static volatile int _3 = 3;
initLabTabs();
- if(!_coeffs) _coeffs = sRGB2XYZ_D65;
- if(!_whitept) _whitept = D65;
+ if (!_coeffs)
+ _coeffs = sRGB2XYZ_D65;
+ if (!_whitept)
+ _whitept = D65;
+
float scale[] =
{
(1 << lab_shift)/_whitept[0],
float G = clip(src[1]);
float B = clip(src[2]);
-// CV_Assert(R >= 0.0f && R <= 1.0f);
-// CV_Assert(G >= 0.0f && G <= 1.0f);
-// CV_Assert(B >= 0.0f && B <= 1.0f);
-
if (gammaTab)
{
R = splineInterpolate(R * gscale, gammaTab, GAMMA_TAB_SIZE);
Lab2RGB_f( int _dstcn, int blueIdx, const float* _coeffs,
const float* _whitept, bool _srgb )
- : dstcn(_dstcn), srgb(_srgb), blueInd(blueIdx)
+ : dstcn(_dstcn), srgb(_srgb)
{
initLabTabs();
float x = fxz[0], z = fxz[1];
- float ro = clip(C0 * x + C1 * y + C2 * z);
- float go = clip(C3 * x + C4 * y + C5 * z);
- float bo = clip(C6 * x + C7 * y + C8 * z);
-
-// CV_Assert(ro >= 0.0f && ro <= 1.0f);
-// CV_Assert(go >= 0.0f && go <= 1.0f);
-// CV_Assert(bo >= 0.0f && bo <= 1.0f);
+ float ro = C0 * x + C1 * y + C2 * z;
+ float go = C3 * x + C4 * y + C5 * z;
+ float bo = C6 * x + C7 * y + C8 * z;
+ ro = clip(ro);
+ go = clip(go);
+ bo = clip(bo);
if (gammaTab)
{
int dstcn;
float coeffs[9];
bool srgb;
- int blueInd;
};
#undef clip
size_t globalsize[] = { src.cols, src.rows };
ocl::Kernel k;
- if(depth != CV_8U && depth != CV_16U && depth != CV_32F)
+ if (depth != CV_8U && depth != CV_16U && depth != CV_32F)
return false;
switch (code)
format("-D depth=%d -D dcn=4 -D scn=4 -D bidx=3", depth));
break;
}
+ case CV_BGR2Lab: case CV_RGB2Lab: case CV_LBGR2Lab: case CV_LRGB2Lab:
+ {
+ CV_Assert( (scn == 3 || scn == 4) && (depth == CV_8U || depth == CV_32F) );
+
+ bidx = code == CV_BGR2Lab || code == CV_LBGR2Lab ? 0 : 2;
+ bool srgb = code == CV_BGR2Lab || code == CV_RGB2Lab;
+ dcn = 3;
+
+ k.create("BGR2Lab", ocl::imgproc::cvtcolor_oclsrc,
+ format("-D depth=%d -D dcn=3 -D scn=%d -D bidx=%d%s",
+ depth, scn, bidx, srgb ? " -D SRGB" : ""));
+ if (k.empty())
+ return false;
+
+ initLabTabs();
+
+ _dst.create(dstSz, CV_MAKETYPE(depth, dcn));
+ dst = _dst.getUMat();
+
+ ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
+ dstarg = ocl::KernelArg::WriteOnly(dst);
+
+ if (depth == CV_8U)
+ {
+ static UMat usRGBGammaTab, ulinearGammaTab, uLabCbrtTab, ucoeffs;
+
+ if (srgb && usRGBGammaTab.empty())
+ Mat(1, 256, CV_16UC1, sRGBGammaTab_b).copyTo(usRGBGammaTab);
+ else if (ulinearGammaTab.empty())
+ Mat(1, 256, CV_16UC1, linearGammaTab_b).copyTo(ulinearGammaTab);
+ if (uLabCbrtTab.empty())
+ Mat(1, LAB_CBRT_TAB_SIZE_B, CV_16UC1, LabCbrtTab_b).copyTo(uLabCbrtTab);
+
+ {
+ int coeffs[9];
+ const float * const _coeffs = sRGB2XYZ_D65, * const _whitept = D65;
+ const float scale[] =
+ {
+ (1 << lab_shift)/_whitept[0],
+ (float)(1 << lab_shift),
+ (1 << lab_shift)/_whitept[2]
+ };
+
+ for (int i = 0; i < 3; i++ )
+ {
+ coeffs[i*3+(bidx^2)] = cvRound(_coeffs[i*3]*scale[i]);
+ coeffs[i*3+1] = cvRound(_coeffs[i*3+1]*scale[i]);
+ coeffs[i*3+bidx] = cvRound(_coeffs[i*3+2]*scale[i]);
+
+ CV_Assert( coeffs[i] >= 0 && coeffs[i*3+1] >= 0 && coeffs[i*3+2] >= 0 &&
+ coeffs[i*3] + coeffs[i*3+1] + coeffs[i*3+2] < 2*(1 << lab_shift) );
+ }
+ Mat(1, 9, CV_32SC1, coeffs).copyTo(ucoeffs);
+ }
+
+ const int Lscale = (116*255+50)/100;
+ const int Lshift = -((16*255*(1 << lab_shift2) + 50)/100);
+
+ k.args(srcarg, dstarg,
+ ocl::KernelArg::PtrReadOnly(srgb ? usRGBGammaTab : ulinearGammaTab),
+ ocl::KernelArg::PtrReadOnly(uLabCbrtTab), ocl::KernelArg::PtrReadOnly(ucoeffs),
+ Lscale, Lshift);
+ }
+ else
+ {
+ static UMat usRGBGammaTab, ucoeffs;
+
+ if (srgb && usRGBGammaTab.empty())
+ Mat(1, GAMMA_TAB_SIZE * 4, CV_32FC1, sRGBGammaTab).copyTo(usRGBGammaTab);
+
+ {
+ float coeffs[9];
+ const float * const _coeffs = sRGB2XYZ_D65, * const _whitept = D65;
+ float scale[] = { 1.0f / _whitept[0], 1.0f, 1.0f / _whitept[2] };
+
+ for (int i = 0; i < 3; i++)
+ {
+ int j = i * 3;
+ coeffs[j + (bidx ^ 2)] = _coeffs[j] * scale[i];
+ coeffs[j + 1] = _coeffs[j + 1] * scale[i];
+ coeffs[j + bidx] = _coeffs[j + 2] * scale[i];
+
+ CV_Assert( coeffs[j] >= 0 && coeffs[j + 1] >= 0 && coeffs[j + 2] >= 0 &&
+ coeffs[j] + coeffs[j + 1] + coeffs[j + 2] < 1.5f*LabCbrtTabScale );
+ }
+
+ Mat(1, 9, CV_32FC1, coeffs).copyTo(ucoeffs);
+ }
+
+ float _1_3 = 1.0f / 3.0f, _a = 16.0f / 116.0f;
+ ocl::KernelArg ucoeffsarg = ocl::KernelArg::PtrReadOnly(ucoeffs);
+
+ if (srgb)
+ k.args(srcarg, dstarg, ocl::KernelArg::PtrReadOnly(usRGBGammaTab),
+ ucoeffsarg, _1_3, _a);
+ else
+ k.args(srcarg, dstarg, ucoeffsarg, _1_3, _a);
+ }
+
+ return k.run(dims, globalsize, NULL, false);
+ }
+ case CV_Lab2BGR: case CV_Lab2RGB: case CV_Lab2LBGR: case CV_Lab2LRGB:
+ {
+ if( dcn <= 0 )
+ dcn = 3;
+ CV_Assert( scn == 3 && (dcn == 3 || dcn == 4) && (depth == CV_8U || depth == CV_32F) );
+
+ bidx = code == CV_Lab2BGR || code == CV_Lab2LBGR ? 0 : 2;
+ bool srgb = code == CV_Lab2BGR || code == CV_Lab2RGB;
+
+ k.create("Lab2BGR", ocl::imgproc::cvtcolor_oclsrc,
+ format("-D depth=%d -D dcn=%d -D scn=3 -D bidx=%d%s",
+ depth, dcn, bidx, srgb ? " -D SRGB" : ""));
+ if (k.empty())
+ return false;
+
+ initLabTabs();
+ static UMat ucoeffs, usRGBInvGammaTab;
+
+ if (srgb && usRGBInvGammaTab.empty())
+ Mat(1, GAMMA_TAB_SIZE*4, CV_32FC1, sRGBInvGammaTab).copyTo(usRGBInvGammaTab);
+
+ {
+ float coeffs[9];
+ const float * const _coeffs = XYZ2sRGB_D65, * const _whitept = D65;
+
+ for( int i = 0; i < 3; i++ )
+ {
+ coeffs[i+(bidx^2)*3] = _coeffs[i]*_whitept[i];
+ coeffs[i+3] = _coeffs[i+3]*_whitept[i];
+ coeffs[i+bidx*3] = _coeffs[i+6]*_whitept[i];
+ }
+
+ Mat(1, 9, CV_32SC1, coeffs).copyTo(ucoeffs);
+ }
+
+ _dst.create(sz, CV_MAKETYPE(depth, dcn));
+ dst = _dst.getUMat();
+
+ float lThresh = 0.008856f * 903.3f;
+ float fThresh = 7.787f * 0.008856f + 16.0f / 116.0f;
+
+ ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
+ dstarg = ocl::KernelArg::WriteOnly(dst),
+ coeffsarg = ocl::KernelArg::PtrReadOnly(ucoeffs);
+
+ if (srgb)
+ k.args(srcarg, dstarg, ocl::KernelArg::PtrReadOnly(usRGBInvGammaTab),
+ coeffsarg, lThresh, fThresh);
+ else
+ k.args(srcarg, dstarg, coeffsarg, lThresh, fThresh);
+
+ return k.run(dims, globalsize, NULL, false);
+ }
default:
- ;
+ break;
}
if( !k.empty() )
_dst.create(dstSz, CV_MAKETYPE(depth, dcn));
dst = _dst.getUMat();
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst));
- ok = k.run(dims, globalsize, 0, false);
+ ok = k.run(dims, globalsize, NULL, false);
}
return ok;
}
dst = _dst.getMat();
if( depth == CV_8U )
- {
CvtColorLoop(src, dst, RGBA2mRGBA<uchar>());
- } else {
+ else
+ {
CV_Error( CV_StsBadArg, "Unsupported image depth" );
}
}
dst = _dst.getMat();
if( depth == CV_8U )
- {
CvtColorLoop(src, dst, mRGBA2RGBA<uchar>());
- } else {
+ else
+ {
CV_Error( CV_StsBadArg, "Unsupported image depth" );
}
}
/**************************************PUBLICFUNC*************************************/
-#if defined (DOUBLE_SUPPORT)
-#pragma OPENCL EXTENSION cl_khr_fp64:enable
-#endif
-
#if depth == 0
#define DATA_TYPE uchar
#define MAX_NUM 255
}
#endif
+
+/////////////////////////////////// [l|s]RGB <-> Lab ///////////////////////////
+
+#define lab_shift xyz_shift
+#define gamma_shift 3
+#define lab_shift2 (lab_shift + gamma_shift)
+#define GAMMA_TAB_SIZE 1024
+#define GammaTabScale (float)GAMMA_TAB_SIZE
+
+inline float splineInterpolate(float x, __global const float * tab, int n)
+{
+ int ix = clamp(convert_int_sat_rtn(x), 0, n-1);
+ x -= ix;
+ tab += ix*4;
+ return ((tab[3]*x + tab[2])*x + tab[1])*x + tab[0];
+}
+
+#ifdef DEPTH_0
+
+__kernel void BGR2Lab(__global const uchar * src, int src_step, int src_offset,
+ __global uchar * dst, int dst_step, int dst_offset, int rows, int cols,
+ __global const ushort * gammaTab, __global ushort * LabCbrtTab_b,
+ __constant int * coeffs, int Lscale, int Lshift)
+{
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+
+ if (y < rows && x < cols)
+ {
+ int src_idx = mad24(y, src_step, src_offset + x * scnbytes);
+ int dst_idx = mad24(y, dst_step, dst_offset + x * dcnbytes);
+
+ src += src_idx;
+ dst += dst_idx;
+
+ int C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
+ C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
+ C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
+
+ int R = gammaTab[src[0]], G = gammaTab[src[1]], B = gammaTab[src[2]];
+ int fX = LabCbrtTab_b[CV_DESCALE(R*C0 + G*C1 + B*C2, lab_shift)];
+ int fY = LabCbrtTab_b[CV_DESCALE(R*C3 + G*C4 + B*C5, lab_shift)];
+ int fZ = LabCbrtTab_b[CV_DESCALE(R*C6 + G*C7 + B*C8, lab_shift)];
+
+ int L = CV_DESCALE( Lscale*fY + Lshift, lab_shift2 );
+ int a = CV_DESCALE( 500*(fX - fY) + 128*(1 << lab_shift2), lab_shift2 );
+ int b = CV_DESCALE( 200*(fY - fZ) + 128*(1 << lab_shift2), lab_shift2 );
+
+ dst[0] = SAT_CAST(L);
+ dst[1] = SAT_CAST(a);
+ dst[2] = SAT_CAST(b);
+ }
+}
+
+#elif defined DEPTH_5
+
+__kernel void BGR2Lab(__global const uchar * srcptr, int src_step, int src_offset,
+ __global uchar * dstptr, int dst_step, int dst_offset, int rows, int cols,
+#ifdef SRGB
+ __global const float * gammaTab,
+#endif
+ __constant float * coeffs, float _1_3, float _a)
+{
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+
+ if (y < rows && x < cols)
+ {
+ int src_idx = mad24(y, src_step, src_offset + x * scnbytes);
+ int dst_idx = mad24(y, dst_step, dst_offset + x * dcnbytes);
+
+ __global const float * src = (__global const float *)(srcptr + src_idx);
+ __global float * dst = (__global float *)(dstptr + dst_idx);
+
+ float C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
+ C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
+ C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
+
+ float R = clamp(src[0], 0.0f, 1.0f);
+ float G = clamp(src[1], 0.0f, 1.0f);
+ float B = clamp(src[2], 0.0f, 1.0f);
+
+#ifdef SRGB
+ R = splineInterpolate(R * GammaTabScale, gammaTab, GAMMA_TAB_SIZE);
+ G = splineInterpolate(G * GammaTabScale, gammaTab, GAMMA_TAB_SIZE);
+ B = splineInterpolate(B * GammaTabScale, gammaTab, GAMMA_TAB_SIZE);
+#endif
+
+ float X = R*C0 + G*C1 + B*C2;
+ float Y = R*C3 + G*C4 + B*C5;
+ float Z = R*C6 + G*C7 + B*C8;
+
+ float FX = X > 0.008856f ? pow(X, _1_3) : (7.787f * X + _a);
+ float FY = Y > 0.008856f ? pow(Y, _1_3) : (7.787f * Y + _a);
+ float FZ = Z > 0.008856f ? pow(Z, _1_3) : (7.787f * Z + _a);
+
+ float L = Y > 0.008856f ? (116.f * FY - 16.f) : (903.3f * Y);
+ float a = 500.f * (FX - FY);
+ float b = 200.f * (FY - FZ);
+
+ dst[0] = L;
+ dst[1] = a;
+ dst[2] = b;
+ }
+}
+
+#endif
+
+inline void Lab2BGR_f(const float * srcbuf, float * dstbuf,
+#ifdef SRGB
+ __global const float * gammaTab,
+#endif
+ __constant float * coeffs, float lThresh, float fThresh)
+{
+ float li = srcbuf[0], ai = srcbuf[1], bi = srcbuf[2];
+
+ float C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
+ C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
+ C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
+
+ float y, fy;
+ if (li <= lThresh)
+ {
+ y = li / 903.3f;
+ fy = 7.787f * y + 16.0f / 116.0f;
+ }
+ else
+ {
+ fy = (li + 16.0f) / 116.0f;
+ y = fy * fy * fy;
+ }
+
+ float fxz[] = { ai / 500.0f + fy, fy - bi / 200.0f };
+
+ for (int j = 0; j < 2; j++)
+ if (fxz[j] <= fThresh)
+ fxz[j] = (fxz[j] - 16.0f / 116.0f) / 7.787f;
+ else
+ fxz[j] = fxz[j] * fxz[j] * fxz[j];
+
+ float x = fxz[0], z = fxz[1];
+ float ro = clamp(C0 * x + C1 * y + C2 * z, 0.0f, 1.0f);
+ float go = clamp(C3 * x + C4 * y + C5 * z, 0.0f, 1.0f);
+ float bo = clamp(C6 * x + C7 * y + C8 * z, 0.0f, 1.0f);
+
+#ifdef SRGB
+ ro = splineInterpolate(ro * GammaTabScale, gammaTab, GAMMA_TAB_SIZE);
+ go = splineInterpolate(go * GammaTabScale, gammaTab, GAMMA_TAB_SIZE);
+ bo = splineInterpolate(bo * GammaTabScale, gammaTab, GAMMA_TAB_SIZE);
+#endif
+
+ dstbuf[0] = ro, dstbuf[1] = go, dstbuf[2] = bo;
+}
+
+#ifdef DEPTH_0
+
+__kernel void Lab2BGR(__global const uchar * src, int src_step, int src_offset,
+ __global uchar * dst, int dst_step, int dst_offset, int rows, int cols,
+#ifdef SRGB
+ __global const float * gammaTab,
+#endif
+ __constant float * coeffs, float lThresh, float fThresh)
+{
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+
+ if (y < rows && x < cols)
+ {
+ int src_idx = mad24(y, src_step, src_offset + x * scnbytes);
+ int dst_idx = mad24(y, dst_step, dst_offset + x * dcnbytes);
+
+ src += src_idx;
+ dst += dst_idx;
+
+ float srcbuf[3], dstbuf[3];
+ srcbuf[0] = src[0]*(100.f/255.f);
+ srcbuf[1] = convert_float(src[1] - 128);
+ srcbuf[2] = convert_float(src[2] - 128);
+
+ Lab2BGR_f(&srcbuf[0], &dstbuf[0],
+#ifdef SRGB
+ gammaTab,
+#endif
+ coeffs, lThresh, fThresh);
+
+ dst[0] = SAT_CAST(dstbuf[0] * 255.0f);
+ dst[1] = SAT_CAST(dstbuf[1] * 255.0f);
+ dst[2] = SAT_CAST(dstbuf[2] * 255.0f);
+#if dcn == 4
+ dst[3] = MAX_NUM;
+#endif
+ }
+}
+
+#elif defined DEPTH_5
+
+__kernel void Lab2BGR(__global const uchar * srcptr, int src_step, int src_offset,
+ __global uchar * dstptr, int dst_step, int dst_offset, int rows, int cols,
+#ifdef SRGB
+ __global const float * gammaTab,
+#endif
+ __constant float * coeffs, float lThresh, float fThresh)
+{
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+
+ if (y < rows && x < cols)
+ {
+ int src_idx = mad24(y, src_step, src_offset + x * scnbytes);
+ int dst_idx = mad24(y, dst_step, dst_offset + x * dcnbytes);
+
+ __global const float * src = (__global const float *)(srcptr + src_idx);
+ __global float * dst = (__global float *)(dstptr + dst_idx);
+
+ float srcbuf[3], dstbuf[3];
+ srcbuf[0] = src[0], srcbuf[1] = src[1], srcbuf[2] = src[2];
+
+ Lab2BGR_f(&srcbuf[0], &dstbuf[0],
+#ifdef SRGB
+ gammaTab,
+#endif
+ coeffs, lThresh, fThresh);
+
+ dst[0] = dstbuf[0], dst[1] = dstbuf[1], dst[2] = dstbuf[2];
+#if dcn == 4
+ dst[3] = MAX_NUM;
+#endif
+ }
+}
+
+#endif
OCL_TEST_P(CvtColor8u, RGBA2mRGBA) { performTest(4, 4, CVTCODE(RGBA2mRGBA)); }
OCL_TEST_P(CvtColor8u, mRGBA2RGBA) { performTest(4, 4, CVTCODE(mRGBA2RGBA)); }
+// RGB <-> Lab
+
+OCL_TEST_P(CvtColor8u32f, BGR2Lab) { performTest(3, 3, CVTCODE(BGR2Lab)); }
+OCL_TEST_P(CvtColor8u32f, RGB2Lab) { performTest(3, 3, CVTCODE(RGB2Lab)); }
+OCL_TEST_P(CvtColor8u32f, LBGR2Lab) { performTest(3, 3, CVTCODE(LBGR2Lab)); }
+OCL_TEST_P(CvtColor8u32f, LRGB2Lab) { performTest(3, 3, CVTCODE(LRGB2Lab)); }
+OCL_TEST_P(CvtColor8u32f, BGRA2Lab) { performTest(4, 3, CVTCODE(BGR2Lab)); }
+OCL_TEST_P(CvtColor8u32f, RGBA2Lab) { performTest(4, 3, CVTCODE(RGB2Lab)); }
+OCL_TEST_P(CvtColor8u32f, LBGRA2Lab) { performTest(4, 3, CVTCODE(LBGR2Lab)); }
+OCL_TEST_P(CvtColor8u32f, LRGBA2Lab) { performTest(4, 3, CVTCODE(LRGB2Lab)); }
+
+OCL_TEST_P(CvtColor8u32f, Lab2BGR) { performTest(3, 3, CVTCODE(Lab2BGR), depth == CV_8U ? 1 : 1e-5); }
+OCL_TEST_P(CvtColor8u32f, Lab2RGB) { performTest(3, 3, CVTCODE(Lab2RGB), depth == CV_8U ? 1 : 1e-5); }
+OCL_TEST_P(CvtColor8u32f, Lab2LBGR) { performTest(3, 3, CVTCODE(Lab2LBGR), depth == CV_8U ? 1 : 1e-5); }
+OCL_TEST_P(CvtColor8u32f, Lab2LRGB) { performTest(3, 3, CVTCODE(Lab2LRGB), depth == CV_8U ? 1 : 1e-5); }
+OCL_TEST_P(CvtColor8u32f, Lab2BGRA) { performTest(3, 4, CVTCODE(Lab2BGR), depth == CV_8U ? 1 : 1e-5); }
+OCL_TEST_P(CvtColor8u32f, Lab2RGBA) { performTest(3, 4, CVTCODE(Lab2RGB), depth == CV_8U ? 1 : 1e-5); }
+OCL_TEST_P(CvtColor8u32f, Lab2LBGRA) { performTest(3, 4, CVTCODE(Lab2LBGR), depth == CV_8U ? 1 : 1e-5); }
+OCL_TEST_P(CvtColor8u32f, Lab2LRGBA) { performTest(3, 4, CVTCODE(Lab2LRGB), depth == CV_8U ? 1 : 1e-5); }
+
// YUV -> RGBA_NV12
struct CvtColor_YUV420 :