(kMinInt) && divisor == -1) {
+ __ cmp(dividend, Operand(kMinInt));
+ DeoptimizeIf(eq, instr->environment());
+ }
+ // Deoptimize if remainder will not be 0.
+ if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
+ divisor != 1 && divisor != -1) {
+ int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+ __ tst(dividend, Operand(mask));
+ DeoptimizeIf(ne, instr->environment());
+ }
+
+ if (divisor == -1) { // Nice shortcut, not needed for correctness.
+ __ rsb(result, dividend, Operand(0));
return;
}
+ int32_t shift = WhichPowerOf2Abs(divisor);
+ if (shift == 0) {
+ __ mov(result, dividend);
+ } else if (shift == 1) {
+ __ add(result, dividend, Operand(dividend, LSR, 31));
+ } else {
+ __ mov(result, Operand(dividend, ASR, 31));
+ __ add(result, dividend, Operand(result, LSR, 32 - shift));
+ }
+ if (shift > 0) __ mov(result, Operand(result, ASR, shift));
+ if (divisor < 0) __ rsb(result, result, Operand(0));
+}
+
+void LCodeGen::DoDivI(LDivI* instr) {
const Register left = ToRegister(instr->left());
const Register right = ToRegister(instr->right());
const Register result = ToRegister(instr->result());
}
-void LCodeGen::DoMathFloorOfDiv(LMathFloorOfDiv* instr) {
- const Register result = ToRegister(instr->result());
- const Register left = ToRegister(instr->left());
- const Register remainder = ToRegister(instr->temp());
- const Register scratch = scratch0();
+void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ ASSERT(dividend.is(ToRegister(instr->result())));
+
+ // If the divisor is positive, things are easy: There can be no deopts and we
+ // can simply do an arithmetic right shift.
+ if (divisor == 1) return;
+ int32_t shift = WhichPowerOf2Abs(divisor);
+ if (divisor > 1) {
+ __ mov(dividend, Operand(dividend, ASR, shift));
+ return;
+ }
+
+ // If the divisor is negative, we have to negate and handle edge cases.
+ Label not_kmin_int, done;
+ __ rsb(dividend, dividend, Operand::Zero(), SetCC);
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(eq, instr->environment());
+ }
+ if (instr->hydrogen()->left()->RangeCanInclude(kMinInt)) {
+ // Note that we could emit branch-free code, but that would need one more
+ // register.
+ __ b(vc, ¬_kmin_int);
+ if (divisor == -1) {
+ DeoptimizeIf(al, instr->environment());
+ } else {
+ __ mov(dividend, Operand(kMinInt / divisor));
+ __ b(&done);
+ }
+ }
+ __ bind(¬_kmin_int);
+ __ mov(dividend, Operand(dividend, ASR, shift));
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
+ Register left = ToRegister(instr->dividend());
+ Register remainder = ToRegister(instr->temp());
+ Register scratch = scratch0();
+ Register result = ToRegister(instr->result());
if (!CpuFeatures::IsSupported(SUDIV)) {
// If the CPU doesn't support sdiv instruction, we only optimize when we
// have magic numbers for the divisor. The standard integer division routine
// is usually slower than transitionning to VFP.
- ASSERT(instr->right()->IsConstantOperand());
- int32_t divisor = ToInteger32(LConstantOperand::cast(instr->right()));
+ ASSERT(instr->divisor()->IsConstantOperand());
+ int32_t divisor = ToInteger32(LConstantOperand::cast(instr->divisor()));
ASSERT(LChunkBuilder::HasMagicNumberForDivisor(divisor));
if (divisor < 0) {
__ cmp(left, Operand::Zero());
__ sub(result, result, Operand(1), LeaveCC, mi);
} else {
CpuFeatureScope scope(masm(), SUDIV);
- const Register right = ToRegister(instr->right());
+ // TODO(svenpanne) We *statically* know the divisor, use that fact!
+ Register right = ToRegister(instr->divisor());
// Check for x / 0.
__ cmp(right, Operand::Zero());
set_operand_position(zone, 2, right_pos);
}
+ bool RightIsPowerOf2() {
+ if (!right()->IsInteger32Constant()) return false;
+ int32_t value = right()->GetInteger32Constant();
+ return value != 0 && (IsPowerOf2(value) || IsPowerOf2(-value));
+ }
+
DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation)
private:
}
}
- bool RightIsPowerOf2() {
- if (!right()->IsInteger32Constant()) return false;
- int32_t value = right()->GetInteger32Constant();
- return value != 0 && (IsPowerOf2(value) || IsPowerOf2(-value));
- }
-
DECLARE_ABSTRACT_INSTRUCTION(ArithmeticBinaryOperation)
private:
}
+void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ ASSERT(dividend.is(ToRegister(instr->result())));
+
+ // Theoretically, a variation of the branch-free code for integer division by
+ // a power of 2 (calculating the remainder via an additional multiplication
+ // (which gets simplified to an 'and') and subtraction) should be faster, and
+ // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
+ // indicate that positive dividends are heavily favored, so the branching
+ // version performs better.
+ HMod* hmod = instr->hydrogen();
+ int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+ Label dividend_is_not_negative, done;
+ if (hmod->left()->CanBeNegative()) {
+ __ test(dividend, dividend);
+ __ j(not_sign, ÷nd_is_not_negative, Label::kNear);
+ // Note that this is correct even for kMinInt operands.
+ __ neg(dividend);
+ __ and_(dividend, mask);
+ __ neg(dividend);
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(zero, instr->environment());
+ }
+ __ jmp(&done, Label::kNear);
+ }
+
+ __ bind(÷nd_is_not_negative);
+ __ and_(dividend, mask);
+ __ bind(&done);
+}
+
+
void LCodeGen::DoModI(LModI* instr) {
HMod* hmod = instr->hydrogen();
HValue* left = hmod->left();
HValue* right = hmod->right();
- if (hmod->RightIsPowerOf2()) {
- // TODO(svenpanne) We should really do the strength reduction on the
- // Hydrogen level.
- Register left_reg = ToRegister(instr->left());
- ASSERT(left_reg.is(ToRegister(instr->result())));
-
- // Note: The code below even works when right contains kMinInt.
- int32_t divisor = Abs(right->GetInteger32Constant());
-
- Label left_is_not_negative, done;
- if (left->CanBeNegative()) {
- __ test(left_reg, Operand(left_reg));
- __ j(not_sign, &left_is_not_negative, Label::kNear);
- __ neg(left_reg);
- __ and_(left_reg, divisor - 1);
- __ neg(left_reg);
- if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIf(zero, instr->environment());
- }
- __ jmp(&done, Label::kNear);
- }
- __ bind(&left_is_not_negative);
- __ and_(left_reg, divisor - 1);
- __ bind(&done);
- } else {
- Register left_reg = ToRegister(instr->left());
- ASSERT(left_reg.is(eax));
- Register right_reg = ToRegister(instr->right());
- ASSERT(!right_reg.is(eax));
- ASSERT(!right_reg.is(edx));
- Register result_reg = ToRegister(instr->result());
- ASSERT(result_reg.is(edx));
+ Register left_reg = ToRegister(instr->left());
+ ASSERT(left_reg.is(eax));
+ Register right_reg = ToRegister(instr->right());
+ ASSERT(!right_reg.is(eax));
+ ASSERT(!right_reg.is(edx));
+ Register result_reg = ToRegister(instr->result());
+ ASSERT(result_reg.is(edx));
- Label done;
- // Check for x % 0, idiv would signal a divide error. We have to
- // deopt in this case because we can't return a NaN.
- if (right->CanBeZero()) {
- __ test(right_reg, Operand(right_reg));
- DeoptimizeIf(zero, instr->environment());
- }
+ Label done;
+ // Check for x % 0, idiv would signal a divide error. We have to
+ // deopt in this case because we can't return a NaN.
+ if (right->CanBeZero()) {
+ __ test(right_reg, Operand(right_reg));
+ DeoptimizeIf(zero, instr->environment());
+ }
- // Check for kMinInt % -1, idiv would signal a divide error. We
- // have to deopt if we care about -0, because we can't return that.
- if (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1)) {
- Label no_overflow_possible;
- __ cmp(left_reg, kMinInt);
+ // Check for kMinInt % -1, idiv would signal a divide error. We
+ // have to deopt if we care about -0, because we can't return that.
+ if (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1)) {
+ Label no_overflow_possible;
+ __ cmp(left_reg, kMinInt);
+ __ j(not_equal, &no_overflow_possible, Label::kNear);
+ __ cmp(right_reg, -1);
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(equal, instr->environment());
+ } else {
__ j(not_equal, &no_overflow_possible, Label::kNear);
- __ cmp(right_reg, -1);
- if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIf(equal, instr->environment());
- } else {
- __ j(not_equal, &no_overflow_possible, Label::kNear);
- __ Set(result_reg, Immediate(0));
- __ jmp(&done, Label::kNear);
- }
- __ bind(&no_overflow_possible);
- }
-
- // Sign extend dividend in eax into edx:eax.
- __ cdq();
-
- // If we care about -0, test if the dividend is <0 and the result is 0.
- if (left->CanBeNegative() &&
- hmod->CanBeZero() &&
- hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
- Label positive_left;
- __ test(left_reg, Operand(left_reg));
- __ j(not_sign, &positive_left, Label::kNear);
- __ idiv(right_reg);
- __ test(result_reg, Operand(result_reg));
- DeoptimizeIf(zero, instr->environment());
+ __ Set(result_reg, Immediate(0));
__ jmp(&done, Label::kNear);
- __ bind(&positive_left);
}
+ __ bind(&no_overflow_possible);
+ }
+
+ // Sign extend dividend in eax into edx:eax.
+ __ cdq();
+
+ // If we care about -0, test if the dividend is <0 and the result is 0.
+ if (left->CanBeNegative() &&
+ hmod->CanBeZero() &&
+ hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ Label positive_left;
+ __ test(left_reg, Operand(left_reg));
+ __ j(not_sign, &positive_left, Label::kNear);
__ idiv(right_reg);
- __ bind(&done);
+ __ test(result_reg, Operand(result_reg));
+ DeoptimizeIf(zero, instr->environment());
+ __ jmp(&done, Label::kNear);
+ __ bind(&positive_left);
}
+ __ idiv(right_reg);
+ __ bind(&done);
}
-void LCodeGen::DoDivI(LDivI* instr) {
- if (!instr->is_flooring() && instr->hydrogen()->RightIsPowerOf2()) {
- Register dividend = ToRegister(instr->left());
- HDiv* hdiv = instr->hydrogen();
- int32_t divisor = hdiv->right()->GetInteger32Constant();
- Register result = ToRegister(instr->result());
- ASSERT(!result.is(dividend));
+void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ Register result = ToRegister(instr->result());
+ ASSERT(divisor == kMinInt || (divisor != 0 && IsPowerOf2(Abs(divisor))));
+ ASSERT(!result.is(dividend));
- // Check for (0 / -x) that will produce negative zero.
- if (hdiv->left()->RangeCanInclude(0) && divisor < 0 &&
- hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
- __ test(dividend, Operand(dividend));
- DeoptimizeIf(zero, instr->environment());
- }
- // Check for (kMinInt / -1).
- if (hdiv->left()->RangeCanInclude(kMinInt) && divisor == -1 &&
- hdiv->CheckFlag(HValue::kCanOverflow)) {
- __ cmp(dividend, kMinInt);
- DeoptimizeIf(zero, instr->environment());
- }
- // Deoptimize if remainder will not be 0.
- if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
- Abs(divisor) != 1) {
- __ test(dividend, Immediate(Abs(divisor) - 1));
- DeoptimizeIf(not_zero, instr->environment());
- }
- __ Move(result, dividend);
- int32_t shift = WhichPowerOf2(Abs(divisor));
- if (shift > 0) {
- // The arithmetic shift is always OK, the 'if' is an optimization only.
- if (shift > 1) __ sar(result, 31);
- __ shr(result, 32 - shift);
- __ add(result, dividend);
- __ sar(result, shift);
- }
- if (divisor < 0) __ neg(result);
- return;
+ // Check for (0 / -x) that will produce negative zero.
+ HDiv* hdiv = instr->hydrogen();
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ hdiv->left()->RangeCanInclude(0) && divisor < 0) {
+ __ test(dividend, dividend);
+ DeoptimizeIf(zero, instr->environment());
+ }
+ // Check for (kMinInt / -1).
+ if (hdiv->CheckFlag(HValue::kCanOverflow) &&
+ hdiv->left()->RangeCanInclude(kMinInt) && divisor == -1) {
+ __ cmp(dividend, kMinInt);
+ DeoptimizeIf(zero, instr->environment());
+ }
+ // Deoptimize if remainder will not be 0.
+ if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
+ divisor != 1 && divisor != -1) {
+ int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+ __ test(dividend, Immediate(mask));
+ DeoptimizeIf(not_zero, instr->environment());
}
+ __ Move(result, dividend);
+ int32_t shift = WhichPowerOf2Abs(divisor);
+ if (shift > 0) {
+ // The arithmetic shift is always OK, the 'if' is an optimization only.
+ if (shift > 1) __ sar(result, 31);
+ __ shr(result, 32 - shift);
+ __ add(result, dividend);
+ __ sar(result, shift);
+ }
+ if (divisor < 0) __ neg(result);
+}
- LOperand* right = instr->right();
- ASSERT(ToRegister(instr->result()).is(eax));
- ASSERT(ToRegister(instr->left()).is(eax));
- ASSERT(!ToRegister(instr->right()).is(eax));
- ASSERT(!ToRegister(instr->right()).is(edx));
- Register left_reg = eax;
+void LCodeGen::DoDivI(LDivI* instr) {
+ Register dividend = ToRegister(instr->left());
+ Register divisor = ToRegister(instr->right());
+ Register remainder = ToRegister(instr->temp());
+ Register result = ToRegister(instr->result());
+ ASSERT(dividend.is(eax));
+ ASSERT(remainder.is(edx));
+ ASSERT(result.is(eax));
+ ASSERT(!divisor.is(eax));
+ ASSERT(!divisor.is(edx));
// Check for x / 0.
- Register right_reg = ToRegister(right);
- if (instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) {
- __ test(right_reg, ToOperand(right));
+ HBinaryOperation* hdiv = instr->hydrogen();
+ if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
+ __ test(divisor, divisor);
DeoptimizeIf(zero, instr->environment());
}
// Check for (0 / -x) that will produce negative zero.
- if (instr->hydrogen_value()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- Label left_not_zero;
- __ test(left_reg, Operand(left_reg));
- __ j(not_zero, &left_not_zero, Label::kNear);
- __ test(right_reg, ToOperand(right));
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ Label dividend_not_zero;
+ __ test(dividend, dividend);
+ __ j(not_zero, ÷nd_not_zero, Label::kNear);
+ __ test(divisor, divisor);
DeoptimizeIf(sign, instr->environment());
- __ bind(&left_not_zero);
+ __ bind(÷nd_not_zero);
}
// Check for (kMinInt / -1).
- if (instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow)) {
- Label left_not_min_int;
- __ cmp(left_reg, kMinInt);
- __ j(not_zero, &left_not_min_int, Label::kNear);
- __ cmp(right_reg, -1);
+ if (hdiv->CheckFlag(HValue::kCanOverflow)) {
+ Label dividend_not_min_int;
+ __ cmp(dividend, kMinInt);
+ __ j(not_zero, ÷nd_not_min_int, Label::kNear);
+ __ cmp(divisor, -1);
DeoptimizeIf(zero, instr->environment());
- __ bind(&left_not_min_int);
+ __ bind(÷nd_not_min_int);
}
- // Sign extend to edx.
+ // Sign extend to edx (= remainder).
__ cdq();
- __ idiv(right_reg);
+ __ idiv(divisor);
if (instr->is_flooring()) {
Label done;
- __ test(edx, edx);
+ __ test(remainder, remainder);
__ j(zero, &done, Label::kNear);
- __ xor_(edx, right_reg);
- __ sar(edx, 31);
- __ add(eax, edx);
+ __ xor_(remainder, divisor);
+ __ sar(remainder, 31);
+ __ add(result, remainder);
__ bind(&done);
} else if (!instr->hydrogen()->CheckFlag(
HInstruction::kAllUsesTruncatingToInt32)) {
// Deoptimize if remainder is not 0.
- __ test(edx, Operand(edx));
+ __ test(remainder, remainder);
DeoptimizeIf(not_zero, instr->environment());
}
}
-void LCodeGen::DoMathFloorOfDiv(LMathFloorOfDiv* instr) {
- ASSERT(instr->right()->IsConstantOperand());
-
- Register dividend = ToRegister(instr->left());
- int32_t divisor = ToInteger32(LConstantOperand::cast(instr->right()));
- Register result = ToRegister(instr->result());
-
- switch (divisor) {
- case 0:
- DeoptimizeIf(no_condition, instr->environment());
- return;
+void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ ASSERT(dividend.is(ToRegister(instr->result())));
- case 1:
- __ Move(result, dividend);
+ // If the divisor is positive, things are easy: There can be no deopts and we
+ // can simply do an arithmetic right shift.
+ if (divisor == 1) return;
+ int32_t shift = WhichPowerOf2Abs(divisor);
+ if (divisor > 1) {
+ __ sar(dividend, shift);
return;
+ }
- case -1:
- __ Move(result, dividend);
- __ neg(result);
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIf(zero, instr->environment());
- }
- if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
- DeoptimizeIf(overflow, instr->environment());
+ // If the divisor is negative, we have to negate and handle edge cases.
+ Label not_kmin_int, done;
+ __ neg(dividend);
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(zero, instr->environment());
+ }
+ if (instr->hydrogen()->left()->RangeCanInclude(kMinInt)) {
+ // Note that we could emit branch-free code, but that would need one more
+ // register.
+ __ j(no_overflow, ¬_kmin_int, Label::kNear);
+ if (divisor == -1) {
+ DeoptimizeIf(no_condition, instr->environment());
+ } else {
+ __ mov(dividend, Immediate(kMinInt / divisor));
+ __ jmp(&done, Label::kNear);
}
+ }
+ __ bind(¬_kmin_int);
+ __ sar(dividend, shift);
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ Register scratch = ToRegister(instr->temp());
+ ASSERT(ToRegister(instr->dividend()).is(eax));
+ ASSERT(ToRegister(instr->result()).is(edx));
+
+ if (divisor == 0) {
+ DeoptimizeIf(no_condition, instr->environment());
return;
}
+ // Find b which: 2^b < divisor_abs < 2^(b+1).
uint32_t divisor_abs = abs(divisor);
- if (IsPowerOf2(divisor_abs)) {
- int32_t power = WhichPowerOf2(divisor_abs);
- if (divisor < 0) {
- // Input[dividend] is clobbered.
- // The sequence is tedious because neg(dividend) might overflow.
- __ mov(result, dividend);
- __ sar(dividend, 31);
- __ neg(result);
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIf(zero, instr->environment());
- }
- __ shl(dividend, 32 - power);
- __ sar(result, power);
- __ not_(dividend);
- // Clear result.sign if dividend.sign is set.
- __ and_(result, dividend);
- } else {
- __ Move(result, dividend);
- __ sar(result, power);
- }
+ unsigned b = 31 - CompilerIntrinsics::CountLeadingZeros(divisor_abs);
+ unsigned shift = 32 + b; // Precision +1bit (effectively).
+ double multiplier_f =
+ static_cast<double>(static_cast<uint64_t>(1) << shift) / divisor_abs;
+ int64_t multiplier;
+ if (multiplier_f - std::floor(multiplier_f) < 0.5) {
+ multiplier = static_cast<int64_t>(std::floor(multiplier_f));
} else {
- ASSERT(ToRegister(instr->left()).is(eax));
- ASSERT(ToRegister(instr->result()).is(edx));
- Register scratch = ToRegister(instr->temp());
-
- // Find b which: 2^b < divisor_abs < 2^(b+1).
- unsigned b = 31 - CompilerIntrinsics::CountLeadingZeros(divisor_abs);
- unsigned shift = 32 + b; // Precision +1bit (effectively).
- double multiplier_f =
- static_cast<double>(static_cast<uint64_t>(1) << shift) / divisor_abs;
- int64_t multiplier;
- if (multiplier_f - std::floor(multiplier_f) < 0.5) {
- multiplier = static_cast<int64_t>(std::floor(multiplier_f));
- } else {
- multiplier = static_cast<int64_t>(std::floor(multiplier_f)) + 1;
- }
- // The multiplier is a uint32.
- ASSERT(multiplier > 0 &&
- multiplier < (static_cast<int64_t>(1) << 32));
- __ mov(scratch, dividend);
- if (divisor < 0 &&
- instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- __ test(dividend, dividend);
- DeoptimizeIf(zero, instr->environment());
- }
- __ mov(edx, static_cast<int32_t>(multiplier));
- __ imul(edx);
- if (static_cast<int32_t>(multiplier) < 0) {
- __ add(edx, scratch);
- }
- Register reg_lo = eax;
- Register reg_byte_scratch = scratch;
- if (!reg_byte_scratch.is_byte_register()) {
- __ xchg(reg_lo, reg_byte_scratch);
- reg_lo = scratch;
- reg_byte_scratch = eax;
- }
- if (divisor < 0) {
- __ xor_(reg_byte_scratch, reg_byte_scratch);
- __ cmp(reg_lo, 0x40000000);
- __ setcc(above, reg_byte_scratch);
- __ neg(edx);
- __ sub(edx, reg_byte_scratch);
- } else {
- __ xor_(reg_byte_scratch, reg_byte_scratch);
- __ cmp(reg_lo, 0xC0000000);
- __ setcc(above_equal, reg_byte_scratch);
- __ add(edx, reg_byte_scratch);
- }
- __ sar(edx, shift - 32);
+ multiplier = static_cast<int64_t>(std::floor(multiplier_f)) + 1;
+ }
+ // The multiplier is a uint32.
+ ASSERT(multiplier > 0 &&
+ multiplier < (static_cast<int64_t>(1) << 32));
+ __ mov(scratch, dividend);
+ if (divisor < 0 &&
+ instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ __ test(dividend, dividend);
+ DeoptimizeIf(zero, instr->environment());
+ }
+ __ mov(edx, static_cast<int32_t>(multiplier));
+ __ imul(edx);
+ if (static_cast<int32_t>(multiplier) < 0) {
+ __ add(edx, scratch);
+ }
+ Register reg_lo = eax;
+ Register reg_byte_scratch = scratch;
+ if (!reg_byte_scratch.is_byte_register()) {
+ __ xchg(reg_lo, reg_byte_scratch);
+ reg_lo = scratch;
+ reg_byte_scratch = eax;
+ }
+ if (divisor < 0) {
+ __ xor_(reg_byte_scratch, reg_byte_scratch);
+ __ cmp(reg_lo, 0x40000000);
+ __ setcc(above, reg_byte_scratch);
+ __ neg(edx);
+ __ sub(edx, reg_byte_scratch);
+ } else {
+ __ xor_(reg_byte_scratch, reg_byte_scratch);
+ __ cmp(reg_lo, 0xC0000000);
+ __ setcc(above_equal, reg_byte_scratch);
+ __ add(edx, reg_byte_scratch);
}
+ __ sar(edx, shift - 32);
}
}
+LInstruction* LChunkBuilder::DoDivByPowerOf2I(HDiv* instr) {
+ ASSERT(instr->representation().IsSmiOrInteger32());
+ ASSERT(instr->left()->representation().Equals(instr->representation()));
+ ASSERT(instr->right()->representation().Equals(instr->representation()));
+ LOperand* dividend = UseRegister(instr->left());
+ int32_t divisor = instr->right()->GetInteger32Constant();
+ LInstruction* result =
+ DefineAsRegister(new(zone()) LDivByPowerOf2I(dividend, divisor));
+ bool can_deopt =
+ (instr->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ instr->left()->RangeCanInclude(0) && divisor < 0) ||
+ (instr->CheckFlag(HValue::kCanOverflow) &&
+ instr->left()->RangeCanInclude(kMinInt) && divisor == -1) ||
+ (!instr->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
+ divisor != 1 && divisor != -1);
+ return can_deopt ? AssignEnvironment(result) : result;
+}
+
+
+LInstruction* LChunkBuilder::DoDivI(HBinaryOperation* instr) {
+ ASSERT(instr->representation().IsSmiOrInteger32());
+ ASSERT(instr->left()->representation().Equals(instr->representation()));
+ ASSERT(instr->right()->representation().Equals(instr->representation()));
+ LOperand* dividend = UseFixed(instr->left(), eax);
+ LOperand* divisor = UseRegister(instr->right());
+ LOperand* temp = FixedTemp(edx);
+ LDivI* result = new(zone()) LDivI(dividend, divisor, temp);
+ return AssignEnvironment(DefineFixed(result, eax));
+}
+
+
LInstruction* LChunkBuilder::DoDiv(HDiv* instr) {
if (instr->representation().IsSmiOrInteger32()) {
- ASSERT(instr->left()->representation().Equals(instr->representation()));
- ASSERT(instr->right()->representation().Equals(instr->representation()));
- if (instr->RightIsPowerOf2()) {
- ASSERT(!instr->CheckFlag(HValue::kCanBeDivByZero));
- LOperand* value = UseRegister(instr->left());
- LDivI* div =
- new(zone()) LDivI(value, UseOrConstant(instr->right()), NULL);
- return AssignEnvironment(DefineAsRegister(div));
- }
- // The temporary operand is necessary to ensure that right is not allocated
- // into edx.
- LOperand* temp = FixedTemp(edx);
- LOperand* dividend = UseFixed(instr->left(), eax);
- LOperand* divisor = UseRegister(instr->right());
- LDivI* result = new(zone()) LDivI(dividend, divisor, temp);
- return AssignEnvironment(DefineFixed(result, eax));
+ return instr->RightIsPowerOf2() ? DoDivByPowerOf2I(instr) : DoDivI(instr);
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::DIV, instr);
} else {
}
+LInstruction* LChunkBuilder::DoFlooringDivByPowerOf2I(HMathFloorOfDiv* instr) {
+ LOperand* dividend = UseRegisterAtStart(instr->left());
+ int32_t divisor = instr->right()->GetInteger32Constant();
+ LInstruction* result =
+ DefineSameAsFirst(new(zone()) LFlooringDivByPowerOf2I(dividend, divisor));
+ bool can_deopt =
+ (instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) ||
+ (instr->left()->RangeCanInclude(kMinInt) && divisor == -1);
+ return can_deopt ? AssignEnvironment(result) : result;
+}
+
+
+LInstruction* LChunkBuilder::DoFlooringDivByConstI(HMathFloorOfDiv* instr) {
+ LOperand* dividend = UseFixed(instr->left(), eax);
+ int32_t divisor = instr->right()->GetInteger32Constant();
+ LOperand* temp = TempRegister();
+ LInstruction* result =
+ DefineFixed(
+ new(zone()) LFlooringDivByConstI(dividend, divisor, temp), edx);
+ bool can_deopt = divisor <= 0;
+ return can_deopt ? AssignEnvironment(result) : result;
+}
+
+
LInstruction* LChunkBuilder::DoMathFloorOfDiv(HMathFloorOfDiv* instr) {
- HValue* right = instr->right();
- if (!right->IsConstant()) {
- ASSERT(right->representation().IsInteger32());
- // The temporary operand is necessary to ensure that right is not allocated
- // into edx.
- LOperand* temp = FixedTemp(edx);
- LOperand* dividend = UseFixed(instr->left(), eax);
- LOperand* divisor = UseRegister(instr->right());
- LDivI* flooring_div = new(zone()) LDivI(dividend, divisor, temp);
- return AssignEnvironment(DefineFixed(flooring_div, eax));
- }
-
- ASSERT(right->IsConstant() && HConstant::cast(right)->HasInteger32Value());
- LOperand* divisor = chunk_->DefineConstantOperand(HConstant::cast(right));
- int32_t divisor_si = HConstant::cast(right)->Integer32Value();
- if (divisor_si == 0) {
- LOperand* dividend = UseRegister(instr->left());
- return AssignEnvironment(DefineAsRegister(
- new(zone()) LMathFloorOfDiv(dividend, divisor, NULL)));
- } else if (IsPowerOf2(abs(divisor_si))) {
- // use dividend as temp if divisor < 0 && divisor != -1
- LOperand* dividend = divisor_si < -1 ? UseTempRegister(instr->left()) :
- UseRegisterAtStart(instr->left());
- LInstruction* result = DefineAsRegister(
- new(zone()) LMathFloorOfDiv(dividend, divisor, NULL));
- return divisor_si < 0 ? AssignEnvironment(result) : result;
+ if (instr->RightIsPowerOf2()) {
+ return DoFlooringDivByPowerOf2I(instr);
+ } else if (instr->right()->IsConstant()) {
+ return DoFlooringDivByConstI(instr);
} else {
- // needs edx:eax, plus a temp
- LOperand* dividend = UseFixed(instr->left(), eax);
- LOperand* temp = TempRegister();
- LInstruction* result = DefineFixed(
- new(zone()) LMathFloorOfDiv(dividend, divisor, temp), edx);
- return divisor_si < 0 ? AssignEnvironment(result) : result;
+ return DoDivI(instr);
}
}
+LInstruction* LChunkBuilder::DoModByPowerOf2I(HMod* instr) {
+ ASSERT(instr->representation().IsSmiOrInteger32());
+ ASSERT(instr->left()->representation().Equals(instr->representation()));
+ ASSERT(instr->right()->representation().Equals(instr->representation()));
+ LOperand* dividend = UseRegisterAtStart(instr->left());
+ int32_t divisor = instr->right()->GetInteger32Constant();
+ LInstruction* result =
+ DefineSameAsFirst(new(zone()) LModByPowerOf2I(dividend, divisor));
+ bool can_deopt =
+ instr->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ instr->left()->CanBeNegative();
+ return can_deopt ? AssignEnvironment(result) : result;
+}
+
+
+LInstruction* LChunkBuilder::DoModI(HMod* instr) {
+ ASSERT(instr->representation().IsSmiOrInteger32());
+ ASSERT(instr->left()->representation().Equals(instr->representation()));
+ ASSERT(instr->right()->representation().Equals(instr->representation()));
+ LOperand* dividend = UseFixed(instr->left(), eax);
+ LOperand* divisor = UseRegister(instr->right());
+ LOperand* temp = FixedTemp(edx);
+ LInstruction* result =
+ DefineFixed(new(zone()) LModI(dividend, divisor, temp), edx);
+ bool can_deopt = (instr->right()->CanBeZero() ||
+ (instr->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ instr->left()->RangeCanInclude(kMinInt) &&
+ instr->right()->RangeCanInclude(-1)) ||
+ (instr->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ instr->left()->CanBeNegative() &&
+ instr->CanBeZero()));
+ return can_deopt ? AssignEnvironment(result) : result;
+}
+
+
LInstruction* LChunkBuilder::DoMod(HMod* instr) {
- HValue* left = instr->left();
- HValue* right = instr->right();
if (instr->representation().IsSmiOrInteger32()) {
- ASSERT(instr->left()->representation().Equals(instr->representation()));
- ASSERT(instr->right()->representation().Equals(instr->representation()));
-
- if (instr->RightIsPowerOf2()) {
- ASSERT(!right->CanBeZero());
- LModI* mod = new(zone()) LModI(UseRegisterAtStart(left),
- UseOrConstant(right),
- NULL);
- LInstruction* result = DefineSameAsFirst(mod);
- return (left->CanBeNegative() &&
- instr->CheckFlag(HValue::kBailoutOnMinusZero))
- ? AssignEnvironment(result)
- : result;
- return AssignEnvironment(DefineSameAsFirst(mod));
- } else {
- // The temporary operand is necessary to ensure that right is not
- // allocated into edx.
- LModI* mod = new(zone()) LModI(UseFixed(left, eax),
- UseRegister(right),
- FixedTemp(edx));
- LInstruction* result = DefineFixed(mod, edx);
- return (right->CanBeZero() ||
- (left->RangeCanInclude(kMinInt) &&
- right->RangeCanInclude(-1) &&
- instr->CheckFlag(HValue::kBailoutOnMinusZero)) ||
- (left->CanBeNegative() &&
- instr->CanBeZero() &&
- instr->CheckFlag(HValue::kBailoutOnMinusZero)))
- ? AssignEnvironment(result)
- : result;
- }
+ return instr->RightIsPowerOf2() ? DoModByPowerOf2I(instr) : DoModI(instr);
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::MOD, instr);
} else {
V(DebugBreak) \
V(DeclareGlobals) \
V(Deoptimize) \
+ V(DivByPowerOf2I) \
V(DivI) \
V(DoubleToI) \
V(DoubleToSmi) \
V(Drop) \
V(Dummy) \
V(DummyUse) \
+ V(FlooringDivByConstI) \
+ V(FlooringDivByPowerOf2I) \
V(ForInCacheArray) \
V(ForInPrepareMap) \
V(FunctionLiteral) \
V(MathClz32) \
V(MathExp) \
V(MathFloor) \
- V(MathFloorOfDiv) \
V(MathLog) \
V(MathMinMax) \
V(MathPowHalf) \
V(MathRound) \
V(MathSqrt) \
+ V(ModByPowerOf2I) \
V(ModI) \
V(MulI) \
V(NumberTagD) \
};
+class LModByPowerOf2I V8_FINAL : public LTemplateInstruction<1, 1, 0> {
+ public:
+ LModByPowerOf2I(LOperand* dividend, int32_t divisor) {
+ inputs_[0] = dividend;
+ divisor_ = divisor;
+ }
+
+ LOperand* dividend() { return inputs_[0]; }
+ int32_t divisor() const { return divisor_; }
+
+ DECLARE_CONCRETE_INSTRUCTION(ModByPowerOf2I, "mod-by-power-of-2-i")
+ DECLARE_HYDROGEN_ACCESSOR(Mod)
+
+ private:
+ int32_t divisor_;
+};
+
+
class LModI V8_FINAL : public LTemplateInstruction<1, 2, 1> {
public:
LModI(LOperand* left, LOperand* right, LOperand* temp) {
};
+class LDivByPowerOf2I V8_FINAL : public LTemplateInstruction<1, 1, 0> {
+ public:
+ LDivByPowerOf2I(LOperand* dividend, int32_t divisor) {
+ inputs_[0] = dividend;
+ divisor_ = divisor;
+ }
+
+ LOperand* dividend() { return inputs_[0]; }
+ int32_t divisor() const { return divisor_; }
+
+ DECLARE_CONCRETE_INSTRUCTION(DivByPowerOf2I, "div-by-power-of-2-i")
+ DECLARE_HYDROGEN_ACCESSOR(Div)
+
+ private:
+ int32_t divisor_;
+};
+
+
class LDivI V8_FINAL : public LTemplateInstruction<1, 2, 1> {
public:
LDivI(LOperand* left, LOperand* right, LOperand* temp) {
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
+ LOperand* temp() { return temps_[0]; }
bool is_flooring() { return hydrogen_value()->IsMathFloorOfDiv(); }
DECLARE_CONCRETE_INSTRUCTION(DivI, "div-i")
- DECLARE_HYDROGEN_ACCESSOR(Div)
+ DECLARE_HYDROGEN_ACCESSOR(BinaryOperation)
};
-class LMathFloorOfDiv V8_FINAL : public LTemplateInstruction<1, 2, 1> {
+class LFlooringDivByPowerOf2I V8_FINAL : public LTemplateInstruction<1, 1, 0> {
public:
- LMathFloorOfDiv(LOperand* left,
- LOperand* right,
- LOperand* temp = NULL) {
- inputs_[0] = left;
- inputs_[1] = right;
+ LFlooringDivByPowerOf2I(LOperand* dividend, int32_t divisor) {
+ inputs_[0] = dividend;
+ divisor_ = divisor;
+ }
+
+ LOperand* dividend() { return inputs_[0]; }
+ int32_t divisor() const { return divisor_; }
+
+ DECLARE_CONCRETE_INSTRUCTION(FlooringDivByPowerOf2I,
+ "flooring-div-by-power-of-2-i")
+ DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
+
+ private:
+ int32_t divisor_;
+};
+
+
+class LFlooringDivByConstI V8_FINAL : public LTemplateInstruction<1, 1, 1> {
+ public:
+ LFlooringDivByConstI(LOperand* dividend, int32_t divisor, LOperand* temp) {
+ inputs_[0] = dividend;
+ divisor_ = divisor;
temps_[0] = temp;
}
- LOperand* left() { return inputs_[0]; }
- LOperand* right() { return inputs_[1]; }
+ LOperand* dividend() { return inputs_[0]; }
+ int32_t divisor() const { return divisor_; }
LOperand* temp() { return temps_[0]; }
- DECLARE_CONCRETE_INSTRUCTION(MathFloorOfDiv, "math-floor-of-div")
+ DECLARE_CONCRETE_INSTRUCTION(FlooringDivByConstI, "flooring-div-by-const-i")
DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
+
+ private:
+ int32_t divisor_;
};
LInstruction* DoMathSqrt(HUnaryMathOperation* instr);
LInstruction* DoMathPowHalf(HUnaryMathOperation* instr);
LInstruction* DoMathClz32(HUnaryMathOperation* instr);
+ LInstruction* DoDivByPowerOf2I(HDiv* instr);
+ LInstruction* DoDivI(HBinaryOperation* instr);
+ LInstruction* DoModByPowerOf2I(HMod* instr);
+ LInstruction* DoModI(HMod* instr);
+ LInstruction* DoFlooringDivByPowerOf2I(HMathFloorOfDiv* instr);
+ LInstruction* DoFlooringDivByConstI(HMathFloorOfDiv* instr);
private:
enum Status {
}
+// TODO(svenpanne) Clean up the whole power-of-2 mess.
+inline int32_t WhichPowerOf2Abs(int32_t x) {
+ return (x == kMinInt) ? 31 : WhichPowerOf2(Abs(x));
+}
+
+
// ----------------------------------------------------------------------------
// BitField is a help template for encoding and decode bitfield with
// unsigned content.
}
+void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ ASSERT(dividend.is(ToRegister(instr->result())));
+
+ // Theoretically, a variation of the branch-free code for integer division by
+ // a power of 2 (calculating the remainder via an additional multiplication
+ // (which gets simplified to an 'and') and subtraction) should be faster, and
+ // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
+ // indicate that positive dividends are heavily favored, so the branching
+ // version performs better.
+ HMod* hmod = instr->hydrogen();
+ int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+ Label dividend_is_not_negative, done;
+ if (hmod->left()->CanBeNegative()) {
+ __ testl(dividend, dividend);
+ __ j(not_sign, ÷nd_is_not_negative, Label::kNear);
+ // Note that this is correct even for kMinInt operands.
+ __ negl(dividend);
+ __ andl(dividend, Immediate(mask));
+ __ negl(dividend);
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(zero, instr->environment());
+ }
+ __ jmp(&done, Label::kNear);
+ }
+
+ __ bind(÷nd_is_not_negative);
+ __ andl(dividend, Immediate(mask));
+ __ bind(&done);
+}
+
+
void LCodeGen::DoModI(LModI* instr) {
+ if (instr->hydrogen()->RightIsPowerOf2()) {
+ return DoModByPowerOf2I(reinterpret_cast<LModByPowerOf2I*>(instr));
+ }
HMod* hmod = instr->hydrogen();
HValue* left = hmod->left();
HValue* right = hmod->right();
- if (hmod->RightIsPowerOf2()) {
- // TODO(svenpanne) We should really do the strength reduction on the
- // Hydrogen level.
- Register left_reg = ToRegister(instr->left());
- ASSERT(left_reg.is(ToRegister(instr->result())));
-
- // Note: The code below even works when right contains kMinInt.
- int32_t divisor = Abs(right->GetInteger32Constant());
-
- Label left_is_not_negative, done;
- if (left->CanBeNegative()) {
- __ testl(left_reg, left_reg);
- __ j(not_sign, &left_is_not_negative, Label::kNear);
- __ negl(left_reg);
- __ andl(left_reg, Immediate(divisor - 1));
- __ negl(left_reg);
- if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIf(zero, instr->environment());
- }
- __ jmp(&done, Label::kNear);
- }
-
- __ bind(&left_is_not_negative);
- __ andl(left_reg, Immediate(divisor - 1));
- __ bind(&done);
- } else {
- Register left_reg = ToRegister(instr->left());
- ASSERT(left_reg.is(rax));
- Register right_reg = ToRegister(instr->right());
- ASSERT(!right_reg.is(rax));
- ASSERT(!right_reg.is(rdx));
- Register result_reg = ToRegister(instr->result());
- ASSERT(result_reg.is(rdx));
- Label done;
- // Check for x % 0, idiv would signal a divide error. We have to
- // deopt in this case because we can't return a NaN.
- if (right->CanBeZero()) {
- __ testl(right_reg, right_reg);
- DeoptimizeIf(zero, instr->environment());
- }
+ Register left_reg = ToRegister(instr->left());
+ ASSERT(left_reg.is(rax));
+ Register right_reg = ToRegister(instr->right());
+ ASSERT(!right_reg.is(rax));
+ ASSERT(!right_reg.is(rdx));
+ Register result_reg = ToRegister(instr->result());
+ ASSERT(result_reg.is(rdx));
- // Check for kMinInt % -1, idiv would signal a divide error. We
- // have to deopt if we care about -0, because we can't return that.
- if (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1)) {
- Label no_overflow_possible;
- __ cmpl(left_reg, Immediate(kMinInt));
- __ j(not_zero, &no_overflow_possible, Label::kNear);
- __ cmpl(right_reg, Immediate(-1));
- if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIf(equal, instr->environment());
- } else {
- __ j(not_equal, &no_overflow_possible, Label::kNear);
- __ Set(result_reg, 0);
- __ jmp(&done, Label::kNear);
- }
- __ bind(&no_overflow_possible);
- }
+ Label done;
+ // Check for x % 0, idiv would signal a divide error. We have to
+ // deopt in this case because we can't return a NaN.
+ if (right->CanBeZero()) {
+ __ testl(right_reg, right_reg);
+ DeoptimizeIf(zero, instr->environment());
+ }
- // Sign extend dividend in eax into edx:eax, since we are using only the low
- // 32 bits of the values.
- __ cdq();
-
- // If we care about -0, test if the dividend is <0 and the result is 0.
- if (left->CanBeNegative() &&
- hmod->CanBeZero() &&
- hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
- Label positive_left;
- __ testl(left_reg, left_reg);
- __ j(not_sign, &positive_left, Label::kNear);
- __ idivl(right_reg);
- __ testl(result_reg, result_reg);
- DeoptimizeIf(zero, instr->environment());
+ // Check for kMinInt % -1, idiv would signal a divide error. We
+ // have to deopt if we care about -0, because we can't return that.
+ if (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1)) {
+ Label no_overflow_possible;
+ __ cmpl(left_reg, Immediate(kMinInt));
+ __ j(not_zero, &no_overflow_possible, Label::kNear);
+ __ cmpl(right_reg, Immediate(-1));
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(equal, instr->environment());
+ } else {
+ __ j(not_equal, &no_overflow_possible, Label::kNear);
+ __ Set(result_reg, 0);
__ jmp(&done, Label::kNear);
- __ bind(&positive_left);
}
+ __ bind(&no_overflow_possible);
+ }
+
+ // Sign extend dividend in eax into edx:eax, since we are using only the low
+ // 32 bits of the values.
+ __ cdq();
+
+ // If we care about -0, test if the dividend is <0 and the result is 0.
+ if (left->CanBeNegative() &&
+ hmod->CanBeZero() &&
+ hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ Label positive_left;
+ __ testl(left_reg, left_reg);
+ __ j(not_sign, &positive_left, Label::kNear);
__ idivl(right_reg);
- __ bind(&done);
+ __ testl(result_reg, result_reg);
+ DeoptimizeIf(zero, instr->environment());
+ __ jmp(&done, Label::kNear);
+ __ bind(&positive_left);
}
+ __ idivl(right_reg);
+ __ bind(&done);
}
-void LCodeGen::DoMathFloorOfDiv(LMathFloorOfDiv* instr) {
- ASSERT(instr->right()->IsConstantOperand());
+void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ ASSERT(dividend.is(ToRegister(instr->result())));
- const Register dividend = ToRegister(instr->left());
- int32_t divisor = ToInteger32(LConstantOperand::cast(instr->right()));
- const Register result = ToRegister(instr->result());
-
- switch (divisor) {
- case 0:
- DeoptimizeIf(no_condition, instr->environment());
+ // If the divisor is positive, things are easy: There can be no deopts and we
+ // can simply do an arithmetic right shift.
+ if (divisor == 1) return;
+ int32_t shift = WhichPowerOf2Abs(divisor);
+ if (divisor > 1) {
+ __ sarl(dividend, Immediate(shift));
return;
+ }
- case 1:
- if (!result.is(dividend)) {
- __ movl(result, dividend);
+ // If the divisor is negative, we have to negate and handle edge cases.
+ Label not_kmin_int, done;
+ __ negl(dividend);
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(zero, instr->environment());
+ }
+ if (instr->hydrogen()->left()->RangeCanInclude(kMinInt)) {
+ // Note that we could emit branch-free code, but that would need one more
+ // register.
+ __ j(no_overflow, ¬_kmin_int, Label::kNear);
+ if (divisor == -1) {
+ DeoptimizeIf(no_condition, instr->environment());
+ } else {
+ __ movl(dividend, Immediate(kMinInt / divisor));
+ __ jmp(&done, Label::kNear);
}
- return;
+ }
+ __ bind(¬_kmin_int);
+ __ sarl(dividend, Immediate(shift));
+ __ bind(&done);
+}
- case -1:
- if (!result.is(dividend)) {
- __ movl(result, dividend);
- }
- __ negl(result);
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIf(zero, instr->environment());
- }
- if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
- DeoptimizeIf(overflow, instr->environment());
- }
+
+void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ Register temp = ToRegister(instr->temp());
+ Register result = ToRegister(instr->result());
+
+ if (divisor == 0) {
+ DeoptimizeIf(no_condition, instr->environment());
return;
}
+ // Find b which: 2^b < divisor_abs < 2^(b+1).
uint32_t divisor_abs = abs(divisor);
- if (IsPowerOf2(divisor_abs)) {
- int32_t power = WhichPowerOf2(divisor_abs);
- if (divisor < 0) {
- __ movsxlq(result, dividend);
- __ neg(result);
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIf(zero, instr->environment());
- }
- __ sar(result, Immediate(power));
- } else {
- if (!result.is(dividend)) {
- __ movl(result, dividend);
- }
- __ sarl(result, Immediate(power));
- }
+ unsigned b = 31 - CompilerIntrinsics::CountLeadingZeros(divisor_abs);
+ unsigned shift = 32 + b; // Precision +1bit (effectively).
+ double multiplier_f =
+ static_cast<double>(static_cast<uint64_t>(1) << shift) / divisor_abs;
+ int64_t multiplier;
+ if (multiplier_f - std::floor(multiplier_f) < 0.5) {
+ multiplier = static_cast<int64_t>(std::floor(multiplier_f));
} else {
- Register reg1 = ToRegister(instr->temp());
- Register reg2 = ToRegister(instr->result());
-
- // Find b which: 2^b < divisor_abs < 2^(b+1).
- unsigned b = 31 - CompilerIntrinsics::CountLeadingZeros(divisor_abs);
- unsigned shift = 32 + b; // Precision +1bit (effectively).
- double multiplier_f =
- static_cast<double>(static_cast<uint64_t>(1) << shift) / divisor_abs;
- int64_t multiplier;
- if (multiplier_f - std::floor(multiplier_f) < 0.5) {
- multiplier = static_cast<int64_t>(std::floor(multiplier_f));
- } else {
- multiplier = static_cast<int64_t>(std::floor(multiplier_f)) + 1;
- }
- // The multiplier is a uint32.
- ASSERT(multiplier > 0 &&
- multiplier < (static_cast<int64_t>(1) << 32));
- // The multiply is int64, so sign-extend to r64.
- __ movsxlq(reg1, dividend);
- if (divisor < 0 &&
- instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- __ neg(reg1);
- DeoptimizeIf(zero, instr->environment());
- }
- __ Set(reg2, multiplier);
- // Result just fit in r64, because it's int32 * uint32.
- __ imul(reg2, reg1);
-
- __ addq(reg2, Immediate(1 << 30));
- __ sar(reg2, Immediate(shift));
+ multiplier = static_cast<int64_t>(std::floor(multiplier_f)) + 1;
+ }
+ // The multiplier is a uint32.
+ ASSERT(multiplier > 0 &&
+ multiplier < (static_cast<int64_t>(1) << 32));
+ // The multiply is int64, so sign-extend to r64.
+ __ movsxlq(temp, dividend);
+ if (divisor < 0 &&
+ instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ __ neg(temp);
+ DeoptimizeIf(zero, instr->environment());
}
+ __ Set(result, multiplier);
+ // Result just fit in r64, because it's int32 * uint32.
+ __ imul(result, temp);
+
+ __ addq(result, Immediate(1 << 30));
+ __ sar(result, Immediate(shift));
}
-void LCodeGen::DoDivI(LDivI* instr) {
- if (!instr->is_flooring() && instr->hydrogen()->RightIsPowerOf2()) {
- Register dividend = ToRegister(instr->left());
- HDiv* hdiv = instr->hydrogen();
- int32_t divisor = hdiv->right()->GetInteger32Constant();
- Register result = ToRegister(instr->result());
- ASSERT(!result.is(dividend));
+void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ Register result = ToRegister(instr->result());
+ ASSERT(divisor == kMinInt || (divisor != 0 && IsPowerOf2(Abs(divisor))));
+ ASSERT(!result.is(dividend));
- // Check for (0 / -x) that will produce negative zero.
- if (hdiv->left()->RangeCanInclude(0) && divisor < 0 &&
- hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
- __ testl(dividend, dividend);
- DeoptimizeIf(zero, instr->environment());
- }
- // Check for (kMinInt / -1).
- if (hdiv->left()->RangeCanInclude(kMinInt) && divisor == -1 &&
- hdiv->CheckFlag(HValue::kCanOverflow)) {
- __ cmpl(dividend, Immediate(kMinInt));
- DeoptimizeIf(zero, instr->environment());
- }
- // Deoptimize if remainder will not be 0.
- if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
- __ testl(dividend, Immediate(Abs(divisor) - 1));
- DeoptimizeIf(not_zero, instr->environment());
- }
- __ Move(result, dividend);
- int32_t shift = WhichPowerOf2(Abs(divisor));
- if (shift > 0) {
- // The arithmetic shift is always OK, the 'if' is an optimization only.
- if (shift > 1) __ sarl(result, Immediate(31));
- __ shrl(result, Immediate(32 - shift));
- __ addl(result, dividend);
- __ sarl(result, Immediate(shift));
- }
- if (divisor < 0) __ negl(result);
- return;
+ // Check for (0 / -x) that will produce negative zero.
+ HDiv* hdiv = instr->hydrogen();
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ hdiv->left()->RangeCanInclude(0) && divisor < 0) {
+ __ testl(dividend, dividend);
+ DeoptimizeIf(zero, instr->environment());
}
+ // Check for (kMinInt / -1).
+ if (hdiv->CheckFlag(HValue::kCanOverflow) &&
+ hdiv->left()->RangeCanInclude(kMinInt) && divisor == -1) {
+ __ cmpl(dividend, Immediate(kMinInt));
+ DeoptimizeIf(zero, instr->environment());
+ }
+ // Deoptimize if remainder will not be 0.
+ if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
+ divisor != 1 && divisor != -1) {
+ int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+ __ testl(dividend, Immediate(mask));
+ DeoptimizeIf(not_zero, instr->environment());
+ }
+ __ Move(result, dividend);
+ int32_t shift = WhichPowerOf2Abs(divisor);
+ if (shift > 0) {
+ // The arithmetic shift is always OK, the 'if' is an optimization only.
+ if (shift > 1) __ sarl(result, Immediate(31));
+ __ shrl(result, Immediate(32 - shift));
+ __ addl(result, dividend);
+ __ sarl(result, Immediate(shift));
+ }
+ if (divisor < 0) __ negl(result);
+}
- LOperand* right = instr->right();
- ASSERT(ToRegister(instr->result()).is(rax));
- ASSERT(ToRegister(instr->left()).is(rax));
- ASSERT(!ToRegister(instr->right()).is(rax));
- ASSERT(!ToRegister(instr->right()).is(rdx));
- Register left_reg = rax;
+void LCodeGen::DoDivI(LDivI* instr) {
+ Register dividend = ToRegister(instr->left());
+ Register divisor = ToRegister(instr->right());
+ Register remainder = ToRegister(instr->temp());
+ Register result = ToRegister(instr->result());
+ ASSERT(dividend.is(rax));
+ ASSERT(remainder.is(rdx));
+ ASSERT(result.is(rax));
+ ASSERT(!divisor.is(rax));
+ ASSERT(!divisor.is(rdx));
// Check for x / 0.
- Register right_reg = ToRegister(right);
- if (instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) {
- __ testl(right_reg, right_reg);
+ HBinaryOperation* hdiv = instr->hydrogen();
+ if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
+ __ testl(divisor, divisor);
DeoptimizeIf(zero, instr->environment());
}
// Check for (0 / -x) that will produce negative zero.
- if (instr->hydrogen_value()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- Label left_not_zero;
- __ testl(left_reg, left_reg);
- __ j(not_zero, &left_not_zero, Label::kNear);
- __ testl(right_reg, right_reg);
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ Label dividend_not_zero;
+ __ testl(dividend, dividend);
+ __ j(not_zero, ÷nd_not_zero, Label::kNear);
+ __ testl(divisor, divisor);
DeoptimizeIf(sign, instr->environment());
- __ bind(&left_not_zero);
+ __ bind(÷nd_not_zero);
}
// Check for (kMinInt / -1).
- if (instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow)) {
- Label left_not_min_int;
- __ cmpl(left_reg, Immediate(kMinInt));
- __ j(not_zero, &left_not_min_int, Label::kNear);
- __ cmpl(right_reg, Immediate(-1));
+ if (hdiv->CheckFlag(HValue::kCanOverflow)) {
+ Label dividend_not_min_int;
+ __ cmpl(dividend, Immediate(kMinInt));
+ __ j(not_zero, ÷nd_not_min_int, Label::kNear);
+ __ cmpl(divisor, Immediate(-1));
DeoptimizeIf(zero, instr->environment());
- __ bind(&left_not_min_int);
+ __ bind(÷nd_not_min_int);
}
- // Sign extend to rdx.
+ // Sign extend to rdx (= remainder).
__ cdq();
- __ idivl(right_reg);
+ __ idivl(divisor);
if (instr->is_flooring()) {
Label done;
- __ testl(rdx, rdx);
+ __ testl(remainder, remainder);
__ j(zero, &done, Label::kNear);
- __ xorl(rdx, right_reg);
- __ sarl(rdx, Immediate(31));
- __ addl(rax, rdx);
+ __ xorl(remainder, divisor);
+ __ sarl(remainder, Immediate(31));
+ __ addl(result, remainder);
__ bind(&done);
} else if (!instr->hydrogen()->CheckFlag(
HInstruction::kAllUsesTruncatingToInt32)) {
// Deoptimize if remainder is not 0.
- __ testl(rdx, rdx);
+ __ testl(remainder, remainder);
DeoptimizeIf(not_zero, instr->environment());
}
}
}
+LInstruction* LChunkBuilder::DoDivByPowerOf2I(HDiv* instr) {
+ ASSERT(instr->representation().IsSmiOrInteger32());
+ ASSERT(instr->left()->representation().Equals(instr->representation()));
+ ASSERT(instr->right()->representation().Equals(instr->representation()));
+ LOperand* dividend = UseRegister(instr->left());
+ int32_t divisor = instr->right()->GetInteger32Constant();
+ LInstruction* result =
+ DefineAsRegister(new(zone()) LDivByPowerOf2I(dividend, divisor));
+ bool can_deopt =
+ (instr->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ instr->left()->RangeCanInclude(0) && divisor < 0) ||
+ (instr->CheckFlag(HValue::kCanOverflow) &&
+ instr->left()->RangeCanInclude(kMinInt) && divisor == -1) ||
+ (!instr->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
+ divisor != 1 && divisor != -1);
+ return can_deopt ? AssignEnvironment(result) : result;
+}
+
+
+LInstruction* LChunkBuilder::DoDivI(HBinaryOperation* instr) {
+ ASSERT(instr->representation().IsSmiOrInteger32());
+ ASSERT(instr->left()->representation().Equals(instr->representation()));
+ ASSERT(instr->right()->representation().Equals(instr->representation()));
+ LOperand* dividend = UseFixed(instr->left(), rax);
+ LOperand* divisor = UseRegister(instr->right());
+ LOperand* temp = FixedTemp(rdx);
+ LInstruction* result =
+ DefineFixed(new(zone()) LDivI(dividend, divisor, temp), rax);
+ return AssignEnvironment(result);
+}
+
+
LInstruction* LChunkBuilder::DoDiv(HDiv* instr) {
if (instr->representation().IsSmiOrInteger32()) {
- ASSERT(instr->left()->representation().Equals(instr->representation()));
- ASSERT(instr->right()->representation().Equals(instr->representation()));
- if (instr->RightIsPowerOf2()) {
- ASSERT(!instr->CheckFlag(HValue::kCanBeDivByZero));
- LOperand* value = UseRegister(instr->left());
- LDivI* div =
- new(zone()) LDivI(value, UseOrConstant(instr->right()), NULL);
- return AssignEnvironment(DefineAsRegister(div));
- }
- // The temporary operand is necessary to ensure that right is not allocated
- // into rdx.
- LOperand* temp = FixedTemp(rdx);
- LOperand* dividend = UseFixed(instr->left(), rax);
- LOperand* divisor = UseRegister(instr->right());
- LDivI* result = new(zone()) LDivI(dividend, divisor, temp);
- return AssignEnvironment(DefineFixed(result, rax));
+ return instr->RightIsPowerOf2() ? DoDivByPowerOf2I(instr) : DoDivI(instr);
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::DIV, instr);
} else {
}
+LInstruction* LChunkBuilder::DoFlooringDivByPowerOf2I(HMathFloorOfDiv* instr) {
+ LOperand* dividend = UseRegisterAtStart(instr->left());
+ int32_t divisor = instr->right()->GetInteger32Constant();
+ LInstruction* result =
+ DefineSameAsFirst(new(zone()) LFlooringDivByPowerOf2I(dividend, divisor));
+ bool can_deopt =
+ (instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) ||
+ (instr->left()->RangeCanInclude(kMinInt) && divisor == -1);
+ return can_deopt ? AssignEnvironment(result) : result;
+}
+
+
+LInstruction* LChunkBuilder::DoFlooringDivByConstI(HMathFloorOfDiv* instr) {
+ LOperand* dividend = UseRegisterAtStart(instr->left());
+ int32_t divisor = instr->right()->GetInteger32Constant();
+ LOperand* temp = TempRegister();
+ LInstruction* result =
+ DefineAsRegister(
+ new(zone()) LFlooringDivByConstI(dividend, divisor, temp));
+ bool can_deopt = divisor <= 0;
+ return can_deopt ? AssignEnvironment(result) : result;
+}
+
+
LInstruction* LChunkBuilder::DoMathFloorOfDiv(HMathFloorOfDiv* instr) {
- HValue* right = instr->right();
- if (!right->IsConstant()) {
- ASSERT(right->representation().IsInteger32());
- // The temporary operand is necessary to ensure that right is not allocated
- // into rdx.
- LOperand* temp = FixedTemp(rdx);
- LOperand* dividend = UseFixed(instr->left(), rax);
- LOperand* divisor = UseRegister(instr->right());
- LDivI* flooring_div = new(zone()) LDivI(dividend, divisor, temp);
- return AssignEnvironment(DefineFixed(flooring_div, rax));
- }
-
- ASSERT(right->IsConstant() && HConstant::cast(right)->HasInteger32Value());
- LOperand* divisor = chunk_->DefineConstantOperand(HConstant::cast(right));
- int32_t divisor_si = HConstant::cast(right)->Integer32Value();
- if (divisor_si == 0) {
- LOperand* dividend = UseRegister(instr->left());
- return AssignEnvironment(DefineAsRegister(
- new(zone()) LMathFloorOfDiv(dividend, divisor, NULL)));
- } else if (IsPowerOf2(abs(divisor_si))) {
- LOperand* dividend = UseRegisterAtStart(instr->left());
- LInstruction* result = DefineAsRegister(
- new(zone()) LMathFloorOfDiv(dividend, divisor, NULL));
- return divisor_si < 0 ? AssignEnvironment(result) : result;
+ if (instr->RightIsPowerOf2()) {
+ return DoFlooringDivByPowerOf2I(instr);
+ } else if (instr->right()->IsConstant()) {
+ return DoFlooringDivByConstI(instr);
} else {
- // use two r64
- LOperand* dividend = UseRegisterAtStart(instr->left());
- LOperand* temp = TempRegister();
- LInstruction* result = DefineAsRegister(
- new(zone()) LMathFloorOfDiv(dividend, divisor, temp));
- return divisor_si < 0 ? AssignEnvironment(result) : result;
+ return DoDivI(instr);
}
}
+LInstruction* LChunkBuilder::DoModByPowerOf2I(HMod* instr) {
+ ASSERT(instr->representation().IsSmiOrInteger32());
+ ASSERT(instr->left()->representation().Equals(instr->representation()));
+ ASSERT(instr->right()->representation().Equals(instr->representation()));
+ LOperand* dividend = UseRegisterAtStart(instr->left());
+ int32_t divisor = instr->right()->GetInteger32Constant();
+ LInstruction* result =
+ DefineSameAsFirst(new(zone()) LModByPowerOf2I(dividend, divisor));
+ bool can_deopt =
+ instr->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ instr->left()->CanBeNegative();
+ return can_deopt ? AssignEnvironment(result) : result;
+}
+
+
+LInstruction* LChunkBuilder::DoModI(HMod* instr) {
+ ASSERT(instr->representation().IsSmiOrInteger32());
+ ASSERT(instr->left()->representation().Equals(instr->representation()));
+ ASSERT(instr->right()->representation().Equals(instr->representation()));
+ LOperand* dividend = UseFixed(instr->left(), rax);
+ LOperand* divisor = UseRegister(instr->right());
+ LOperand* temp = FixedTemp(rdx);
+ LInstruction* result =
+ DefineFixed(new(zone()) LModI(dividend, divisor, temp), rdx);
+ bool can_deopt = (instr->right()->CanBeZero() ||
+ (instr->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ instr->left()->RangeCanInclude(kMinInt) &&
+ instr->right()->RangeCanInclude(-1)) ||
+ (instr->CheckFlag(HValue::kBailoutOnMinusZero) &&
+ instr->left()->CanBeNegative() &&
+ instr->CanBeZero()));
+ return can_deopt ? AssignEnvironment(result) : result;
+}
+
+
LInstruction* LChunkBuilder::DoMod(HMod* instr) {
- HValue* left = instr->left();
- HValue* right = instr->right();
if (instr->representation().IsSmiOrInteger32()) {
- ASSERT(left->representation().Equals(instr->representation()));
- ASSERT(right->representation().Equals(instr->representation()));
- if (instr->RightIsPowerOf2()) {
- ASSERT(!right->CanBeZero());
- LModI* mod = new(zone()) LModI(UseRegisterAtStart(left),
- UseOrConstant(right),
- NULL);
- LInstruction* result = DefineSameAsFirst(mod);
- return (left->CanBeNegative() &&
- instr->CheckFlag(HValue::kBailoutOnMinusZero))
- ? AssignEnvironment(result)
- : result;
- } else {
- // The temporary operand is necessary to ensure that right is not
- // allocated into edx.
- LModI* mod = new(zone()) LModI(UseFixed(left, rax),
- UseRegister(right),
- FixedTemp(rdx));
- LInstruction* result = DefineFixed(mod, rdx);
- return (right->CanBeZero() ||
- (left->RangeCanInclude(kMinInt) &&
- right->RangeCanInclude(-1) &&
- instr->CheckFlag(HValue::kBailoutOnMinusZero)) ||
- (left->CanBeNegative() &&
- instr->CanBeZero() &&
- instr->CheckFlag(HValue::kBailoutOnMinusZero)))
- ? AssignEnvironment(result)
- : result;
- }
+ return instr->RightIsPowerOf2() ? DoModByPowerOf2I(instr) : DoModI(instr);
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::MOD, instr);
} else {
V(DebugBreak) \
V(DeclareGlobals) \
V(Deoptimize) \
+ V(DivByPowerOf2I) \
V(DivI) \
V(DoubleToI) \
V(DoubleToSmi) \
V(Drop) \
V(DummyUse) \
V(Dummy) \
+ V(FlooringDivByConstI) \
+ V(FlooringDivByPowerOf2I) \
V(ForInCacheArray) \
V(ForInPrepareMap) \
V(FunctionLiteral) \
V(MathClz32) \
V(MathExp) \
V(MathFloor) \
- V(MathFloorOfDiv) \
V(MathLog) \
V(MathMinMax) \
V(MathPowHalf) \
V(MathRound) \
V(MathSqrt) \
+ V(ModByPowerOf2I) \
V(ModI) \
V(MulI) \
V(NumberTagD) \
};
+class LModByPowerOf2I V8_FINAL : public LTemplateInstruction<1, 1, 0> {
+ public:
+ LModByPowerOf2I(LOperand* dividend, int32_t divisor) {
+ inputs_[0] = dividend;
+ divisor_ = divisor;
+ }
+
+ LOperand* dividend() { return inputs_[0]; }
+ int32_t divisor() const { return divisor_; }
+
+ DECLARE_CONCRETE_INSTRUCTION(ModByPowerOf2I, "mod-by-power-of-2-i")
+ DECLARE_HYDROGEN_ACCESSOR(Mod)
+
+ private:
+ int32_t divisor_;
+};
+
+
class LModI V8_FINAL : public LTemplateInstruction<1, 2, 1> {
public:
LModI(LOperand* left, LOperand* right, LOperand* temp) {
};
+class LDivByPowerOf2I V8_FINAL : public LTemplateInstruction<1, 1, 0> {
+ public:
+ LDivByPowerOf2I(LOperand* dividend, int32_t divisor) {
+ inputs_[0] = dividend;
+ divisor_ = divisor;
+ }
+
+ LOperand* dividend() { return inputs_[0]; }
+ int32_t divisor() const { return divisor_; }
+
+ DECLARE_CONCRETE_INSTRUCTION(DivByPowerOf2I, "div-by-power-of-2-i")
+ DECLARE_HYDROGEN_ACCESSOR(Div)
+
+ private:
+ int32_t divisor_;
+};
+
+
class LDivI V8_FINAL : public LTemplateInstruction<1, 2, 1> {
public:
LDivI(LOperand* left, LOperand* right, LOperand* temp) {
bool is_flooring() { return hydrogen_value()->IsMathFloorOfDiv(); }
DECLARE_CONCRETE_INSTRUCTION(DivI, "div-i")
- DECLARE_HYDROGEN_ACCESSOR(Div)
+ DECLARE_HYDROGEN_ACCESSOR(BinaryOperation)
};
-class LMathFloorOfDiv V8_FINAL : public LTemplateInstruction<1, 2, 1> {
+class LFlooringDivByPowerOf2I V8_FINAL : public LTemplateInstruction<1, 1, 0> {
public:
- LMathFloorOfDiv(LOperand* left,
- LOperand* right,
- LOperand* temp = NULL) {
- inputs_[0] = left;
- inputs_[1] = right;
+ LFlooringDivByPowerOf2I(LOperand* dividend, int32_t divisor) {
+ inputs_[0] = dividend;
+ divisor_ = divisor;
+ }
+
+ LOperand* dividend() { return inputs_[0]; }
+ int32_t divisor() const { return divisor_; }
+
+ DECLARE_CONCRETE_INSTRUCTION(FlooringDivByPowerOf2I,
+ "flooring-div-by-power-of-2-i")
+ DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
+
+ private:
+ int32_t divisor_;
+};
+
+
+class LFlooringDivByConstI V8_FINAL : public LTemplateInstruction<1, 1, 1> {
+ public:
+ LFlooringDivByConstI(LOperand* dividend, int32_t divisor, LOperand* temp) {
+ inputs_[0] = dividend;
+ divisor_ = divisor;
temps_[0] = temp;
}
- LOperand* left() { return inputs_[0]; }
- LOperand* right() { return inputs_[1]; }
+ LOperand* dividend() { return inputs_[0]; }
+ int32_t divisor() const { return divisor_; }
LOperand* temp() { return temps_[0]; }
- DECLARE_CONCRETE_INSTRUCTION(MathFloorOfDiv, "math-floor-of-div")
+ DECLARE_CONCRETE_INSTRUCTION(FlooringDivByConstI, "flooring-div-by-const-i")
DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
+
+ private:
+ int32_t divisor_;
};
LInstruction* DoMathSqrt(HUnaryMathOperation* instr);
LInstruction* DoMathPowHalf(HUnaryMathOperation* instr);
LInstruction* DoMathClz32(HUnaryMathOperation* instr);
+ LInstruction* DoDivByPowerOf2I(HDiv* instr);
+ LInstruction* DoDivI(HBinaryOperation* instr);
+ LInstruction* DoModByPowerOf2I(HMod* instr);
+ LInstruction* DoModI(HMod* instr);
+ LInstruction* DoFlooringDivByPowerOf2I(HMathFloorOfDiv* instr);
+ LInstruction* DoFlooringDivByConstI(HMathFloorOfDiv* instr);
private:
enum Status {