changed 'auto' to 'auto &' in multiout_realizer.cpp.
Signed-off-by: SeoHyungjun <hyungjun.seo@samsung.com>
std::vector<std::shared_ptr<LayerNode>> /**< created node */>
multiout_nodes;
- for (auto con : connections) {
+ for (auto &con : connections) {
unsigned freq = freq_map[con];
/// @note freq < 1 should never happen as the map entry is not created.
/// but if it happens multiout realizer is not interested in checking if it
for (auto &node : processed) {
ret.push_back(node);
auto ranges = multiout_nodes[node->getName()];
- for (auto it : ranges) {
+ for (auto &it : ranges) {
ret.push_back(it);
}
}
std::vector<TensorDim> output_dims = context.getInputDimensions();
- for (auto d : output_dims)
+ for (auto &d : output_dims)
d.setTensorType({context.getFormat(), context.getActivationDataType()});
context.setOutputDimensions(output_dims);
* @param ty data type to set
*/
void setInputDataType(TensorDim::DataType ty) {
- for (auto d : input_dim)
+ for (auto &d : input_dim)
d.setDataType(ty);
}
NNTR_THROW_IF(input_dims != actual_prop_dims, std::invalid_argument)
<< "calculated input dimension is different from given input_shape "
"property";
- for (auto d : actual_prop_dims) {
+ for (auto &d : actual_prop_dims) {
d.setDataType(
str_converter<enum_class_prop_tag, nntrainer::TensorDataTypeInfo>::
from_string(tensor_type[2]));
<< prop_dims.size();
actual_input_dims =
std::vector<TensorDim>(prop_dims.begin(), prop_dims.end());
- for (auto d : actual_input_dims) {
+ for (auto &d : actual_input_dims) {
/// Input Tensor type of input layer needs to be float.
d.setDataType(
str_converter<enum_class_prop_tag,
void LossLayer::finalize(InitLayerContext &context) {
std::vector<TensorDim> input_dim = context.getInputDimensions();
std::vector<TensorDim> output_dim = input_dim;
- for (auto d : output_dim)
+ for (auto &d : output_dim)
d.setDataType(
str_converter<enum_class_prop_tag,
nntrainer::TensorDataTypeInfo>::from_string("FP32"));