#define NVIF_CLASS_SW_NV50 /* if0005.h */ -0x00000006
#define NVIF_CLASS_SW_GF100 /* if0005.h */ -0x00000007
+#define NVIF_CLASS_VMM /* if000c.h */ 0x0000000c
+
/* the below match nvidia-assigned (either in hw, or sw) class numbers */
#define NV_NULL_CLASS 0x00000030
--- /dev/null
+#ifndef __NVIF_IF000C_H__
+#define __NVIF_IF000C_H__
+#endif
};
struct nvkm_vm {
+ const struct nvkm_vmm_func *func;
struct nvkm_mmu *mmu;
-
+ const char *name;
+ struct kref kref;
struct mutex mutex;
+
+ u64 start;
+ u64 limit;
+
+ struct nvkm_vmm_pt *pd;
+ u16 pd_offset;
+ struct list_head join;
+
struct nvkm_mm mm;
struct kref refcount;
-
struct list_head pgd_list;
- atomic_t engref[NVKM_SUBDEV_NR];
-
struct nvkm_vm_pgt *pgt;
u32 fpde;
u32 lpde;
bool bootstrapped;
+ atomic_t engref[NVKM_SUBDEV_NR];
};
int nvkm_vm_new(struct nvkm_device *, u64 offset, u64 length, u64 mm_offset,
nvkm-y += nvkm/subdev/mmu/gm20b.o
nvkm-y += nvkm/subdev/mmu/gp100.o
nvkm-y += nvkm/subdev/mmu/gp10b.o
+
+nvkm-y += nvkm/subdev/mmu/vmm.o
* Authors: Ben Skeggs
*/
#include "priv.h"
+#include "vmm.h"
#include <core/gpuobj.h>
#include <subdev/fb.h>
return ret;
}
-int
-nvkm_vm_create(struct nvkm_mmu *mmu, u64 offset, u64 length, u64 mm_offset,
- u32 block, struct lock_class_key *key, struct nvkm_vm **pvm)
+static int
+nvkm_vm_legacy(struct nvkm_mmu *mmu, u64 offset, u64 length, u64 mm_offset,
+ u32 block, struct nvkm_vm *vm)
{
- static struct lock_class_key _key;
- struct nvkm_vm *vm;
u64 mm_length = (offset + length) - mm_offset;
int ret;
- vm = kzalloc(sizeof(*vm), GFP_KERNEL);
- if (!vm)
- return -ENOMEM;
-
- __mutex_init(&vm->mutex, "&vm->mutex", key ? key : &_key);
INIT_LIST_HEAD(&vm->pgd_list);
- vm->mmu = mmu;
kref_init(&vm->refcount);
vm->fpde = offset >> (mmu->func->pgt_bits + 12);
vm->lpde = (offset + length - 1) >> (mmu->func->pgt_bits + 12);
return -ENOMEM;
}
+ if (block > length)
+ block = length;
+
ret = nvkm_mm_init(&vm->mm, 0, mm_offset >> 12, mm_length >> 12,
block >> 12);
if (ret) {
vfree(vm->pgt);
+ return ret;
+ }
+
+ return 0;
+}
+
+int
+nvkm_vm_create(struct nvkm_mmu *mmu, u64 offset, u64 length, u64 mm_offset,
+ u32 block, struct lock_class_key *key, struct nvkm_vm **pvm)
+{
+ static struct lock_class_key _key;
+ struct nvkm_vm *vm;
+ int ret;
+
+ vm = kzalloc(sizeof(*vm), GFP_KERNEL);
+ if (!vm)
+ return -ENOMEM;
+
+ __mutex_init(&vm->mutex, "&vm->mutex", key ? key : &_key);
+ vm->mmu = mmu;
+
+ ret = nvkm_vm_legacy(mmu, offset, length, mm_offset, block, vm);
+ if (ret) {
kfree(vm);
return ret;
}
*pvm = vm;
-
return 0;
}
struct lock_class_key *key, struct nvkm_vm **pvm)
{
struct nvkm_mmu *mmu = device->mmu;
+
+ *pvm = NULL;
+ if (mmu->func->vmm.ctor) {
+ int ret = mmu->func->vmm.ctor(mmu, mm_offset,
+ offset + length - mm_offset,
+ NULL, 0, key, "legacy", pvm);
+ if (ret) {
+ nvkm_vm_ref(NULL, pvm, NULL);
+ return ret;
+ }
+
+ ret = nvkm_vm_legacy(mmu, offset, length, mm_offset,
+ (*pvm)->func->page_block ?
+ (*pvm)->func->page_block : 4096, *pvm);
+ if (ret)
+ nvkm_vm_ref(NULL, pvm, NULL);
+
+ return ret;
+ }
+
if (!mmu->func->create)
return -EINVAL;
+
return mmu->func->create(mmu, offset, length, mm_offset, key, pvm);
}
nvkm_mm_fini(&vm->mm);
vfree(vm->pgt);
+
+ if (vm->func)
+ nvkm_vmm_dtor(vm);
kfree(vm);
}
nvkm_mmu_oneinit(struct nvkm_subdev *subdev)
{
struct nvkm_mmu *mmu = nvkm_mmu(subdev);
+
+ if (mmu->func->vmm.global) {
+ int ret = nvkm_vm_new(subdev->device, 0, mmu->limit, 0,
+ NULL, &mmu->vmm);
+ if (ret)
+ return ret;
+ }
+
if (mmu->func->oneinit)
return mmu->func->oneinit(mmu);
+
return 0;
}
if (mmu->func->dtor)
data = mmu->func->dtor(mmu);
+ nvkm_vm_ref(NULL, &mmu->vmm, NULL);
nvkm_mmu_ptc_fini(mmu);
return data;
{
struct nv04_mmu *mmu = nv04_mmu(base);
struct nvkm_device *device = mmu->base.subdev.device;
- if (mmu->base.vmm) {
+ if (mmu->base.vmm)
nvkm_memory_unref(&mmu->base.vmm->pgt[0].mem[0]);
- nvkm_vm_ref(NULL, &mmu->base.vmm, NULL);
- }
if (mmu->nullp) {
dma_free_coherent(device->dev, 16 * 1024,
mmu->nullp, mmu->null);
void (*unmap)(struct nvkm_vma *, struct nvkm_memory *pgt,
u32 pte, u32 cnt);
void (*flush)(struct nvkm_vm *);
+
+ struct {
+ struct nvkm_sclass base;
+ int (*ctor)(struct nvkm_mmu *, u64 addr, u64 size,
+ void *argv, u32 argc, struct lock_class_key *,
+ const char *name, struct nvkm_vmm **);
+ bool global;
+ } vmm;
};
int nvkm_vm_create(struct nvkm_mmu *, u64, u64, u64, u32,
--- /dev/null
+/*
+ * Copyright 2017 Red Hat Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ */
+#define NVKM_VMM_LEVELS_MAX 5
+#include "vmm.h"
+
+static void
+nvkm_vmm_pt_del(struct nvkm_vmm_pt **ppgt)
+{
+ struct nvkm_vmm_pt *pgt = *ppgt;
+ if (pgt) {
+ kvfree(pgt->pde);
+ kfree(pgt);
+ *ppgt = NULL;
+ }
+}
+
+
+static struct nvkm_vmm_pt *
+nvkm_vmm_pt_new(const struct nvkm_vmm_desc *desc, bool sparse,
+ const struct nvkm_vmm_page *page)
+{
+ const u32 pten = 1 << desc->bits;
+ struct nvkm_vmm_pt *pgt;
+ u32 lpte = 0;
+
+ if (desc->type > PGT) {
+ if (desc->type == SPT) {
+ const struct nvkm_vmm_desc *pair = page[-1].desc;
+ lpte = pten >> (desc->bits - pair->bits);
+ } else {
+ lpte = pten;
+ }
+ }
+
+ if (!(pgt = kzalloc(sizeof(*pgt) + lpte, GFP_KERNEL)))
+ return NULL;
+ pgt->page = page ? page->shift : 0;
+ pgt->sparse = sparse;
+
+ if (desc->type == PGD) {
+ pgt->pde = kvzalloc(sizeof(*pgt->pde) * pten, GFP_KERNEL);
+ if (!pgt->pde) {
+ kfree(pgt);
+ return NULL;
+ }
+ }
+
+ return pgt;
+}
+
+void
+nvkm_vmm_dtor(struct nvkm_vmm *vmm)
+{
+ if (vmm->pd) {
+ nvkm_mmu_ptc_put(vmm->mmu, true, &vmm->pd->pt[0]);
+ nvkm_vmm_pt_del(&vmm->pd);
+ }
+}
+
+int
+nvkm_vmm_ctor(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu,
+ u32 pd_header, u64 addr, u64 size, struct lock_class_key *key,
+ const char *name, struct nvkm_vmm *vmm)
+{
+ static struct lock_class_key _key;
+ const struct nvkm_vmm_page *page = func->page;
+ const struct nvkm_vmm_desc *desc;
+ int levels, bits = 0;
+
+ vmm->func = func;
+ vmm->mmu = mmu;
+ vmm->name = name;
+ kref_init(&vmm->kref);
+
+ __mutex_init(&vmm->mutex, "&vmm->mutex", key ? key : &_key);
+
+ /* Locate the smallest page size supported by the backend, it will
+ * have the the deepest nesting of page tables.
+ */
+ while (page[1].shift)
+ page++;
+
+ /* Locate the structure that describes the layout of the top-level
+ * page table, and determine the number of valid bits in a virtual
+ * address.
+ */
+ for (levels = 0, desc = page->desc; desc->bits; desc++, levels++)
+ bits += desc->bits;
+ bits += page->shift;
+ desc--;
+
+ if (WARN_ON(levels > NVKM_VMM_LEVELS_MAX))
+ return -EINVAL;
+
+ vmm->start = addr;
+ vmm->limit = size ? (addr + size) : (1ULL << bits);
+ if (vmm->start > vmm->limit || vmm->limit > (1ULL << bits))
+ return -EINVAL;
+
+ /* Allocate top-level page table. */
+ vmm->pd = nvkm_vmm_pt_new(desc, false, NULL);
+ if (!vmm->pd)
+ return -ENOMEM;
+ vmm->pd->refs[0] = 1;
+ INIT_LIST_HEAD(&vmm->join);
+
+ /* ... and the GPU storage for it, except on Tesla-class GPUs that
+ * have the PD embedded in the instance structure.
+ */
+ if (desc->size && mmu->func->vmm.global) {
+ const u32 size = pd_header + desc->size * (1 << desc->bits);
+ vmm->pd->pt[0] = nvkm_mmu_ptc_get(mmu, size, desc->align, true);
+ if (!vmm->pd->pt[0])
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+int
+nvkm_vmm_new_(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu,
+ u32 hdr, u64 addr, u64 size, struct lock_class_key *key,
+ const char *name, struct nvkm_vmm **pvmm)
+{
+ if (!(*pvmm = kzalloc(sizeof(**pvmm), GFP_KERNEL)))
+ return -ENOMEM;
+ return nvkm_vmm_ctor(func, mmu, hdr, addr, size, key, name, *pvmm);
+}
--- /dev/null
+#ifndef __NVKM_VMM_H__
+#define __NVKM_VMM_H__
+#include "priv.h"
+#include <core/memory.h>
+
+struct nvkm_vmm_pt {
+ /* Some GPUs have a mapping level with a dual page tables to
+ * support large and small pages in the same address-range.
+ *
+ * We track the state of both page tables in one place, which
+ * is why there's multiple PT pointers/refcounts here.
+ */
+ struct nvkm_mmu_pt *pt[2];
+ u32 refs[2];
+
+ /* Page size handled by this PT.
+ *
+ * Tesla backend needs to know this when writinge PDEs,
+ * otherwise unnecessary.
+ */
+ u8 page;
+
+ /* Entire page table sparse.
+ *
+ * Used to propagate sparseness to child page tables.
+ */
+ bool sparse:1;
+
+ /* Tracking for page directories.
+ *
+ * The array is indexed by PDE, and will either point to the
+ * child page table, or indicate the PDE is marked as sparse.
+ **/
+#define NVKM_VMM_PDE_INVALID(pde) IS_ERR_OR_NULL(pde)
+#define NVKM_VMM_PDE_SPARSED(pde) IS_ERR(pde)
+#define NVKM_VMM_PDE_SPARSE ERR_PTR(-EBUSY)
+ struct nvkm_vmm_pt **pde;
+
+ /* Tracking for dual page tables.
+ *
+ * There's one entry for each LPTE, keeping track of whether
+ * there are valid SPTEs in the same address-range.
+ *
+ * This information is used to manage LPTE state transitions.
+ */
+#define NVKM_VMM_PTE_SPARSE 0x80
+#define NVKM_VMM_PTE_VALID 0x40
+#define NVKM_VMM_PTE_SPTES 0x3f
+ u8 pte[];
+};
+
+struct nvkm_vmm_desc_func {
+};
+
+struct nvkm_vmm_desc {
+ enum {
+ PGD,
+ PGT,
+ SPT,
+ LPT,
+ } type;
+ u8 bits; /* VMA bits covered by PT. */
+ u8 size; /* Bytes-per-PTE. */
+ u32 align; /* PT address alignment. */
+ const struct nvkm_vmm_desc_func *func;
+};
+
+struct nvkm_vmm_page {
+ u8 shift;
+ const struct nvkm_vmm_desc *desc;
+#define NVKM_VMM_PAGE_SPARSE 0x01
+#define NVKM_VMM_PAGE_VRAM 0x02
+#define NVKM_VMM_PAGE_HOST 0x04
+#define NVKM_VMM_PAGE_COMP 0x08
+#define NVKM_VMM_PAGE_Sxxx (NVKM_VMM_PAGE_SPARSE)
+#define NVKM_VMM_PAGE_xVxx (NVKM_VMM_PAGE_VRAM)
+#define NVKM_VMM_PAGE_SVxx (NVKM_VMM_PAGE_Sxxx | NVKM_VMM_PAGE_VRAM)
+#define NVKM_VMM_PAGE_xxHx (NVKM_VMM_PAGE_HOST)
+#define NVKM_VMM_PAGE_SxHx (NVKM_VMM_PAGE_Sxxx | NVKM_VMM_PAGE_HOST)
+#define NVKM_VMM_PAGE_xVHx (NVKM_VMM_PAGE_xVxx | NVKM_VMM_PAGE_HOST)
+#define NVKM_VMM_PAGE_SVHx (NVKM_VMM_PAGE_SVxx | NVKM_VMM_PAGE_HOST)
+#define NVKM_VMM_PAGE_xVxC (NVKM_VMM_PAGE_xVxx | NVKM_VMM_PAGE_COMP)
+#define NVKM_VMM_PAGE_SVxC (NVKM_VMM_PAGE_SVxx | NVKM_VMM_PAGE_COMP)
+#define NVKM_VMM_PAGE_xxHC (NVKM_VMM_PAGE_xxHx | NVKM_VMM_PAGE_COMP)
+#define NVKM_VMM_PAGE_SxHC (NVKM_VMM_PAGE_SxHx | NVKM_VMM_PAGE_COMP)
+ u8 type;
+};
+
+struct nvkm_vmm_func {
+ int (*join)(struct nvkm_vmm *, struct nvkm_memory *inst);
+ void (*part)(struct nvkm_vmm *, struct nvkm_memory *inst);
+
+ u64 page_block;
+ const struct nvkm_vmm_page page[];
+};
+
+int nvkm_vmm_new_(const struct nvkm_vmm_func *, struct nvkm_mmu *,
+ u32 pd_header, u64 addr, u64 size, struct lock_class_key *,
+ const char *name, struct nvkm_vmm **);
+int nvkm_vmm_ctor(const struct nvkm_vmm_func *, struct nvkm_mmu *,
+ u32 pd_header, u64 addr, u64 size, struct lock_class_key *,
+ const char *name, struct nvkm_vmm *);
+void nvkm_vmm_dtor(struct nvkm_vmm *);
+
+struct nvkm_vmm_user {
+ struct nvkm_sclass base;
+ int (*ctor)(struct nvkm_mmu *, u64 addr, u64 size, void *args, u32 argc,
+ struct lock_class_key *, const char *name,
+ struct nvkm_vmm **);
+};
+#endif